
Performance Evaluation of Reconfiguration Algorithms for the Reconfigurable Network
on Chip Architecture RecMIN

Alexander Logvinenko, Dietmar Tutsch
University of Wuppertal

Emails: alexanderlogv@gmail.com, tutsch@uni-wuppertal.de

Abstract—The Reconfigurable Multi-Interconnection Network
(RecMIN) is a new network architecture that reduces inefficiency
and increases the throughput of the network on chip. The
RecMIN topology adapts itself to traffic flow by reconfiguration.
Three reconfiguration algorithms are employed, in order to take
advantage of the capabilities of the RecMIN architecture. The
η-algorithm, the minimal queues algorithm and the pattern
identification algorithm allow the network to adapt itself to differ-
ent traffic distributions. Furthermore, an observation technique
that notes changes in traffic pattern is presented, in order to
avoid infinite reconfiguration processes. The performance of the
algorithms is presented.

Keywords-Network on Chip; Reconfiguration Algorithms; Re-
configuration Architecture.

I. INTRODUCTION

Modern Systems on Chip (SoC) are built so that they
consist of many independent individually designed units (Intel-
lectual Property cores or IP- cores), e.g., cache memory, I/O
controllers, audio/video interfaces, etc. Buses were used up
to now in order to enable communication among these units.
Today, however, designers prefer Networks on Chip (NoC) for
efficient interaction among IP-cores. Therefore, the speed and
efficiency of modern SoC depend not just on the speed of
single units of IP but also on the properties of the NoC used
[1]. The main properties of the NoC are source output, target
throughput and packet delay. The latter ones depend not just on
topology of the network, routing algorithm, buffering strategy,
packet switching but also on how efficiently network operates
in case of bottlenecks during the packet traffic flow.

The popular solution to solve the problem of a partially
overloaded network (bottlenecks) due to inefficiency, is to
implement a complex algorithm that reroutes data flow in NoC.
The complexity of such algorithms usually grows exponen-
tially with the size of network. So, as an alternative to the re-
routing algorithms, some works from the academic community
have been focusing on the possibility of adopting NoC by
reconfiguration.

For instance, Tutsch and Lüdtke [2][3][4] and Al Faruque
[5][6] suggest that the directions of data flow should be
changed in order to optimize the NoC for special traffic
profiles. Unlike them, this paper continues the previously
[7][8][9] introduced topic of the RecMIN architecture. In this
article, however, we present three different algorithms for the
optimization of a network that uses the RecMIN architecture.

The paper is structured as following: Section 2 introduces
the reconfiguration architecture RecMIN. Section 3 deals with
the η-function, which enables to evaluate of the network-
on-chip performance. In most important Section 4, three al-
gorithms are presented and compared: η algorithm, minimal
ques algorithm, pattern identification algorithm. Section 5
concludes.

II. RECONFIGURATION ARCHITECTURE RECMIN

The main problem of NoC as compared to the full con-
nection of all inputs/outputs is the chance of bottlenecks to
arise given certain traffic structures. In this work, Multistage
Interconnection Metwork (MIN) architecture is used, which
is built out of 2 × 2 routers [10]. An example of this kind
of network is shown in Fig. 1. The technical realisation of
MIN topology is given, e.g., in [11] and [12]. One of the
characteristics of MIN is that all the traffic loads have to pass
through all the stages of the MIN. Especially for asymmetrical
traffic, the connection wires between the stages can lead to
tailbacks.

Figure 1. MIN architecture with 8x8 inputs/outputs built out of 2x2 routers

Reconfiguration architecture RecMIN solves the problem
of bottlenecks in two out of three possible cases. The proposal
is to create the MIN not from the 2x2 routers, as usual, but
from specific reconfiguration half cells - Reconfiguration Half
Cell (RecHC). The architecture of this cell is given in Fig. 2.

