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Abstract—Smart environments will consist of a large number
of heterogeneous devices that communicate to collaboratively
perform various tasks for users. We propose a novel depend-
ability framework to increase availability and reliability of smart
environment applications. We argue that the key step in achieving
high dependability is to predict faults before they occur. Many
statistical fault prediction techniques have been proposed for
smart environment applications. Selecting the best one among
these techniques involves performance assessment and detailed
comparison on given metrics. We present a linear regression-
based prediction model to predict the remaining battery lifetime
of a device to prevent faults due to low battery. Further, we dis-
cuss the proposed dependability framework, the basic approaches
and the corresponding mechanisms to achieve our long-term
research goal. We envision that dependability framework will
reduce maintenance costs of large-scale smart environments and
increase the dependability of smart environment applications.
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I. INTRODUCTION

A smart environment is a physical space enriched with em-
bedded Information Communications Technology (ICT) and
adequate software modules that can communicate their local
states, which are adaptive. From a technology point of view,
sensor and actuator technologies, as well as communication
standards are the main drivers for the development of today’s
smart environments. A convergence of these technologies
raised interest in the smart environment research and its appli-
cations such as smart buildings (homes or offices), intelligent
lighting, and remote health monitoring [1]–[3].

In smart environments, low capacity sensor and actuator
nodes play an important role as they provide the bridge
between the digital world and the physical world. A smart
environment application relies first and foremost on sensory
data acquired from multiple sensors in various locations of
the real-world [4]. Sensor nodes are typically small, inexpen-
sive, wireless, and battery-powered devices, prone to faults
due to internal and external influences, such as low battery,
miscalibration, hardware or software failures, environmental
interferences and sensor aging. We define a fault as a deviation
of at least one characteristic property or parameter of the
system from normal operation. Faulty sensors deliver incorrect
information to the application and this may lead to incorrect

conclusions and consequently application failures, since sen-
sors are usually left unattended for long periods of time in the
field. Therefore, the adoption of smart environments is largely
hindered by the fact that there is constant need for human
(or even expert) intervention and the cost of maintenance
of such systems is very high. Thus, dependable systems are
required, evolving at runtime to maximize the availability
and reliability of their applications. We identify two levels of
dependability mechanisms, i.e., proactive mechanisms in the
absence of faults and reactive mechanisms in the presence of
faults. Systems that have the ability to identify faulty behaviors
and make the necessary alterations to restore normal operation
without human intervention [5] by means of a reactive depend-
ability mechanism, such as fault tolerance through hardware
redundancy, are said to be self-healing. On the other hand,
systems that utilize proactive dependability mechanisms aim
to predict and prevent faults before they occur, or at least delay
them. There are two goals of this: i) to maintain application
functionality as long as possible, and ii) graceful degradation
of application performance. Fault prediction is required for
proactive dependability and is the focus of this paper. It is a
key mechanism of the dependability framework proposed in
this paper, along with other mechanisms for fault monitoring,
adaptation, fault tolerance, fault healing and fault notification.

Several fault prediction models for smart environment appli-
cations have been proposed in the literature. However, further
research is needed to assess the quality and the resource
requirements (e.g., memory, Central Processing Unit (CPU))
of these models. This paper describes work in progress for
comparing various models for fault prediction against our
proposed linear regression model. Linear regression analysis
is one of the most widely used multivariate analysis methods,
which assumes linear relationships between independent and
dependent variables [6].

Faults can occur due to many reasons. For example, the
battery is a critical resource of a battery-powered sensor, and
it is one of the most common sources of faulty behavior [7] [8].
A battery powered node may start transmitting faulty values
due to low battery [9] [10]. Predicting the remaining battery
lifetime can help to use it more efficiently and to predict when
a fault is likely to occur, allowing to take actions to prevent it.
The need for reliable and accurate battery lifetime prediction
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models have been expressed repeatedly in the literature. A
battery depletion prediction model was introduced by Kevin et
al. [11], where the Received Signal Strength Indicator (RSSI)
value is monitored to predict the battery lifetime of sensor
because RSSI becomes very low shortly before the depletion
of the node battery. Profiling of the battery usage offline to
make online predictions was proposed by Wen et al. [12],
where the history of average energy consumption rate is used
to predict the remaining battery lifetime of mobile devices.
Takahashi and Ide [13], proposed a prediction model that uses
previous battery usage pattern in the regression function as a
trajectory in a feature space to predict the remaining battery
lifetime.

In our approach, the discharge rates of running applications
on a sensor network are modeled offline and this model is
then used to predict the remaining battery lifetime online.
We identify the Battery Dependent Components (BDCs) of
a sensor that affect energy discharge rate. For example, radio
(Transmitting (TX)/Receiving (RX)), Light-Emitting Diodes
(LEDs), CPU, and sensor board are prominent BDCs. Ac-
cording to a regression model, remaining battery lifetime is a
dependent variable, and energy consumption states of BDCs
are independent variables. Our goal is to predict the remaining
battery lifetime and take actions to avoid upcoming faults.
In our future work, the considered fault prediction models
will be evaluated based on a comparison of their resource
requirements as well as precision and recall performance
metrics.

