
Model-based Run-Time Software Adaptation for
Distributed Hierarchical Service Coordination

Hassan Gomaa, Koji Hashimoto

Department of Computer Science
George Mason University

Fairfax, VA, USA
hgomaa@gmu.edu, kojihashi@gmail.com

Abstract - Dynamic software adaptation addresses software
systems that need to change their behavior at run-time. A
software adaptation pattern models how the components that
make up an architecture pattern cooperate to change the
software configuration at run-time. This paper describes a
model-based run-time adaptation pattern for distributed
hierarchical service coordination in service-oriented
applications, in which multiple service coordinators are
organized in a distributed hierarchical configuration.

Keywords: service-oriented architecture; dynamic software
adaptation; model-based software adaptation pattern;
hierarchical service coordination adaptation.

I. INTRODUCTION

 Dynamic software adaptation addresses software systems
that need to change their behavior at run-time [1]. With
model-based dynamic software adaptation, models are used
to describe and sequence the adaptation of the software
architecture and executable system at run-time [2]. A model-
based software adaptation pattern defines how the
components that make up an architecture or design pattern
dynamically cooperate to change the software configuration
to a new configuration given a set of adaptation commands.
Because control and sequencing is so important in dynamic
run-time adaptation, this research focuses on dynamic
models, using in particular state machine models and object
communication models.
 Previous work has described model-based adaptation
patterns for distributed component-based systems [2] and
service-oriented architectures (SOA) [3][4]. In typical SOA
applications, services are self-contained, loosely coupled,
and orchestrated by coordination services [8]. This research
addresses dynamic adaptation based on SOA coordination
patterns. Previous work addressed independent SOA service
coordination [3] and transaction-based distributed software
adaptation [4], in which there is one service coordinator
orchestrating multiple services. This paper extends this
research to SOA applications with hierarchical service
coordination by describing and validating a dynamic
software adaptation pattern for distributed hierarchical
service coordination in which a higher-level coordinator
communicates with multiple lower-level coordinators.
 This paper describes related work in Section II, provides
an overview of software adaptation for SOA in Section III,
describes in detail the hierarchical service coordination

adaptation pattern in Section IV, describes its validation in
Section V, and provides concluding remarks in Section VI.

II. RELATED WORK

 Dynamic software architectures and dynamic
reconfiguration approaches have been applied to
dynamically adapt software systems. Research into self-
adaptive, self-managed or self-healing systems includes
approaches for monitoring the environment and adapting a
system’s behavior in order to support run-time adaptation
[11]. Kramer and Magee [1] describe how a component
must transition to a quiescent state before it can be removed
or replaced in a dynamic software configuration. Ramirez
and Cheng [5] describe applying adaptation design patterns
to the design of an adaptive web server. The patterns include
structural design patterns and reconfiguration patterns for
removing and replacing components.
 For service-oriented computing and service-oriented
architectures, Li et al. [9] describe an adaptable service
connector model, so that services can be dynamically
composed. Irmert et al. [10] provide a framework to adapt
services at run-time without affecting application execution
and service availability. A related research area is dynamic
adaptation of software product lines, in which the different
software configurations are organized as a product line, with
dynamic adaptation from one member configuration to
another managed through a feature model [6].
 In comparison with the previous approaches, this paper
focuses on dynamic self-adaptation in service-oriented
architectures. This paper describes a software adaptation
pattern for distributed hierarchical service coordination, in
order to adapt not only services but also distributed
hierarchical coordinator components.

III. SOFTWARE ADAPTATION FOR SOA

 In SOA applications, services are intended to be self-
contained and loosely coupled, so that dependencies
between services are kept to a minimum. Instead of one
service depending on another, it is desirable to provide
coordination services (also referred to as coordinators) in
situations where access to multiple services needs to be
coordinated and/or sequenced [3].

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

A. Software Coordination and Adaptation

 In SOA systems, loose coupling is ensured by separating
the concerns of individual services from those of the
coordinators, which sequence the access to the services. As
there are many different types of service coordination, it is
helpful to develop service coordination patterns to capture
the different kinds of service coordination. For each of
these coordination patterns, there is a corresponding
dynamic adaptation pattern [3]. The software adaptation
patterns described in this paper were developed as part of
Self-Architecting Software Systems (SASSY), which is a
model-driven framework for run-time self-architecting and
re-architecting of distributed service-oriented software
systems [8].