RecHC has 8 inputs and 8 outputs. In front of each input,
one buffer element is located. Each half-cell can be used in
one of these two possible modes: In the first mode (Mode A),
the RecHC consists of four independent 2x2 routers. In the

85Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

RecHC0

Figure 2. The architecture of reconfiguration half cell - RecHC

second mode (Mode B), there is however just one 4x4 router
in the upper part of the cell, and four simple wire connections
without any logic in its bottom part. If a RecHC changes the
mode from A to B (Fig. 3), then packets which arrive in the
upper part of the Half Cell are distributed correctly without
problems. Though, in the bottom part of the RecHC problems
may arise, since in the mode B no redirection takes place,
and the packets are transferred straight forward (Fig. 3). For
example, after switching from mode A to mode B some packets
in buffer of input i4 that are addressed to output o5 have no
possibility to arrive at their targets (e.g., IP-cores). Therefore,
usage of two half cells simultaneously is to be preferred.

R

R

R

a b

R

R

i0
i1
i2
i3

i4
i5
i6
i7

i0
i1
i2
i3

i4
i5
i6
i7

o0
o1
o2
o3

o4
o5
o6
o7

o0
o1
o2
o3

o4
o5
o6
o7

Figure 3. RecHC in two modes. a: mode A, b: mode B

The two RecHCs are put together (the second one upside
down), to form one reconfiguration cell - RecCell (Fig. 4).
If both of RecHCs that build RecCell are put into the Mode
A, then the construction leads to two independent MINs (Fig.
4a), with 4x4 inputs-outputs and 2x2 routers each. If the two
RecHCs are put in mode B, then two independent 4x4 routers
emerge (Fig. 4b). The other two combinations (AB and BA)
are meaningless and therefore are not used. So, a full cell has
two possible reconfigurations: folded (BB) and unfolded (AA).

With RecCells, it is possible to build a MIN. The resulting
structure is called RecMIN. If the number of 2x2 switches

R

R

R

R

R

R

R

R

R

R

RecHC0 RecHC1 RecHC0 RecHC1

a b

Figure 4. RecCell in two modes. a: unfolded mode, b: folded mode

in MIN is divisible by 16, the entire network can be built
from reconfiguration cells. Otherwise, it is necessary to use
two non-reconfigurable 2x2 switches in order to connect the
reconfiguration cells. Therefore, RecMIN with an arbitary
number of 2x2 routers can be implemented.

C0

C1

C2

C3

Figure 5. RecMIN with 16 inputs/outputs

In this paper, the RecMIN with 16 inputs outputs is used
as an example for RecMIN architecture (Fig. 5). This RecMIN
can be build out of four RecCells: C0, C1, C2 and C3.

If we compare our architecture (Fig. 6) with the one of
the non-reconfigurable MIN with 2x2 routers, we will see that
the dotted line marked router connection (between the first
and the second stage of the 2x2 routers) can be reconfigured.
So, if the traffic in the network generates bottlenecks in these
places, the NoC can reconfigure its topology according to the
adaptation of the architecture to the traffic load, and so increase
the throughput of the network and decrease the packet delay.

It can be said that if the traffic unfortunately generates
a bottleneck in one of the non-reconfigurable wires, the re-
configuration will not help. But, usually, the designer of the
NoC knows the application for which the network is to be
designed, and so can pre-arrange the most expected bottleneck-
wires inside the reconfiguration cells.

The other way around, the 4x4 router would have less
throughput than a 2x2 router [13]. So, for the symmetrical high
load (more than 0.63 flits per clock cycle), the 4x4 routers will
automatically become NoC bottlenecks. In this case, a back

86Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 6. RecMIN with 16 inputs/outputs

reconfiguration of the RecCells to unfolded mode is necessary
(see [13]).

The other disadvantage of the architecture is that two
independent routers of the NoC are now bonded together. If
one of the 4x4 routers of RecCell ”decides” to change mode
(from unfolded to folded or other way around), it has to check
if the other router of the same RecCell will ”agree” to change
the mode as well.

