
A Dynamic Service Module Oriented Framework for
Real-World Situation Representation

Peter Halbmayer and Gerold Hoelzl and Alois Ferscha
Institute for Pervasive Computing
Johannes Kepler University Linz

Linz, Austria
{halbmayer, hoelzl, ferscha}@pervasive.jku.at

Abstract—The maintenance of context information for real-
world environments contains several challenges when it has to
be computationally observed. Any event that is observable in the
real-world has to be registered and may lead to transitions in the
digital system. Therefore, a representation of the environment,
the affected users, their whereabouts and their interactions with
the system is required. A software framework is presented that
provides a generic set of methods to collect information from mul-
tiple, heterogeneous sensors deployed within the environment. A
non-deterministic communication topology is established, which
handles a distributed version of a system state on a best effort
basis. The system is designed to be potentially applied within
various environments and the primary application scenario is
represented by the implicit energy management in single-family
homes. There the practical deployment of the system proves the
usability and sustainability of the presented approach.

Keywords—Dynamic Device and Service Discovery; Dynamic
Context Recognition; Adaptive System Behavior; Flexible Power
Management; Opportunistic Sensing.

I. INTRODUCTION

The PowerIT system [1][2] is a development that provides
implicit energy management in households on the behalf of
users living in the environment. For this purpose, different
aspects need to be handled in real-time like the activities users
perform, the situations they are in, the energy that is drawn
by household gadgets and also the interaction with notification
and services is an important aspect.

The main contribution of the system is the processing of
dense context information for practical and ubiquitous digital
system operation without explicit user interaction. An impor-
tant aspect in this sense is to provide unobtrusive operation in
the background for optimal and convenient system utilization.
Thus the digital system moves to the background and the users
focus is directed to actual every day tasks at hand instead of
being concerned with system maintenance.

The deployment diagram depicted in Figure 1 presents
a schematic overview of how the system is generally setup.
A base infrastructure that is comprised of a Home Server
(HS) that is connected to a set of energy meter and control
devices, build the core of the system. The energy meter and
control devices are implemented as wall plug outlets that are
used to connect any household gadgets, measure their energy
consumption and switch their state on or off. The user is
integrated into the system by collecting and evaluating data
from the mobile devices that are carried along. A typical
system installation consists of 20 wall plug outlets, a single

HS, and a smart watch - smartphone/tablet combination for
every participant which lies around four.

Figure 1. Deployment Diagram

The connection of mobile devices (e.g., smartphone or
smart watch) to the base infrastructure is of a dynamic nature
as users enter and leave the environment in an unpredictable
way. This is also true for interconnections between mobile
devices themselves (e.g., user take smartphone away and grabs
it later). Therefore, such cases have to be handled with special
precautions. The corresponding underlying network has to
adapt itself automatically for seamless service provision.

From this description, the main aspects the system has to
handle in software can be drawn. They are:

(i) Activity and context recognition
(ii) Opportunistic sensor and actuator management

(iii) A rule engine for implicit control.

Dynamic and adaptive sensor and actuator management
builds the base for context recognition and implicit control.
When an event is sensed (e.g., a user leaving the house),
control mechanisms have to trigger to switch the state of
devices (e.g., turn off all lights). To achieve the transport of
corresponding messages and commands, the communication
topology must be available to guarantee the successful delivery
of messages. The dynamics of users have to be maintained
in the system by unregistering users when leaving and (re-)
registering them when they return.

As the practical usability of the system was one of the
main interests in our project, it was necessary to determine
the most important aspects to obtain an implementation that
can withstand real-world conditions. In a previous project [3],
where similar studies were conducted on a smaller scale than
in PowerIT, it has been seen that certain characteristics need

79Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

to be regarded to ensure the success of such a system. This
was learnt from user questionnaires as well as practical system
application in real-world sites.

Qualitative requirements that are necessary in such a sys-
tem are

(i) The recoverability and fault tolerance of the system,
(ii) The unobtrusive operation and minimization of configu-

ration and maintenance steps and
(iii) The organized reporting of failure in case of unrecover-

able states entered.

