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Abstract—In this paper, we present an evolutionary robotics
framework (EvoRoF) for on-line and off-line evolution, as well as
on-board and off-board evolution for swarm and reconfigurable
robotics. It enables both, the use of artificial neural networks
and spiking neural networks and combines both with structural
evolution of recurrent networks. It is evaluated with benchmark
tests and several use cases are outlined.
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I. INTRODUCTION

In swarm robotics, a group of autonomous robots with
limited sensors and actuators performs in a cooperative way.
These robots often have only limited power resources and local
information. Therefore, these robots are forced to take care of
power recharging and efficient task allocation to ensure the
correct processing of the desired task.

In reconfigurable robotics, a group of robots is able to recon-
figure or aggregate into various configurations to generate new
functionalities and thus gain a high degree of versatility [1],
[2]. New functionalities can arise and the robotic system adapts
to different operational demands to solve advanced tasks.

While the swarm and reconfigurable robotics describe a
class of robotic systems, Evolutionary Robotics is a way to
obtain a desired controller by applying Darwinian mecha-
nisms [3] to the controller of those robots. The artificial evo-

Fig. 1. The three robots developed in the Symbrion and Replicator projects.
Top left: Backbone robot. Top right: Scout robot. Bottom: Active Wheel.

Fig. 2. An aggregated hexapod organisms of Backbone robots in the
simulation to demonstrate the capabilities of the reconfigurable mobile robot
platform.

lution of robot controllers enables a swarm or reconfigurable
robots to evolve over time in order to adapt to a specific task
or to survive in a dynamic environment.

Combining all three topics into one platform like in the
Symbrion [4] and Replicator [5] projects, delivers a powerful
robotic system for dynamic environments and unforeseen
situations. Autonomous individual robots can aggregate on
demand to artificial organisms with new functionaity and thus
extend its operational scope. The automatic design by artificial
evolution can be followed by lifelong on-line adaptation.

Thereby, the evolvability of a platform directly affects the
level of adaptation and learning in robotic control. Without
evolvability, a technical system is not able to change the
underlying structure of control for adaptation and learning
reasons. In a former paper [6], we showed the different levels
of evolvability in the Symbrion and Replicator projects.

We outlined how the mechanical design has to be and the
requirements of the embedded software, which we presented
in [7], called Symbricator Robot API. Beside the supporting
electronics, mechanics and basic software design, the platform
itself extends the system by the capability of aggregation. By
self-assembling, an artificial robot organism can generate new
functionality in order to adapt to a changing environment or
task. Figure 1 shows the heterogeneous robots in the Symbrion
and Replicator projects. A detailed description can be found
in [8], [9]. An aggregated multi-robot organism in simulation
can be seen in Figure 2.
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In the following we will demonstrate a framework for
evolvable robot control, which enables the evolutionary de-
sign of robot controllers in individual robots as well as
for cooperating robots and artificial organisms. The paper
is organized as follow: Section II gives an overview about
existing frameworks and related work. Section III outlines the
requirements for such a framework and Section IV lines out
the actual implementation of the framework, while section VI
demonstrates use-cases and experiments. In Section VII, we
summarize and conclude the paper.

II. RELATED WORK

One of the earliest approaches is the Generalized Acquisi-
tion of Recurrent Links (GNARL) from Angeline et al. [10].
In this framework, the first time an algorithm is enabled to
evolve the parameters and the structure of a neural network at
the same time without any constraints to the topology of the
network. New links are introduced with zero weight to avoid
a radical change in the behaviour of a network. New neurons
are introduced without any incident links, later mutations are
connecting those neurons then in an appropriate manner.

The NeuroEvolution of Augmenting Topologies (NEAT),
developed by Stanley et al. [11] is a generation-based frame-
work which allows the evolution of recurrent networks from a
minimal initial network by parametric and structural mutation.
Beside this so called complexification, the key features of
NEAT are the historical marking of new mutational inno-
vations. With this mechanism crossover can be enabled by
aligning the genomes and comparing the innovation history.
Furthermore, to protect new structures, a niching mechanism,
respectively speciation, is introduced. Again, the historical
marking allows to calculate the distance between two different
genomes and allows the classification of all members of the
population with a configurable parameter into species.