III. EVALUATION OF NETWORK PERFORMANCE

The network performance of asymmetrical NoC for asym-
metrical load is measured by three main parameters: through-
put of network sources (ςi, where i is a number of the source in
NoC), throughput of network targets (τi, where i is a number
of the target in NoC), and packet delay for each target (δi,
where i is a number of the target in NoC). To evaluate network
efficiency dependent on the packet load, we use η-function:

η =

N−1∑
i=0

(ςi ∗ Cςi + τi ∗ Cτi + δi ∗ Cδi) (1)

where N is the number of sources/targets in NoC and
constants Cςi , Cτi , Cδi are priority weights for throughput
and delay defined by SoC designer. By setting the priorities
the designer specifies how important the corresponding NoC
parameter is.

For example, for specific NoC the throughput for sources
and targets may be not as important as a minimal delay.

Furthermore, packet delay is especially important for the
targets T4 and T5. In this case, the constants Cςi , Cτi , Cδi
can be adjusted as follows:

Cςi = Cτi = 0 [clock cycles/flit] for i ∈ {0, .., N − 1}
Cδi = −1 [clock cycles]−1 for i ∈ {0, .., N − 1}n{4, 5}
Cδ4 = Cδ5 = −2 [clock cycles]−1 .

(2)

The parameter ςi, τi, δi depend on the topology of the
network, and are calculated using simulation. By simulating
the different network reconfigurations, designer is able to
compare the performance of different network topologies for
specified traffic. Table 1 gives an example for a network with
16 inputs and 16 outputs consisting of four RecCells (Fig. 6).
Constants of priorities are chosen according to (2).

In Table 1, Gi is the notation for each source (generator)
i; Ptr (Gi) is the probability that the source i sends a packet
per clock time unit; Prec (Tx) is the probability that the target
node x receives a packet from the generator i (Gi) per clock
time unit.

-500

-400

-300

-200

-100

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
e
tw

o
rk

E
v
a
lu
a
ti
o
n

Topology No.

etaη

Figure 7. η-function for 16x16 RecMIN loaded with traffic from Table 1

The simulation results are presented in Fig. 7 (Simula-
tion parameters for all simulations presented in this paper
are: buffer size 16 phits for each buffer, conflict resolution
algorithm for each router is ”random choice”, each packet
consists of one flit, a flit equals the size of a phit). It shows
the evaluation of different RecMIN reconfigurations, resulting
from all possible RecCell modes. The used NoC consists
of 4 RecCells each of them can be used in two possible
modes, so, for this kind of network there exist 24 = 16
possible topologies. As is shown in Fig. 7, η-function has the
highest rates for topologies with an odd number (1,3,5 etc.),
and the lowest rate for topology 10. Thus, for the optimal
communication of NoC components by traffic defined in Table
1, RecMIN must be reconfigured to topologies 1,3,5,7,9,11,13,
or 15.

IV. RECONFIGURATION ALGORITHMS

It is not sufficient only to offer a reconfigurable architecture
when considering the reconfiguration of NoC as an opportunity
to improve its efficiency and performance. A second step is
required in order to take advantage of the capabilities of the
architecture: employing algorithms that allow the network to

87Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE I. LOAD IN RECMIN

Generator Ptr(Gi) Prec(T10) Prec(T11) Prec(T12) Prec(Trst)
G0, G1 0.4875 0.2/16 0.3 0.2/16 0.2/16
G2, G3 0,3875 0.2/16 0.2/16 0.2 0.2/16
G4 - G7 0,55 0.1 0.2/16 0.2/16 0.2/16
G8 - G15 0.2 0.2/16 0.2/16 0.2/16 0.2/16

adapt itself to different traffic distributions. In this paper, we
propose several algorithms that were developed for RecMIN
architecture: the η-algorithm, the minimal queues algorithm
and the pattern identification algorithm.