A software model that addresses these aspects is required
for practical realization of the system. Functionalities to build
up basic communication streams, analyze collected data in
real-time and forward control commands to dedicated end-
points are required. Therefore, in the following sections, first,
related work is reviewed which is followed by a detailed sys-
tem architecture description comprised of a system overview,
system dynamics regarding the roles of devices and temporary
registration, as well as activity recognition for system control.
The final conclusion evaluates the results found in this work.

II. RELATED WORK

The requirements mentioned in the last section are of vital
importance for the realized system. Existing work already
covers the core technology that is necessary to let devices
exchange information between each other on an ad-hoc basis.
Here, part of this technology is used in a practical context and
concerned with the application of the implemented methods in
real-world deployments. Building up on this base, a dynamic
middleware was developed that (i) is platform independent and
(ii) autonomously reconfigures itself dependent on actual states
of subsystems and events in the current environment.

The base infrastructure in a household provides the back-
bone regarding the energy management concerned for the
particular installation site. System dynamics are mainly repre-
sented by inhabitants appearing and disappearing throughout
the day and the sensor traces they leave. These events are reg-
istered, and system components will get adapted accordingly
(e.g., switching off unneeded devices currently in standby).
It is common nowadays that a user is equipped with more
than one personal device (e.g., smartphone and smart watch)
where device interactions have to be defined. The influence
of the developed system goes further in the way that part of
these dynamics will also get reflected on the mobile devices
the user carries around whether at home, at work or in times
when any leisure activities are performed.

Therefore, the essential aspects the system is concerned
with, are multi platform capability (to enable widespread
deployment), different interconnection constellations (given by
dynamic system behaviour over time), as well as general
adaptation over time by recognizing and mapping behaviour
and preferences of users.

A. Dynamic Module Systems and Service Platforms

At the core of the system it was required to enable
system execution on different end devices. This ranges from
conventional desktop systems to mobile smartphone and tablet
devices. A modular component setup was specified for which

the OSGi framework reference implementation Felix [4] was
used. Modular system specifications have been addressed in
various literature where multi-layered, service oriented soft-
ware has been developed for application in different domains
like telematics [5], web technology [6], cloud services [7],
health and elderly care [8], vehicular network management [9]
or context computing [10], in general.

B. Device and Service Discovery

Device and service discovery is of major interest in all
cases where distributed entities have to exchange information
on behalf of an unreliable and dynamic connection infrastruc-
ture. In the PowerIT system, the dynamic part mainly consists
of the interactions of the mobile devices (e.g., smartphone and
smart watches of a user) amongst each other, and with the
infrastructure. Also, the change of a user between multiple
infrastructures (e.g., from home to work) has been considered
as an extension.

Depending on the connectivity to the system, the state of
users and present and upcoming interactions, the system needs
to adapt to these conditions. Although the main infrastructure
stations might be known in advance, for mobile entities, this
is not the case throughout the whole lifetime of the system.
Therefore, device and service discovery has been utilized much
in the manner of [11][12] where standard internet protocol (IP)
services are applied for this purpose.

C. Opportunistic sensor configuration, activity recognition
and decision making

For automatic control, the activities of users get observed
and are distributed accordingly in the system to enable the
switching of devices or groups of gadgets. For this purpose
results found in [13][14][15] can be utilized by establishing
recognition chains for every sensor data input stream that is
of interest and importance for the system functionality. This
issue is addressed in more detail in the architecture technology
section. After activities, or a change of activities has been
observed from sensor data, this information is forwarded to
the system where it gets decided if it will eventually lead
to any state change or not. This is achieved by putting the
results of Kurz et al. [16] into practical application. Within our
first test setups it has been shown that this approach already
shows positive impact although it was deployed only for a
controlled part of the system to prevent a degradation of overall
system usability. The decision module that is responsible to
determine if any input data will lead to an actual actuator
control command is reused from the work in [17]. A generic
set of rules that is capable of integrating arbitrary sensor inputs
dynamically to build up statements about the system state was
realized and successfully brought to practical application.