The Evolutionary Acquisition of Neural Topologies
(EANT) [12] also enables to evolve recurrent networks by
parametric and structural mutation. The algorithm is based
on the Common Genetic Encoding (CGE) [13] on which the
mutation and a NEAT-like crossover operate. This genome
encoding enables direct and indirect encoding, is complete,
compact and closed. Additionally, they introduced the differen-
tiation between an exploitation phase and an exploration phase.
The exploitation phase only optimizes the existing structure
by adapting the weights, without changing the structure of the
network itself. The exploration phase allows the introduction
of new genes by means of structural mutations. These two
phases are alternating, starting with several exploitation steps
followed by an exploration step so that networks with optimal
structures, can adapt the weights of the links.

In Schlachter et al. [14] and Schwarzer et al. [15], we
already demonstrated a neural network controller which incor-
porated structural evolution as well as the possibility to adapt
incrementally to a dynamic environment. The advantages and
the experiences are compared to all approaches and brought
into the new framework.

III. REQUIREMENTS

In order to evolve controllers for swarm and modular
robots, some key issues, which should be fulfilled have to
be addressed:
• On-line and on-board evolution: In addition to off-

board and off-line evolution, the framework should be
able to enable on-line and on-board evolution to met the
requirements in the projects and allow a broad application
scope.

• Flexible Controller Types: In order to enable the best
choice for a certain scenario, the framework should
support different types of control. Beside artificial neural
networks it should allow to use spiking neural networks.
Additional, other kinds of controllers should be easily
integrable by a modular abstraction level.

• Parametric and Structural Evolution: Both the weights
of links as well as the structure of a network need to be
subject to mutational operators to allow complexification
from a minimal initial network to the structure which
is required by the task to fulfil and adjust the present
weights.

• Simple and flexible use: The usability should be as
simple as possible. The choices of controller type and
parameters should be transparent and well organized.

• Powerful interfaces: The interfaces to required tools,
simulations and the robot itself should be well suited to
allow a complete use of the functionalities.

• Application Range: The evolutionary framework has to
run on individual robots in a swarm, on reconfigurable
robots in an artificial organism in a centralized as well as
decentralized manner.

IV. ARCHITECTURE AND COMPONENTS

The framework is designed modular in object-oriented C++.
It was carefully designed regarding reusability and extendibil-
ity. It supports dynamical changes of controllers during run-
time, different network types, mutation operators, selection
and fitness functions. An overview of the different modules
can be seen in Figure 3. All modules are grouped into five
associated groups, which are explained in more detail in the
following.

A. Evolutionary Engine

The core of the framework is built by the evolutionary
engine. This engine handles the population and the correct
evaluation of it. It triggers the generation of the initial popu-
lation and links the evolvable controllers with the modules for
selection and fitness evaluation. Depending on the selection
mode, it either processes generation by generation or allows
for continuous tournament selection. Each population island
consists of a configurable number of individual controllers,
derived from the evolvable superclass.

B. EvoRoFConfig and Logger

The EvoRoFConfig module is responsible for the configu-
ration files. In the initial phase, it reads in the files and sets
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Fig. 3. Overview over the EvoRoF architecture. Central part is the
evolutionary engine with the four surrounding blocks.

the configuration. During runtime, this module provides other
modules with necessary information about the parameters
required.

The logger gives a configurable interface to set the level of
detail for logging. The complete framework is distributed in
different log levels which can independently be switched on
or off. In addition to program information and error states, this
module takes care of logging of fitness values and genomes
into files for later use or comparison.

C. Fitness and Selection

The modules for fitness and selection can be configured
via the configuration file. The evolutionary engine coordinates
their activities. The fitness module takes care of the correct
evaluation of the fitness of the current running controller and
stores the values. The selection mechanism, is responsible for
the creation of the next generation, respectively of the next
selected individual for evaluation. In generation based mode,
this module generates depending on the selection scheme the
next generation and delivers it back to the evolutionary engine.
In tournament mode, the next individual will be generated and
given back to the evolutionary engine.

D. Evolvables, Genes and Factories

Each controller is a subclass of the evolvable superclass.
This class delivers the template to be implemented in order
to be used by the evolutionary engine in the right way.
All controllers have to implement the same interfaces like
initialize() or mutate().

Every controller encapsulates its own genome, which genes
are derived from the genes class. Figure 4 shows an exemplary
class hierarchy for the CGE genome.

To separate the creation of new controllers from the logic of
a controller, several modules following the factory pattern are
available. Those factories generate depending on the desired
configuration the individual controllers and push them into the
island population of the evolutionary engine.