The remainder of this paper is structured as follows. We
propose the dependability framework for smart environments
applications in Section II. The fault-prediction model is pre-
sented in Section III to predict the remaining battery lifetime
of a sensor node using a linear regression model. The metrics
that enable measuring the performance of a fault-prediction
model are reviewed in Section IV. Finally, conclusion and
future work are presented in Section V.

II. DEPENDABILITY FRAMEWORK FOR SMART
ENVIRONMENTS

Our long-term research goal is the development of a detailed
dependability framework and to evaluate reliability and avail-
ability of smart environment applications as a result of self-
x (self-protection, self-adaptation, self-healing) properties of
the framework. Fig. 1 shows the high-level architecture of the
proposed dependability framework, consisting of three main
states.

The fault prevention state tries to predict faults and pre-
vent the faults (proactive) by adapting the system and the
applications based on available resources. The failure preven-
tion state attempts to keep the system and the applications
functioning with the help of fault tolerance and fault healing
mechanism in the presence of detected faults (reactive). The
application failure state notifies the system administrator to
take mandatory actions against the detected fault to bring
the system back into a safe state. Main mechanisms of the
dependability framework are i) fault prediction, ii) adaptation,

Figure 1: Dependability Framework for Smart Environments

iii) fault monitoring, iv) fault tolerance, v) fault healing and
vi) fault notification. Fault prediction looks to the future. It is
based on monitoring the current state of a system in terms of
resource attributes and also considers a history of such state
information. Adaptation goal is to prolong the time before
either a system or an application reaches a faulty state. Fault
monitoring is responsible for monitoring and detecting viola-
tions of regular operating constraints (fault) in all hardware,
software, and network configurations, as well as identifying
the fault type. Fault tolerance refers to the ability of a system
to avoid application failures in the presence of faults. Fault
healing is the ability of a system to repair, update, or replace
the faulty part. After healing, the system returns to a safe
state. Fault notification is responsible to notify the user about
the fault in a way that it causes minimal disruption to the user
activity when it is not healed.

III. FAULT PREDICTION

In this initial phase of our work, we concentrate on the fault
prediction model of the proposed framework. In general, given
a fault prediction model, the system periodically monitors and
logs the current state of the system at run-time and predicts
the next state(s). In a smart environment, a set of resource
attributes Y = {Y1, .....,YK} (e.g., battery levels or memory
statuses of devices) are monitored and logged. Further, a num-
ber of statistical features f ∈ F = {F1, .....,FM} are extracted
from the history and the current value of y ∈Y . The elements
of f (e.g., minimum, maximum, expected value, gradient,
mean, median, variance) are used in the fault prediction
analysis. When a particular resource attribute of a device or the
statistical features that correspond to the device are beyond the
acceptable range (e.g., defined by thresholds of battery level),
the fault prediction invokes the adaptation mechanism.

A fault prediction is defined by the triple {Ftype, tmin
PF , tmax

PF },
where Ftype refers to the type of the predicted fault, and [tmin

PF ,
tmax
PF ] refers to the interval in which the fault is expected. This

is visualized in Fig. 2, where time t refers to a monitoring
instance and 4tWS indicates how much into the past the fault
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Figure 2: Fault Prediction Model Quality

prediction looks. 4tLPF is the time until the predicted fault
interval. The prediction indicates that the fault of type Ftype
will occur in a time interval of length 4tPF = tmax

PF − tmin
PF .

A smaller value of 4tPF indicates a more accurate fault
prediction model. If 4tPF is too large, it is very likely that a
predicted fault falls within this determined interval. However,
in this case the fault prediction is not useful since the fault
can happen anywhere in the large interval.

A. Battery Fault Prediction Model
In this section, we introduce a prediction model for the

remaining battery lifetime of a device. As shown in Fig. 3,
the prediction of remaining battery lifetime can be divided into
two main parts, namely, offline modeling and online prediction.

Figure 3: Battery Lifetime Prediction Model

Since the battery discharge rate varies according to the
energy consumption of running applications (of BDCs that
take a role), battery lifetime is application dependent. We
identify a number of BDCs and their possible states, e.g.,
CPU (active, idle, standby), LEDs, sensor board and radio
(TX/RX). The radio component can have different settings of
TX and RX modes based on either available battery of a device
or application specific. We quantify the relation between
BDC states and the battery discharge rate using a linear
model, resulting in a multiple linear regression model that
employs application specific battery discharge rates. Whenever
the application behaviour changes, the fault prediction model
needs to be revised using a multiple linear regression model
to calculate the current battery discharge rate. These are then
used during the online prediction process together with the
current battery energy level to predict the remaining battery
lifetime.

B. Linear Regression Model
Linear regression model [6] has been successfully used for

forecasting and prediction in various fields and we consider

this model to predict the remaining battery lifetime. Multiple
linear regression models the relationship between two or more
explanatory variables and a response variable by fitting a linear
equation to observed data [6].