III. SYSTEM ARCHITECTURE

The intention for the system was to have an unobtrusive
setup of personal information and communication technologies
(ICT) services that allow the recognition of user centered
activities of daily living to control the electrical system in its
surroundings. It has soon been detected by the authors that
for a system that has to provide its functionality in a 24/7
fashion, special precautions needed to be taken to serve the

80Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 2. System Architecture Diagram

given requirements. The system needed to be implemented in
a way, so that failures on a long term basis (e.g., unforeseen
bugs in rarely called functions or accumulated and never freed
memory) will be recovered automatically, unrecognized by the
user in the optimal case.

From this description it is clear that the system depends
on several parameters that can be divided into options that
are static throughout the lifetime of the system, and others
that change over time dependent on various parameters like
the time of day, location and activity of a user, but also the
intentions of a user with respect to electric device usage,
convenience functions and real-world situation context (e.g.,
times when system automatisms are unwanted).

The specified system architecture results in a generic
framework that can be executed on various devices (like smart
watches, smartphones, tablet computers or desktop systems)
running different operating systems. It is implemented in the
Java programming language, and is, therefore available for all
environments capable to execute a Java Runtime Environment
(JRE) [18]. By relying on the OSGi middleware framework, a
better separation and modularization of system components is
reached. This supports the execution of the framework under
different role settings that are addressed below in Section III-B.

A. System Overview
<config>
(a) <system>

<devicename>MotoACTV</devicename>
<is-log>true</is-log>
<is-act-rec>true</is-act-rec>
<local-sensor>true</local-sensor>

</system>
(b) <fwds>

<fwd>
<name>GGPH</name>
<type>feat</type>
<conn>bt</conn>
<mac>AC:22:0B:A4:22:93</mac>
<uuid>00001101-0000-1000-8000-00805F916001</uuid>

</fwd>

</fwds>
(c) <rcvs>

<rcv>
<name>HS</name>
<type>feat</type>
<conn>ip</conn>
<ip>10.0.0.1</ip>
<port>16001</port>

</rcv>
</rcvs>

(d) <snks>
<snk>

<name>GGPH-ctrl</name>
<type>ctrl</type>
<conn>bt</conn>
<uuid>00001101-0000-1000-8000-00805F918001</uuid>

</snk>
</snks>

(e) <srcs>
<src>

<name>GGPH-cnt</name>
<type>cnt</type>
<conn>ip</conn>
<port>22001</port>

</src>
</srcs>

(f) <loggers>
<logger>

<name>wws</name>
<type>file</type>

</logger>
<logger>

<name>feat</name>
<type>file</type>

</logger>
</loggers>

</config>

Figure 3. Main configuration sections

The system architecture is divided into three main cate-
gories that are enlisted below. A graphical representation of
the system architecture is shown in Figure 2. There, the system
components available locally on a host node are depicted.

1) The base functions like configuration handling, message
passing and thread pools.

2) Communications including device and service discovery
and transmission of different message types.

3) Activity recognition, locally and remotely.

The system core consists of a structure for managing the
runtime environment of the framework which also includes
a listener pool to which elements interested in any specific
messages register. To forward and distribute messages within
the system a producer - consumer pattern is specified where

81Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

producers offer data to the system from local or remote sensor
sources and consumers forward data to remote hosts or are
responsible for local persistence. Activity recognition is de-
fined in terms of a task chain that contains data segmentation,
feature extraction, training and testing of classification models.
Multiple task chains can be handled concurrently on a single
host.

Depending on the configuration of every host node, an
end device can take a different role, which is explained in
the following subsection. A simple example configuration is
presented in the listing in Figure 3.

Initially, a communication system that allows the propaga-
tion of sensor data from low power embedded devices up to
full-blown server installations to access the data at different
device instances with varying computation performance was
designed and developed. The system implements general pat-
terns that allow the execution of the same software on different
host nodes with varying configurations.

Starting with an extendable configuration, devices have
the capability to re-configure themselves dependent on other
devices found in the environment and the role the local device
has to full fill dependent on the global system state.