A. General requirements for algorithms

The tasks of the algorithm responsible for the reconfigura-
tion of the network can be divided into the following steps:

• Monitoring the trigger: tracking events or sequences of
events, after which the algorithm has to decide about
the reconfiguration of the network topology.

• Looking for bottlenecks: finding parts of the network
that need to be changed due to reconfiguration

• Looking for alternative structure: finding a topology
to substitute the previous one

• Processing the reconfiguration

Each of these steps should avoid high time consumption
and should require simple calculation wherever possible. (Im-
plementation of complex calculations in hardware, requires
expensive chip area). Another key issue is the question of
stability. It is necessary to avoid a situation where the al-
gorithm constantly tries to optimize the network. Doing so
the algorithm continually conducts endless reconfiguration
processes, hence preventing the network from operating in
normal mode. For example, such a problem can occur if
reconfiguration algorithm is unable to find an unambiguously
best network topology. Thus, after checking different network
reconfigurations the found topology is still not optimal. This
state directs to the retriggering of the algorithm thereby starting
a new reconfiguration process. Therefore, no reconfiguration
process should be started, if the algorithm is unable to find
a better NoC topology for the traffic flow unless the network
traffic changes. Consequently, it is essential not only to have
a trigger to reconfigure the network, but also to implement an
observation technique that notes changes in traffic pattern.

-1000

-500

0

500

1000

0 1 2 3 4 5

N
e
tw

o
rk

E
v
a
lu
a
ti
o
n

Traffic No

worst eta for the traffic
best eta for the traffic

η
η

Figure 8. η-functions for different traffics in 16x16 RecMIN

This paper proposes to monitor the traffic flow by changes
of queue lengths in the NoC buffers, in order to solve the

problem of instability. Assume, each traffic corresponds to a
vector ~θ. Thus, change in the traffic flow is observed by ~∆θ,
the difference between two previous calculated ~θ-vectors:

~∆θ = ~θ2 − ~θ1 =

θ0,2
θ1,2

...
θN−1,2

−

θ0,1
θ1,1

...
θN−1,1

 (3)

where θi,j is the length of the queue in the buffer j caused
by traffic number i. In the more general case the system records
the combination of topologies and corresponding traffic vectors
in memory registers. Then, the reconfiguration algorithm can
immediately change the NoC to the optimal topology, if the
network traffic pattern repeats after some time.

B. The η-Algorithm

The η-algorithm uses the η-function for the evaluation
and improvement of the network effectiveness. The algorithm
receives the mean values for the network settings (throughput
and delay) every 1000 cycles (number of cycles can be changed
by the network designer). It calculates the value of η based on
these means. If η-value falls below the specified threshold, the
algorithm starts the reconfiguration.

Looking for an alternative structure is a typical global
optimization problem of locating a good approximation to
the global optimum of a given function. We used an ex-
haustive search of all possible topology reconfigurations, to
find the optimal one. It is a reasonable alternative for small
networks. (We used 16× 16 RecMIN, where only 24 − 1=15
reconfigurations are possible (the original configuration is not
a reconfiguration). For networks with the higher number of
RecCells, we recommend the usage of simulated annealing,
genetic algorithms or other heuristic algorithms). Once all pos-
sible topologies for RecMIN have been iterated, the algorithm
chooses the one with the maximum η-value.