B. Software Adaptation State Machines

 An adaptation state machine defines the sequence of
states a component goes through from a normal operational
state to a quiescent state [2][3]. A component is in the
Active state when it is engaged in its normal application
computations. A component is in the Passive state when it is
not currently engaged in a transaction it initiated, and will
not initiate new transactions. A component transitions to the
Quiescent state when it is no longer operational and its
neighboring components no longer communicate with it.
Once quiescent, the component is idle and can be removed
from the configuration, so that it can be replaced with a
different version of the component. To enable adaptation
patterns, as well as the corresponding code that realizes each
pattern, to be more reusable, adaptation state machines are

encapsulated in software adaptation connectors as discussed
next.

C. Software Adaptation Connectors

 Software adaptation connectors [3][4] are used to
encapsulate adaptation state machines so that adaptation
patterns can be more reusable. The adaptation patterns
described in this paper include two different types of
adaptation connector, coordinator connector and service
connector. The goal of an adaptation connector is to separate
the concerns of an individual component (service or
coordinator) from its dynamic adaptation. An adaptation
connector models the adaptation mechanism for its
corresponding service or coordinator. An adaptation
connector behaves as a proxy for a component, such that its
clients can interact with the connector as if it were the
component, as shown in Fig. 1.

IV. HIERARCHICAL SERVICE COORDINATION

ADAPTATION PATTERN

 In the hierarchical service coordination adaptation
pattern for SOA, a higher-level coordinator orchestrates
lower-level coordinators, whereas each of the lower-level
coordinators is responsible for distributed service
coordination. The communication diagram depicted in Fig.
1 shows a general hierarchical coordination pattern where a
higher-level parent coordinator coordinates M lower-level
child coordinators, each of which interacts with multiple
services.

Fig. 1 Hierarchical service coordination communication diagram

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

 An example of hierarchical coordination is a client trip
request to the parent coordinator consisting of an airline
reservation, a hotel reservation and a car reservation. The
parent coordinator decomposes the client request into three
smaller requests, which are sent to child coordinators for
airline, hotel, and car reservations using a combination of
sequential and concurrent coordination (e.g., hotel
reservation followed by concurrent hotel and car
reservations. Each child coordinator interacts with several
individual services (e.g., airline companies) in order to
select the most appropriate service. The parent coordinator
receives the child coordinator responses and then responds
to the client.
 The hierarchical service coordination adaptation pattern
is organized as follows:

 A parent coordinator is instantiated for each client.
 Two or more child coordinators are instantiated for

each parent coordinator.
 A client interacts with a parent coordinator using

synchronous message communication; thus, it
sends a new request only when it receives a
response to its previous request.

 A parent coordinator receives a client request and
decomposes it into smaller requests, which are
sent to child coordinators. The parent coordinator
communicates with the child coordinators either
sequentially or concurrently.

 A child coordinator communicates with multiple
services sequentially or concurrently. It uses
independent service coordination for stateless
services [3] and transaction based communication
(e.g., two phase commit protocol) for stateful
services [4].

 The parent coordinator responds to the client after
it has received responses from each of the child
coordinators.

 To address hierarchical service adaptation it is necessary
to consider adaptation of parent coordinators, adaptation of
child coordinators, and adaptation of individual services.