The configuration depicted in Figure 3 represents a default
configuration that illustrates possible settings. It is used as
example to enlist the main configuration items that will get
deployed across the nodes included in the system. The first
section of the listing, named (a) system, defines general system
properties which inform if local sensors (if available), file
logging and activity recognition are enabled. This already par-
tially defines the role (cf. Section III-B) of the host, on which
this configuration item is deployed. Without any connection
configurations only local operation would be possible but for
full adaptive participation in the system the corresponding
communication channels need to be stated. The relevant items
for this purpose in the configuration file are found under the
sections (b) fwds, (c) revs, (d) snks and (e) srcs, respectively.
Although it is not shown in the listing, it is possible to
setup several connections of every type together to form the
different roles required in the system. Additionally, as depicted
in Figure 3, it is possible to drive different connection types
simultaneously which even extends the number of possibilities
how system parts can be connected together.

Section (f) loggers enables the corresponding logging ca-
pabilities where the subsections determine which types of
messages are logged. In the above example, raw data (for
later offline analysis) as well as feature data derived from
raw data are logged. It is possible to log other data types
like preprocessed raw data or activities retrieved from the
recognition functionality.

By using this definition for system entities, a message
passing system in the style of a Model-View-Controller (MVC)
[19] design pattern has been specified. To evaluate this design,
but also to serve as a workhorse for data acquisition, the
implemented system has been deployed and put in operation in
three installation sites. From the configuration items presented
in the listing, it can be seen that IP, as well as bluetooth based
connections are possible (as depicted in configuration sections
(b) and (c)).

B. Dynamic Device Roles

a) Sensor Endpoint

b) Proxy Node

c) Home Server
Figure 4. Dynamic Device Roles

The system provides multiple sub services on different
end devices. With this approach, services can be offered that
optimizes system utilization regarding the resources of the
runtime device. This way it is possible to keep the data source
on the smart watch device while interaction and control can
be handled over to a remote device like a smartphone. An ac-
companying advantage of this design is that the same software
packages can be reused on different end devices to provide
different services corresponding to the used configuration.

Device roles are tightly dependent on the functionality
that an entity in the system will perform and the type of
connection required for data exchange. Communication is set
up in a server - client fashion and dual roles for servers as
well as clients exist to form proxy devices. One type is the
sink server to which a corresponding forward client pushes
data. The other server type is called source that that provides
data to be fetched by receiver clients. By this approach, any
device in the system can flexibly be configured to play any
role, which is autonomously reconfigured during runtime if

82Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

the purposes of a device changes (i.e., switching from an end
device configuration to a proxy configuration as another end
device requests this feature temporarily).

The general idea is that temporal unreachability or failure
of one device will get detected by the system and another
device in the system formation will be adapted to take over
the role of the failed device. This was one reason for the
unified software implementation as it can be guaranteed that
the replacement device is able to handle the same functionality.
The roles that are relevant in our setting are:

1) Sensor endpoint
2) Proxy
3) Local (installation site) server, Home Server
4) Global server

Corresponding schematics are depicted in Figure 4. In our
system, sensor endpoints (Figure 4a)) are the energy meter
devices and smart watches. Smartphones are utilized as proxy
devices (Figure 4b)) and the central access point is represented
by the Home Server (Figure 4c)). The functions that are
necessary on the corresponding type of device are depicted
in bold in the respective subfigure, the illustration concerned
with activity recognition is omitted there.

C. Activity Recognition

The dynamic nature of system connections turned on the
requirement that the system component performing activity
recognition and tracking has to be capable of these dynamics
as it was necessary to rapidly switch devices that are executing
recognition chains. For example, when a smartphone performs
activity recognition for the local sensor, as well as for data
from a remote smart watch sensor and the user leaves the
smartphone back while keeping the watch on, then, globally
this task has to be split to both devices performing its own
activity recognition each. If afterwards the user returns to
the smartphone this needs to be detected by the system and
recognition chains can be processed on the smartphone again.

Also, for practical reasons, the resources on a smart watch
are much more limited than on a smartphone or on the Home
Server especially regarding battery lifetime. As the activity
recognition is a computationally expensive task, it might be
convenient to outsource parts of this task from the device
where the sensor data acquisition is performed. These cases
are depicted in the upper third of Figure 2.