The η-algorithm written in pseudo-code is shown below:

INPUT: RecMIN, traffic;
OUTPUT: RecMIN_topology;

best_calculated_η:= calculate η;
BEGIN
IF η<η_threshold THEN

IF no reconfiguration is running THEN
FOR i:=0

TO i<all_possible_reconfigurations - 1
DO

simulate topologyi;
calculate η;
IF calculated η>best_calculated_η
THEN
best_calculated_η:=calculated_η;

88Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

best_topology:=sim_topology;
END IF;

END FOR;
END IF;

END IF;
RETURN best_topology;

END;

Advantages and Disadvantages of the η-Algorithm: The
main advantage of the η-algorithm is the possibility of finding
the optimal network topology for any traffic. Fig. 8 shows
the analysis of six NoC traffics (in 16×16 RecMIN consisting
of four RecCells) using the η-algorithm. The chosen priority
weights are Cςi = Cτi = 50 [clock cycles/flit] and Cδi = −1
[clock cycles]−1 for all i ∈ {0, .., N−1}. For each traffic, Fig.
8 shows two values: the minimum and maximum value of η,
which can be achieved by reconfiguring the network with the
η-algorithm.

Fig. 8 shows the result of six chosen traffics given by
the η-algorithm. It can be seen that for some traffic flows
(e.g., traffic nos. 1 and 5) it is possible to achieve a good
improvement of network performance by reconfiguration. On
the other hand, some traffics exist (e.g., traffic nos. 2 and 3), for
which reconfiguration does not lead to distinct enhancements.
Therefor, the usage of the η-algorithm with exhaustive search
is not reasonable for this kinds of traffics.

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

N
e
tw
o
rk
E
v
a
lu
a
ti
o
n

Traffic Nr

eta for topology found by MQA
best eta

η
η

o

Figure 9. Comparison between the MQA and the η-algorithm for different
traffics in 16x16 RecMIN

The additional disadvantages of the η-algorithm are:

1) The algorithm requires constant conduct of statistics
of throughput and delay for the sources and targets in
NoC. More sophisticated IP-cores (responsible for the
collection of statistical data) have to be integrated in
the network interfaces, to accomplish this task. This
increases the chip area occupied by the network. Ac-
cordingly, the entire SoC production cost increases.

2) The algorithm deals with a large search space, when
dealing with big NoCs consisting of many RecCells.
This problem can be solved by using, e.g., simulated
annealing. However, there is no guaranty of finding
the optimal solution by the η-algorithm.

The η-algorithm is not very suitable for implementation
in SoC, due to the disadvantage 1. However, it can be used
in simulations. The designer can evaluate the effectiveness of
other reconfiguration algorithms, comparing their results with
the η-algorithm outcome.

C. The Minimal Queues Algorithm

Analysis of the various NoCs shows that the more effec-
tively the network works, the shorter are the queues in the
network buffers. Bottlenecks cause the queues in buffers on the
respective network sections to rise. Subsequently, this effect
generally leads to an increase of the length of the buffer queues
in the entire network.

The idea of Minimal Queues Algorithm (MQA) is to
react on increases of the lengths of the buffer queues in the
network, and thereafter minimize these using reconfigurations.
Observing the length of the buffer queues in a real SoC is
much easier than keeping statistics of throughput and delay
for sources and targets. Thus, the MQA is more suitable for
implementation in SoC than the η-algorithm.

The trigger condition for the MQA is that the total number
of packets in the network buffers exceeds some threshold
specified by the developer. After that the MQA performs
k reconfiguration steps. In each step, the MQA looks for
switching the mode of one single RecCell that clearly shortens
the lengths of the buffer queues in the entire NoC. Thereby,
the MQA begins at the RecCell with the longest buffer queues.
(The number k is specified by the developer. We set k equal
to half of the amount of RecCells used in a network, i. e., if a
network consists of four RecCells k = 2). The reconfiguration
process requires neither to stop the operation of the NoC nor to
release it entirely from packets, according to technique shown
in [9].