A. DYNAMIC RUN-TIME ADAPTATION FOR HIERARCHICAL

COORDINATION

 Using the hierarchical service adaptation pattern, the
parent coordinator component can be removed or replaced
after it has received all the responses from the child
coordinators and sent its response to the client. A child
coordinator can be removed or replaced after it has received
responses from all the services invoked and sent its response
to the parent coordinator. On the other hand, a service can
be removed or replaced after it completes the current service
execution in the case of a sequential service, or after
completing the current set of service executions in the case
of a concurrent service.
 The solution involves one coordinator connector for the
parent coordinator and one coordinator connector for each
child coordinator, as depicted in Fig. 1. Each connector
encapsulates the adaptation state machine for its
corresponding coordinator. This is possible because a
connector tracks the states of its corresponding coordinator,
since it receives (and forwards) each upstream message sent
to the coordinator and each downstream message sent by the
coordinator.
 Figures 2 and 3 depict the adaptation state machines
executed by the coordinator connectors for the parent
coordinator and the child coordinator respectively. Applying
separation of concerns, parent and child coordinators deal
with coordination decisions while their corresponding
connectors address adaptation decisions. Thus, the parent
coordinator connector encapsulates the adaptation state
machine of the parent coordinator it communicates with,
whereas the parent coordinator interacts with multiple child
coordinators via their coordinator connectors.

Fig. 2 Parent coordinator adaptation connector state machine

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 3 Child coordinator adaptation connector state machine

B. Adaptation of Parent Coordinator

 As described in the previous subsection, the parent
coordinator connector encapsulates and executes the
adaptation state machine for the parent coordinator, shown
in Fig 2. (Because of this, the state names reflect the states
of the coordinator and not the connector). There are three
main states, Active, Passive, and Quiescent. In the Active
state, the coordinator is operating normally and its state
machine is in one of the two substates of the composite
Active state. As shown in Fig. 2, the parent coordinator
connector is initially in Waiting for Client Request substate.
When it receives a request from the client (message S1 in
Fig 1), the connector transitions to Processing Client
Request substate (event S1 in Fig 2) and forwards the next
client request to the Parent Coordinator (action S2 in Fig 2
and corresponding outgoing message S2 in Fig 1). The
parent coordinator then interacts with the child coordinators.
When the parent receives the responses from all its children,
it sends the client response (message S9 on Fig.1) to the
connector. The parent connector transitions back to Waiting
for Client Request state (event S9 on Fig. 2) and forwards
the response to the client message (action S10 on Fig.2 and
corresponding message S10 on Fig. 1).
 To initiate dynamic adaptation of the parent coordinator,
a Change Manager (CM) [2][3], which is part of the SASSY
adaptation framework (see IIIA and [8]), sends the Passivate
command to the parent coordinator connector. If the
connector is in the Waiting for Client substate (Fig 2), it
transitions directly to the Quiescent state; the action is to
send a quiescent notification message to CM. Alternatively,
if the connector is in the Processing Client Request substate
when it receives a Passivate command, it transitions to the
Passive state because the parent coordinator is still
interacting with the child coordinators to complete the client
request. When the connector receives the Client Response
(message S9 on Fig.1) from the Parent Coordinator
(indicating that the coordinator has completed the client
request), it transitions to Quiescent state (event S9 on Fig.
2). The actions are to forward the response to the client
(action S10 on Fig. 2 and message S10 on Fig. 1) and to

send a quiescent notification to the CM. In Quiescent state,
the parent coordinator is idle and ready to be replaced. If a
new client request arrives in Quiescent state, the request is
stored in a buffer. After the coordinator has been replaced,
CM sends a Reactivate command to the coordinator. If the
buffer is empty, the connector transitions to Waiting for
Client Request. Otherwise, the connector transitions from
Quiescent state to Processing Client Request and sends the
buffered client request to the reactivated parent coordinator
(action S2 on Fig. 2 and corresponding message on Fig. 1).

C. Adaptation of Child Coordinator

 Each child coordinator connector in Fig. 3 encapsulates
the state machine for its corresponding child coordinator. It
receives child requests from the parent coordinator and
forwards these to the child coordinator. The connector
receives child responses from the child coordinator and
forwards these to the parent coordinator. When the child
connector receives a Passivate command from CM, it
transitions to Quiescent state (if it is waiting for a client
request) or to Passive state (if it is processing a child
request). In the latter case, when the connector receives the
child response from the child coordinator, it transitions to
Quiescent state and forwards the child response to the parent
coordinator.
 If the child coordinator coordinates stateless services
independently, independent coordination adaptation patterns
[3] are applied to the adaptation of a service in the
hierarchical coordination pattern, as depicted in Fig. 3 and
described above. If a child coordinator orchestrates stateful
services using a Two-Phase Commit Protocol, the two-
phase commit coordination adaptation pattern described in
[4] is applied.