Activity recognition is defined in terms of task chains,
where a single task chain is set up for every type of sensor and
device. A task chain performs raw data segmentation, feature
extraction, the classification of featured training data, and the
evaluation of new data according to a set up classification
model. Besides classification of raw sensor data, corresponding
statistics are collected for every sensor of how long and how
much a device is used for which purpose. This information
is used to continuously update the corresponding background
context to offer system services according to their utilization
within the actual application scenario.

D. Registration, Un-Registration and Re-Registration

In a smartphone/smart watch or smartphone/smart
watch/HS constellation, communication is always preceded

with a discovery stage dependent on the actual states of
devices. If, for example, active communication is ongoing, no
discovery is necessary and can therefore be disabled at this
time. If connections break suddenly, or the activity state of
a user indicates a change within the network topology (e.g.,
because of change in location), a re-scan of the environment
will become necessary. Therefore, occasion based device and
service discovery is implemented to execute the process only
when the system is in a certain state and disabled in all other
cases. The main intention for this approach is to save battery
lifetime of mobile devices.

When device and service discovery is processed, potential
remote nodes get detected and their supported services regis-
tered. On initial system startup a device and service discovery
is performed where found nodes and their capabilities are
put into a local cache. At subsequent connection attempts,
this cache is first iterated over to reestablish well-known
connections. Only if this is not possible new device and service
scans are started. This process is depicted in the diagram in
Figure 5. For this purpose, JMDns [20] is utilized as it has
proven to be a simple, efficient and reliable solution that is
able to provide this functionality at a sufficient degree.

After the temporal topology is determined the self descrip-
tions of newly found nodes are exchanged. The configuration
exchange function is a service every device supports to be
able to participate in system communication. The configuration
items can also be cached to avoid the explicit exchange for this
item. After remote configurations are known, any required re-
configuration is handled.

To determine which device is responsible for which task,
preferences are defined. If two devices share the same pref-
erence for a certain function, a default preference is given
by the device roles in the order of their enlisting. Depending
on the specific task the preference for a role is higher as for
another. Practically, it is better to perform calculations locally
and only transmit results than forwarding raw data in a stream
like fashion which has severe implications on the battery life
times in case of mobile devices.

IV. CONCLUSION

In this work, it has been shown that the existing problem of
integrating heterogeneous technical entities in digital environ-
ments can be replied by (i) the establishement of conventions
regarding the definition of concerned items, (ii) specification
of communications, and (iii) information representation within
its actual context. A generic architecture approach has been
presented that allows the execution on a variety of platforms
and maps platform features (i.e., present sensors, actuators
or processing units) onto corresponding input and output
channels. This way, device interaction can be achieved to
perform information exchange for a variety of purposes in an
adaptive manner.

The necessity of scaling up the number of items and
involved people will appear when the system is going to be
installed in broader context environments like workplace (e.g.,
office or factory) or leisure sites. These cases are considered in
the framework implementation and need deeper research under
practical real-life conditions.

83Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 5. Device and Service Discovery Sequence Diagram

The requirements identified in the introduction section
were shown to be solved by the implemented methods. The
developed approach is empirically tested to gain real-world
evidence within the PowerIT project at the moment. Utilizing
the test installations, it turned out that the implemented ser-
vices and modules are performing as expected. The real world
installations are an ongoing and evolving process yielding
to new findings for future enhancements of the developed
framework. Consequently, it was shown that the application of
our dynamic system for context and situation representation
heads in the right direction.

ACKNOWLEDGMENT

The project PowerIT acknowledges the financial support of
the FFG FIT-IT under grant number: 830.605.

REFERENCES

[1] G. Hoelzl, P. Halbmayer, H. Rogner, C. Xue, and A. Ferscha, “On the
utilization of smart gadgets for energy aware sensitive behavior,” in The
8th International Conference on Digital Society, ICDS 2014, March 23
- 27, Barcelona, Spain, March 2014, pp. 192–198.