Consider a set of tasks τ = {τ1, ....,τN} running on a
device, where each task has a battery discharge rate R =
{R1, ....,RN} based on the BDCs energy consumption states
X = {X1, ....,XP} while running that task. The external or
internal events can influence the running task and change the
state of a BDC. For example, a task can dynamically pick
one of the data sampling periods T1 and T2, specifying that its
battery discharge rate also varies dynamically. Therefore, we
need to identify the quantitative relationship between different
states of the task and their discharge rate. We consider the
states of BDCs as independent variables (X for explanatory)
and battery discharge rate as dependent variables (R for
response). Linear regression is used to predict the values of the
response variables, (r1, ....,rN) ∈ R, given a set of explanatory
variables (x1, ......,xP) ∈ X (states of BDCs). The relationship
between the explanatory variables and the response variables
is given by the following equation 1:

rN = β0 +β1X11 +β2X12 + ....+βpX1p + εi (1)

where,

R =


r1
r2
...

rN

 ,X =


XT

1
XT

2
...

XT
N

=


x11 · · · x1P
x21 · · · x2P
...

. . .
...

xN1 · · · xNP



β =


β1
β2
...

βP

 ,ε =


ε1
ε2
...

εP


• R is a (N×1) dependent variable matrix, where N is the

number of tasks (discharge rates).
• X is a (N ×P) matrix of independent variables, where

xn,p is the state of the pth BDC while task τn is running.
• β is a (P×1) vector of regression coefficients.
• ε is a (N×1) vector of additive random error. We assume

that the error εi is a statistical error, which is normally
distributed with mean zero and variance σ2, abbreviated
as N(0,σ2) [6].

The linear regression function of the battery discharge and
BDCs is described using the equation 2:

E(t) = e0−β∗ t (2)

where, e0 and (−β) are the intercept and slope of the line
respectively. ē =

∑
n
i=1 ei
n , t̄ =

∑
n
i=1 ti
n , β =

∑
n
i=1(ti−t̄)(ei−ē)
∑

n
i=1(ti−t̄)2 and

e0 = ē− β ∗ t, β measures the change in the mean of E
for a unit change in t, which is the discharge rate of the
battery [6]. In order to explain the battery lifetime predic-
tion model, let us suppose we have a set of data samples
(ti,ei), i = {1,2, .......,n}, as shown in Fig. 4.

It shows the prediction of the battery lifetime of a sensor,
where e is the value of battery and t is the time. Suppose,
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Figure 4: Estimation Curve of a battery discharge rate

a system monitoring module measured the battery energy
level e0 at the time t0, which is beyond the acceptable range.
Then, battery lifetime prediction model is invoked to determine
the remaining battery lifetime against the current status of
BDCs states and using the current battery energy level e0.
Consequently, we can have an estimation of remaining battery
lifetime using the discharge rate. We assume that the battery
energy level is ePF at time tPF . Then, by observing Fig. 4
and by applying following Equation 3, we can measure the
remaining battery lifetime:

TB = tPF − t0 =
e0− ePF

β
(3)

IV. EVALUATION OF FAULT PREDICTION MODEL

In order to investigate the quality of fault prediction model
and to compare various fault prediction models against our
proposed linear regression model it is required to identify
suitable metrics. The goal of a fault prediction model is to
predict faults accurately, efficiently and in a timely manner. An
accurate fault prediction model would accomplish a one-to-one
matching between predicted and true faults. A fault prediction
is a True Positive (TP), if a fault occurs within the predicted
period. If no fault occurs and a fault is predicted, the prediction
is a False Positive (FP). If the model misses to predict a true
fault, it is a False Negative (FN). If no true fault happens
and no fault notice is given, the prediction is a True Negative
(TN). Further, we consider precision and recall based on above
metrics. Precision is defined as the ratio of correctly identified
faults to the number of all predicted faults precision = T P

T P+FP .
Recall is the ratio of correctly predicted faults to the number
of true faults recall = T P

T P+FN [14]. Accuracy is the number of
correct predictions over the total number of predictions made.
Further, we will investigate the computational requirements of
fault prediction models, e.g., memory and CPU.

V. CONCLUSION AND FUTURE WORK

We presented a high-level architecture of a dependability
framework for smart environment applications. In this context,
we consider the problem of predicting faults in smart environ-
ments. As a first step, we presented a prediction model based
on the multiple linear regression model for the remaining
battery lifetime of a device. In order to develop an accurate
and efficient fault prediction model, we must understand the

trade-offs among the metrics defined in Section IV for each
prediction model and choose the best tradeoff for a given
dependable framework for smart environments. Our future
work will focus on implementing this architecture on top of
an operational platform in a real smart environment in order
to guarantee the availability and reliability of applications.
The ability of applications in a system to survive free of
faults depends on adaptations supported by the dependability
architecture. We recognize that the system may be affected
by many types of faults. Thus, we will investigate optimal
application adaptation mechanisms as well as fault prediction
models against other types of faults, e.g., low memory, link
quality, hardware or connection failures, miscalibration. Our
ultimate goal is to develop a dependability framework for
smart environments to provide users with services, which are
highly reliable and available.
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