D. Adaptation of Services

 A concurrent service services multiple client requests
concurrently. The adaptation state machine for a concurrent
service connector is shown in Fig. 4. The service connector
receives service requests from a child coordinator as well as
from other clients and forwards them to the service. For a
concurrent service, the service can be

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Service Connector
State Machine

Active

Sx5: Service Response [t = 1] /
Sx6: Forward Service Response,
t = 0

Sx3: Service Request /
Sx4: Next Service Request,
t++

Activate Processing
(0 < t)exit / q = 0, t = 0

Waiting For
Service Request Passive

Passivate /
Send Quiescent Notification To Change Management Layer

Sx3: Service Request /
q++

Sx5: Service Response [t = 1] /
Sx6: Forward Service Response,
t = 0,
Send Quiescent Notification
To Change Management LayerPassivate

Sx3: Service Request /
q++

Reactivate [q > 0] /
Send Gone Active Notification To Change Management Layer,
Sx4: Next Service Request {for each request in the queue},
t = q, q = 0

Reactivate [q = 0] /
Send Gone Active Notification To Change Management Layer

Quiescent

Sx5: Forward Service Response [1 < t] /
Sx6: Service Response,
t--

Sx5: Service Response [1 < t] /
Sx6: Forward Service Response,
t--

Sx3: Service Request /
Sx4: Next Service Request,
t++

Figure 4 Concurrent service adaptation connector state machine

removed or replaced after it has completed the service
requests it has received via the service adaptation connector.
The service connector keeps a count t of the requests
currently being executed by the service, incrementing the
count when a new request is sent to the service and
decrementing the count when the response is received and
then forwarded to the appropriate client or child coordinator.
 If a passivate command is received from CM, the
adaptation connector transitions to Passive state if busy,
where it waits for the current service requests to complete.
New service requests are queued in a service request queue,
which is managed by a queue counter q. When the current
service requests are completed, the adaptor transitions to
Quiescent state. When it receives the reactivate command
from CM, the service connector sends the queued service
requests to the replacement service and transitions to
Processing state.

V. VALIDATION OF HIERARCHICAL SERVICE COORDINATION

ADAPTATION PATTERN

 The SOA adaptation patterns were validated using the
SASSY dynamic run-time software adaptation framework
[3][8]. The prototype implementation of the SASSY
framework is based on Web services and was developed
using open-source SOA frameworks, namely Eclipse
Swordfish and Apache CXF. A prototype emergency
response system was developed using this framework.
Using this framework, validation of a service adaptation
pattern consists of executing change management scenarios,
performing the run-time adaptation from one configuration
to another, and resuming the application after the
adaptation.
 For the validation of the hierarchical service
coordination adaptation pattern, the emergency response
system consisted of a region (parent) emergency coordinator
that assigned emergency requests to three district (child)
emergency coordinators, which each coordinated their local
fire engine and ambulance services. Separate adaptation

scenarios were executed for the parent and child
coordinators and were monitored using execution traces for
the parent and child adaptation connectors. The execution
trace for the parent coordinator connector is shown in Fig. 5,
during which adaptation of the parent coordinator is carried
out. The trace depicts the sequence of states the connector
transitions through, starting in Idle state. The connector
receives a client request, transitions from Idle to Processing
state, and sends the new transaction to the parent
coordinator. It then receives a Passivate command from CM
and transitions to Passive state. When the transaction
completed response is received from the parent coordinator,
the connector transitions to Quiescent state. In this state, the
parent coordinator can be replaced. While in Quiescent
state, a new request arrives at the connector from the client
and is queued. After adaptation is completed, the connector
receives the Reactivate command from CM, transitions to
Processing state, and sends the queued request to the new
parent coordinator. After the transaction is completed, the
connector transitions back to Idle state.
 An execution trace for adaptation of a child coordinator
is shown in Fig. 6. This scenario shows that child
coordinator connector transitions to Processing state after
receiving a request from the parent coordinator, which it
then sends to the child coordinator. After receiving a
Passivate command, the connector transitions to Passive
state. When the connector receives the completion message
from the child coordinator, it transitions to Quiescent state.
In this state, the child coordinator can be adapted. While in
Quiescent state, the connector receives a new request, which
it queues. After receiving the Reactivate command, the
connector then transitions to Processing state and sends the
queued request to the child coordinator. When this request is
completed, the child coordinator connector transitions to
idle state.
 In summary, the validation scenarios confirm that the
parent and child coordinator adaptation connectors behaved
as specified, transitioning from Processing to Passive to
Quiescent states and then back to Processing state, while
sending and receiving the expected messages.