[2] G. Hoelzl et al., “Locomotion@location: When the rubber hits the
road,” in The 9th International Conference on Autonomic Computing
(ICAC2012), San Jose, California, USA, September 2012, pp. 73–78.

[3] A. Ferscha, J. Erhart, P. Halbmayer, M. Matscheko, and M. Wirthig,
“Powersaver - activity-based implicit energy management,” in 15th
International Symposium on Wearable Computers (ISWC2011), June
2011.

[4] “Apache Felix,” http://felix.apache.org/, [retrieved: 05, 2014].
[5] Y.-L. Chu et al., “An integrated java platform for telematic services,”

in Genetic and Evolutionary Computing (ICGEC), 2010 Fourth Inter-
national Conference on, 2010, pp. 590–593.

[6] D. Carlson, B. Altakrouri, and A. Schrader, “Ambientweb: Bridging
the web’s cyber-physical gap,” in Internet of Things (IOT), 2012 3rd
International Conference on the, 2012, pp. 1–8.

[7] F. Houacine, S. Bouzefrane, L. Li, and D. Huang, “Mcc-osgi: An
osgi-based mobile cloud service model,” in Autonomous Decentralized
Systems (ISADS), 2013 IEEE Eleventh International Symposium on,
2013, pp. 1–8.

[8] K. C. Kang, S. U. Heo, and C. S. Bae, “Android/osgi-based mobile
healthcare platform,” in Advanced Information Management and Ser-
vice (ICIPM), 2011 7th International Conference on, 2011, pp. 125–126.

[9] T.-W. Chang, “Android/osgi-based vehicular network management sys-
tem,” in Advanced Communication Technology (ICACT), 2010 The
12th International Conference on, vol. 2, 2010, pp. 1644–1649.

[10] D. Carlson and A. Schrader, “Dynamix: An open plug-and-play context
framework for android,” in Internet of Things (IOT), 2012 3rd Interna-
tional Conference on the, 2012, pp. 151–158.

[11] R. Klauck and M. Kirsche, “Bonjour contiki: A case study of a dns-
based discovery service for the internet of things,” in Ad-hoc, Mobile,
and Wireless Networks, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7363, pp. 316–329.

[12] R. N. Lass, J. Macker, D. Millar, and I. J. Taylor, “Gump: Adapting
client/server messaging protocols into peer-to-peer serverless environ-
ments,” in Proceedings of the 2Nd Workshop on Bio-inspired Algo-
rithms for Distributed Systems, ser. BADS ’10. New York, NY, USA:
ACM, 2010, pp. 39–46.

[13] D. Roggen, K. Förster, A. Calatroni, and G. Tröster, “The adarc pattern
analysis architecture for adaptive human activity recognition systems,”
Journal of Ambient Intelligence and Humanized Computing, 2011, pp.
1–18.

[14] G. Hoelzl, M. Kurz, and A. Ferscha, “Goal processing and semantic
matchmaking in opportunistic activity and context recognition systems,”
in The 9th International Conference on Autonomic and Autonomous
Systems (ICAS2013), March 2013, pp. 33–39.

[15] ——, “Goal oriented recognition of composed activities for reliable
and adaptable intelligence systems,” Journal of Ambient Intelligence
and Humanized Computing (JAIHC), July 2013, p. in Press.

[16] M. Kurz, G. Hoelzl, and A. Ferscha, “On the utilization of hetero-
geneous sensors and system adaptability for opportunistic activity and
context recognition,” in Fifth International Conference on Adaptive and
Self-Adaptive Systems and Applications (ADAPTIVE 2013), May 27 -
June 1, 2013, Valencia, Spain, May 2013, pp. 1–7.

[17] “JRuleEngine - OpenSource Java Rule Engine,”
http://jruleengine.sourceforge.net/, [retrieved: 05, 2014].

[18] “Java Standard Edition,” http://java.oracle.com/, [retrieved: 05, 2014].
[19] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view

controller user interface paradigm in smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, Aug. 1988, pp. 26–49.

[20] “Java Multicast DNS,” http://jmdns.sourceforge.net/, [retrieved: 05,
2014].

84Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