E. Interface to Simulation and Real Robots

The EvoRoF framework should be able to address the
relevant robots and simulation environments of the directly
linked projects, thus be extendible to several platforms. For the
ongoing experiments, we support interfaces, called wrappers,
for the use with different simulators and the three available
robot types in the Symbrion and Replicator projects. The
used simulators are PlayerStage and the Robot3D simulator of
the projects (see also VI Applications). The robot interfaces
use the Symbricator Robot API [7]. For generic use, the
evolutionary engine can be accessed with a plain wrapper.

Based on the interface functions a common worldmodel
is implemented. This worldmodel serves as a container for
all relevant sensor data and information from both internal
and external sensors and states. In addition, the worldmodel
takes care of the message processing of incoming and outgoing
messages from and to other robots.

V. IMPLEMENTED CONCEPTS

A. Controller Types

A straight forward choice of the controller type for this kind
of application is the use of neural networks. Following the defi-
nition of Maass [16] there are three classes of neural networks.
The first generation is based on McCulloch-Pitts neurons
(only digital output). These models can give digital output
and are universal for every boolean function. The second
generation is weighting the inputs and calculating the output
via an activation function which delivers a continuous output
value. The activation functions can vary from piecewise linear
to sigmoid or even more complex functions. The network
structure can be either a perceptron or a recurrent network.
They can cope with analogue input and are universal for
analogue computation. The third class of neural networks are
the spiking neural networks. While in the second generation
of networks, the output can be interpreted biologically as the
current firing rate (number of spikes per period), the timing of
spikes is in the foreground for spiking neural networks. The
information can be encoded in the timing of spikes.

Fig. 4. The class hierarchy of the CGE gene classes.
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In this framework, we implemented support for all types
of networks in order to allow a higher flexibility in choice.
Depending on the scenario and computational demands, the
hidden layers can be disabled and even so recurrent connec-
tions can be switched off. Thus, the complete range from
simple perceptrons to complex recurrent neural networks is
feasible.

B. Genotype and Phenotype Representation
For the genotype we adopted the idea of the common

genetic encoding (CGE) [13] which is also used in the EANT
framework, described by Kassahun et al. [12]. The CGE
is a linear genome representation and is in comparison to
other approaches like GNARL or NEAT, complete, closed and
modular. It further supports direct and indirect encoding and
allows for direct evaluation of the genotype without decoding
it to a phenotype. The structure of the network is implicitly
given and due to its linear nature it is simple to serialize for
transmission in order to exchange genomes.

The initial population can be selected as proposed in NEAT
without hidden nodes and all inputs connected to all outputs
or with an additional initial hidden layer. It is mandatory to
start with a minimal configuration in order to find a minimal
solution by continuous complexification. Alternatively, the
EANT approach, starting with the same minimal network, but
increasing the diversity of the start population by some random
initial mutations, can be chosen.

C. Evolutionary Operators
The evolutionary operators allow to mutate both the weight

parameters of links and the structural complexification by
adding new links and nodes. Due to the nature of the CGE,
either a forward jumper, a recurrent jumper or a complete
subgenome with an arbitrary number of incident input con-
nections can be inserted. The recombination is as described by
Stanley et al. [11] in the NEAT framework. The genomes are
aligned and combined to generate a new structure containing
the common parts as well as the differing parts of both parents.
Instead of the global tracking numbers for innovations, the
identifiers can be used.

D. Evolutionary process, Fitness and Selection
To better support the on-line and on-board capabilities of

the evolutionary framework, we adopted the idea of island
evolution from [17]. Each robot represents an island with its
own population. The population consists of configurable size
of genomes. In the tournament selection mode, one or two
genomes, depending if mating is enabled, are taken to generate
new offspring. This new individual is then evaluated for a
certain time and the fitness value is compared to the existing
members of the island. If the fitness is higher as the worst
member, this one will be replaced by the new genome. In the
generation based mode, all genomes on an island are evaluated.
Afterwards, the new offspring is generated. Depending on the
configuration this could be for example elitism selection which
allows only the children of the best 50 per cent to create the
offspring for the next generation.

Fig. 5. An Active Wheel robot controlled by EvoRoF performing collision
avoidance in a maze-like arena.