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Fig. 5 Execution trace of Parent Coordinator Connector in hierarchical service coordination

Fig. 6 Execution trace of Child Coordinator Connector in hierarchical service coordination

VI. CONCLUSIONS

 This paper has described how software adaptation can
be applied to hierarchical coordination in service oriented
systems. The main contributions of this paper are:
1. Adaptation pattern for distributed hierarchical
service coordination, which can operate with either
stateless or stateful services. For hierarchical service
coordination with distributed transactions, the pattern
corresponds to the compound transaction pattern [6], in
which a compound transaction is decomposed into two or
more atomic transactions.
2. Design of adaptation connectors for distributed
service coordination. Adaptation connectors encapsulate
the adaptation state machines for the adaptation pattern to
separate the concerns of an individual service or
coordinator from software adaptation.
 Future work consists of investigating performance
issues of dynamic adaptation for service-oriented
architectures, developing additional adaptation patterns,
and considering recovery from service failure.

ACKNOWLEDGMENTS

 This research was partially supported by grant CCF-
0820060 from the National Science Foundation. The
authors gratefully acknowledge the contributions of D.
Menasce, S. Malek, J. Sousa, N. Esfahani, and J. Ewing to
the SASSY project.

REFERENCES
[1] J. Kramer and J. Magee, “The Evolving Philosophers Problem:

Dynamic Change Management”, IEEE Transactions on
Software Eng., Vol. 16, No. 11, 1990, pp. 1293-1306.

[2] H. Gomaa, “A Software Modeling Odyssey: Designing
Evolutionary Architecture-centric Real-Time Systems and
Product Lines”, Springer Verlag LNCS 4199, 2006, pp 1-15.

[3] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. Menasce
"Software Adaptation Patterns for Service-Oriented
Architectures", Proc. ACM Symp. on Applied Computing,
March 2010, pp. 462-469, Sierre, Switzerland.

[4] H. Gomaa and K. Hashimoto, “Dynamic Self-Adaptation for
Distributed Service-Oriented Transactions”, Proc. SEAMS
Symposium, Zurich, Switzerland, June 2012, pp. 12-20.

[5] A. J. Ramirez and B. H. Cheng, “Applying Adaptation Design
Patterns,” Proc. 6th Intl. Conf. on Autonomic Computing
(ICAC), Jun. 2009, pp. 69-70.

[6] H. Gomaa and K. Hashimoto, “Dynamic Software Adaptation
for Service-Oriented Product Lines”, in Proc. Intl Wkshp on
Dynamic Software Product Lines, Munich, Germany, August
2011.

[7] H. Gomaa, “Software Modeling and Design”, Cambridge
University Press, 2011.

[8] D. Menasce, H. Gomaa, S. Malek, and J. Sousa, SASSY: A
Framework for Self-Architecting Service-Oriented Systems",
IEEE Software, Vol. 28, No. 6, 2011, pp. 78-85.

[9] G. Li, et al., “Facilitating Dynamic Service Compositions by
Adaptable Service Connectors”, International Journal of Web
Services Research, Vol. 3, No. 1, 2006, pp. 67-83.

[10] F. Irmert, T. Fischer, and K. Meyer-Wegener, “Runtime
adaptation in a service-oriented component model”, Proc.
SEAMS Symposium, May 2008, pp. 97-104.

[11] J. Kramer and J. Magee, “Self-Managed Systems: an
Architectural Challenge”, Proc Intl. Conference on Software
Engineering, Minneapolis, MN, May 2007, pp. 259-268.

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