The MQA written in pseudo-code is given below:

INPUT: RecMIN, traffic;
OUTPUT: RecMIN_topology;

best_calculated_buffer_sum:= calculate(buffer_sum)
BEGIN
IF buffer_sum>buffer_sum_threshold THEN

IF no reconfiguration is running THEN
FOR i:=0 TO i<k - 1 DO
list_of_tried_cells:={};
FOR each RecCell DO

switching_cell:= search for
RecCell with
the highest buffer_sum_in_cell;

IF switching_cell
/∈ list_of_tried_cells THEN

switch RecCell mode (swisching_cell);
simulate topology;
calculate(buffer_sum);

#if the buffer queues does not decrease
IF NOT (calculated buffer_sum <<

best_calculated_buffer_sum)
THEN

step back to previous topology;
add switching_cell to

list_of_tried_cells;
END IF;

END FOR;
END FOR;

END IF;
END IF;
RETURN actual_topology;

END;

89Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Advantages and Disadvantages of MQA: As mentioned,
the MQA is more suitable for real SoC than the η-algorithm,
because it uses information of buffer occupation, instead of
throughput and packet delay values. Furthermore, the MQA
does not use an exhaustive search of all possible reconfigu-
rations. In worst case k ∗ N reconfiguration steps have to be
performed.

The main disadvantage of the MQA is that it does not
provide the optimal solution. (The MQA is an empirical
algorithm). Fig. 9 presents the comparison of the network
performance between the η-algorithm and the MQA. Only in
one of six cases, the MQA did not find the global, but the
local optimum (traffic 5).

D. The Pattern Identification Algorithm

Generally, the occurrence of a bottleneck in RecCell can
be identified by the occupation of its buffers. So, if such a
situation arises in a particular RecCell, the overloaded channel
can be diagnosed by a pattern of the buffer queues in the
RecCell. Accordingly, if one of those patterns is recognised
during an operation of the NoC, the RecCell has to be
reconfigured.

A Pattern Identification Algorithm (PIA) can be imple-
mented. It monitors bottleneck occurrence by recognition of
buffer occupation patterns in each RecCell and performs the
required reconfiguration. If more than one pattern is identified,
the PIA gives priority to RecCells according to the distance of
their position to the targets.

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

N
e
tw
o
rk
E
v
a
lu
a
ti
o
n

Traffic No

eta for topology found by PIA
best etaη

η

Figure 10. Comparison between PIA and η-algorithm for different traffics
in 16x16 RecMIN

The PIA written in pseudo-code is given below:

INPUT: RecMIN, traffic;
OUTPUT: RecMIN_topology;

BEGIN
FOR i:=stage_number -1 DOWNTO 0 DO
FOR each stage in RecMIN

beginning from stage[i] DO
FOR each RecCell in this stage DO
IF no reconfiguration is running THEN

IF is one of the patterns found THEN
reconfigure the cell according to the found pattern
END IF;

END IF;
END FOR;

END FOR;

END FOR;

RETURN actual_topology;
END;

Advantages and Disadvantages of PIA: An important ad-
vantage of the algorithm is that it does not search for a
new topology by traversation of possible solutions. The PIA
performs a reconfiguration only if it clearly improves the
network efficiency. In worst case the PIA would do 2n ∗ k
(where n is the index of stages in RecMIN, and k is the
number of RecCells in each RecCell). But, in normal cases,
the PIA is more efficient than the MQA comparing the number
of reconfiguration steps.

Furthermore, a pattern search algorithm like the PIA uses
buffer states as trigger information. This makes the imple-
mentation of the PIA in SoC simple. Also, the PIA performs
reconfiguration steps for RecCells of the same RecMIN stage
simultaneously so increasing the speed of the reconfiguration
process.

The disadvantage of the PIA is that it requires implemen-
tation of additional memory registers in order to store the pat-
terns in the NoC. Also, in case of miscarrying implementation
of patterns, the RecMIN can become instable. Thus, the PIA
will constantly detect one of the implemented patterns and
fulfil infinite reconfiguration processes.

The PIA is the best of three algorithms proposed in this
paper, for hardware realisation in SoC (in case that the patterns
for the PIA are well implemented). So, for all of the six
traffic flows that were used to test the performance of the three
proposed algorithms, the PIA found an optimal NoC topology
(Fig. 10).