VI. APPLICATIONS

The described framework is used in several application
scenarios. It has been shown, that it is powerful enough, to be
used in coevolution as well as in distributed on-line evolution
for organisms control.

A. Evolution of Collision Avoidance

In this scenario, we used a prototype of the Active Wheel
developed in the Symbrion and Replicator projects. We only
used the IR sensors on the front and back side. The IR sensors
on the back have to be taken into account, because the Active
Wheel can collide with the back when turning due to the
omnidirectional locomotion.

The population size was 15, the controller type a standard
artificial network. There were six IR sensor inputs from the
front and additional six sensors at the back extended by bias
neuron. In all test runs, the Active Wheel evolved a collision
free locomotion and walked randomly through the maze 5.

B. Coevolution of Coordinated Behavior

In a further experiment, we wanted to see the capabilities
of the evolution of coordinated behaviour of robots [18]. For
this reason, we set up a scenario with two target zones, in
which both robots have to be at the same time to gain fitness.
Beside a collision free locomotion, the robots have to develop
a coordinated locomotion strategy in order to be in this target
zones at the same time. Figure 6 shows the two robots, both
the blue and red one, and the two yellow target zones in
PlayerStage [19].

Fig. 6. The scenario: Two robots (blue and red) shall move in a coordinated
manner from the left yellow power source to the one on the right upper side.
Once a power source is “harvested” the robots have to move to the opposite
target. Only when both robots are there, they gain power, respectively can
increase their fitness.
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Fig. 7. The sequence shows the final behaviour of a run in alphabetical
order in time. The red and blue robots start in the bottom left corner, reach
the upper right corner and go back in a coordinated fashion.

Fig. 8. Fitness development in the scenario. The graphs show the average
fitness of both robots (doted lines) and the best individual per generation
(solid line).

An evolved behaviour can be seen in Figure 7 where
the position tracking of the two robots is depicted. In (a)
they approach the upper target, in (b) they reached it and
turn around in (c) to approach the lower yellow target in a
coordinated way (d).

The used controller type was a recurrent neural network
of class two using a cubical robot imitating the Backbone,
respectively the Scout robot, of the Symbrion and Replicator
projects. The input sensors were two front and two rear IR
sensors and eight virtual sensors measuring the distance to
the other robot and target zones. The population size was
10 in a generation-based run with different settings regarding
the use of hidden neurons and the use of structural mutation.
Figure 8 shows an average fitness development in a treatment
with structural mutation enabled.

Fig. 9. Different types of multi-robot organisms tested in simulation.

C. Evolution of CPG control

In [20], locomotion for a multi-robot based on a spiking
neural network was evolved. By distributed evolution, the
organism should be able to emerge a global organism loco-
motion, by evolution of local control on each individual robot.
The basic concept was a central pattern generator scheme, in
which the parameters of a sine wave are modified in order to
incorporate the sensor input and status messages from other
modules. The individual robots have to learn considering the
sensor input, which phase shift and amplitude to perform the
necessary local behaviour.

In Figure 9, three exemplary organisms in the Robot3D
simulator [21] are shown. Beside a caterpillar, we evolved
central pattern generated behaviour for several different organ-
ism morphologies. The population size of each robot was ten
and spiking neural networks are structurally mutated over 30
generations for 800 ticks evaluation time. Figure 11 shows the
individual hinge positions of the five robots in the caterpillar-
like configuration in one of the evaluation phases. The result-
ing behaviour, emerged by the individual hinge movement, is
depicted in the sequence of Figure 10. A caterpillar is moving
from the centre towards the left side in order to leave the sight
of view.

Fig. 10. The sequence shows the final behaviour of a caterpillar-like evolved
locomotion.

81Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot0 expected
robot0 real

-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot1 expected
robot1 real

-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot2 expected
robot2 real

-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot3 expected
robot3 real

-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot4 expected
robot4 real

Fig. 11. The hinge positions in the evolved caterpillar-like robot organism.

VII. CONCLUSION

In this paper, we presented a framework for evolutionary
robotics with the special focus on structural on-line and on-
board evolution of neural network controllers. This framework
supports standard neural networks as well as spiking neural
networks in both generation based and tournament selection
based evolutionary design processes. We have applied the
framework to different scenarios in simulation and real robots
to proof the feasibility. In future work, we will investigate the
influence of structural mutation in more detail and will focus
on the comparison of standard neural networks and spiking
networks.
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