V. CONCLUSION

In this paper, three reconfiguration algorithms were em-
ployed and evaluated, in order to benefit from the special
capabilities of the Reconfigurable Multi-Interconnection Net-
work (RecMIN) architecture. The η-algorithm, the minimal
queues algorithm (MQA) and the pattern identification al-
gorithm (PIA) allow the network to adapt itself to different
traffic distributions. We evaluated the performance of the
proposed reconfiguration algorithms with six chosen traffic
flows and discussed the advantages and disadvantages of each
algorithm. Finally, the η-algorithm is the best one for simula-
tion. Therefore, the designer can evaluate the effectiveness of
other reconfiguration algorithms, comparing their results with
the η-algorithm outcome. However, the pattern identification
algorithm is the most suitable reconfiguration algorithm for
hardware realization in SoC.

REFERENCES

[1] J. Owens, W. Dally, R. Ho, D. Jayasimha, S. Keckler, and L.-S. Peh,
“Research challenges for on-chip interconnection networks,” Micro,
IEEE, vol. 27, no. 5, Sept.-Oct. 2007, pp. 96 –108.

[2] D. Lüdtke, D. Tutsch, A. Walter, and G. Hommel, “Improved perfor-
mance of bidirectional multistage interconnection networks by recon-
figuration,” in Proceedings of 2005 Design, Analysis, and Simulation
of Distributed Systems (DASD 2005); San Diego. SCS, Apr. 2005,
pp. 21–27.

90Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

[3] D. Lüdtke and D. Tutsch, “Lossless static vs. dynamic reconfiguration of
interconnection networks in parallel and distributed computer systems,”
in Proceedings of the 2007 Summer Computer Simulation Conference
(SCSC’07); San Diego. SCS, Jun. 2007, pp. 717–724.

[4] ——, “The modeling power of CINSim: Performance evaluation of
interconnection networks,” Computer Networks, vol. 53, no. 8, 2009,
pp. 1274–1288.

[5] M. Al Faruque, T. Ebi, and J. Henkel, “ROAdNoC: Runtime observabil-
ity for an adaptive network on chip architecture,” in Computer-Aided
Design, 2008. ICCAD 2008. IEEE/ACM International Conference on,
Nov. 2008, pp. 543–548.

[6] ——, “Configurable links for runtime adaptive on-chip communica-
tion,” in Design, Automation Test in Europe Conference Exhibition,
2009. DATE ’09., april 2009, pp. 256 –261.

[7] A. Logvinenko and D. Tutsch, “A reconfiguration technique for area-
efficient network-on-chip topologies,” in Performance Evaluation of
Computer Telecommunication Systems (SPECTS), 2011 International
Symposium on, June 2011, pp. 259 –264.

[8] ——, “Recsim - a simulator for reconfigurable network on chip topolo-
gies,” in Proceedings of the 26th European Simulation and Modelling
Conference (ESM 2012). Essen, Germany, October 2012, pp. 144–151.

[9] A. Logvinenko, C. Gremzow, and D. Tutsch, “RecMIN: A recon-
figuration architecture for network on chip,” in Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), 2013 8th Inter-
national Workshop on, 2013, pp. 1–6.

[10] D. Tutsch, Performance Analysis of Network Architectures, 1st ed.
Berlin: Springer Verlag, 2006.

[11] P. C. Wong and M. S. Yeung, “Design and analysis of a novel fast
packet switch–pipeline banyan,” IEEE/ACM Transactions on Network-
ing, vol. 3, no. 1, Feb. 1995, pp. 63–69.

[12] T.-Y. Huang and J.-L. C. Wu, “Alternate resolution strategy in multistage
interconnection networks,” Parallel Computing, vol. 20, 1994, pp. 887–
896.

[13] N. Boot, “Throughput and delay analysis for a single router in networks
on chip,” Master’s thesis, Technische Universiteit Eindhoven, Nether-
lands, 2005.

91Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

