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Abstract—The establishment of mobile devices had a high impact
on the use and development of software systems. It is expected that
the ability to automatically adapt to changing environments will be a
crucial property for future apps running on mobile devices. The problem
with current approaches for self-adaptive systems is that developers must
define the adaptive behaviour at design-time. In many cases, however, the
developer cannot predict all situations at design-time, which should trig-
ger adaptation at runtime. Furthermore, applications for mobile devices
are usually optimized for a small set of use cases and have a narrow, well-
defined scope. In order to support more complex tasks, the functionality
of several apps has to be composed dynamically. Another problem arises
from the ever increasing number of available applications. In this paper,
we address these problems by proposing a novel infrastructure for self-
adaptive systems in smart environments, namely ContextPoint. Our goal
is to describe an architecture which supports unanticipated adaptation
for single systems, as well as the automatic integration of actuators
and sensors, situated in the environment, with services and data from
both, mobile devices and the cloud. Therefore, a distributed adaptation
technique is proposed, where adaptation logic and rules are provided by
the environment itself. This decentralization simplifies the development
of self-adaptive systems with dynamic adaptive adaptation processes
(meta-adaptation) and, thus, the design and operation of systems with
unanticipated adaptation. Furthermore, our approach provides means
for describing context-dependent collaboration between varying systems
enabling the design of ad-hoc system-of-systems.

Keywords—Adaptation; Self-Adaptive; Meta-Adaptation; Architecture;
Context-aware; Location-aware.

I. INTRODUCTION

The wide-spread acceptance of mobile devices (e.g., smart-
phones, tablets) changed the development as well as the
use of software applications radically. Because applications
running on mobile devices change their location and, hence,
their environmental situations they are used in, they have to
adapt their appearance and behaviour accordingly. This kind
of flexibility is commonly called context-aware adaptation
in self-adaptive systems. Currently, such systems rely on an
environmental model (i.e., context model), which describes
the entities of the execution context and their relationships.
In these models, software engineers predefine statically at
design-time which contextual information can be observed at
runtime. At runtime a MAPE-K-Loop [1] (a) monitors the
environment using sensors, (b) analyses the gathered data
to instantiate the context meta-model, (c) plans necessary
reconfigurations, and (d) executes the chosen plans. The main
problem, however, is that software developers usually cannot
predefine all environmental entities, which could be important
for an adaptation process at runtime, at design-time. Lets
consider an application that mutes a smartphone automatically,
every time the user must not be disturbed (e.g., the user is
participating in a meeting). The fact, however, that a user would
be disturbed by a ringing smartphone is highly individual. A
developer of such an application could most possibly not foresee

all individual cases (e.g., when a baby is sleeping within the
same room the user is located). To address this problem, the
adaptation process itself should adaptable.

Another consequence arising from the characteristics of
mobile devices is the change in size and range of functions.
Traditionally, software system for stationary devices increased
in their code size and complexity. The goal was to create multi-
purpose systems with a huge set of provided functionality.
Applications for mobile devices, henceforth denoted as apps,
reversed that trend. They usually have a narrow scope with
a rather small set of offered functionality. Those apps are
optimized for a well-defined set of tasks. We call this Functional
Separation of Concerns (F-SoC). In order to support more com-
plex workflows, several apps have to work together to combine
their provided functionality in a seamless way. Currently, there
is no mechanism to describe an overall workflow across multiple
apps on mobile platforms. On Android, for example, it is only
possible to exchange data between applications using intents.
Intents restrict an application’ access to another application’s
provided services or data. Those intents are specified using
coarse-granular classes of access types defined in the system
frameworks. The problem is that developers would need to
agree on a shared set of guidelines (like datatypes) in order to
establish a seamless integration, which is hard to enforce for
domain-specific applications from different domains. Through
the establishment and spread of devices for smart environments,
this kind of functionality becomes even more important. Since
sensors and actuators become cheaper and more standardized,
they can be placed easily in any kind of environment. It is
likely that, in the future, users want to integrate their apps
on multiple mobile devices seamlessly with services provided
by both the environment and via Internet, depending on their
current situations.

The main problem resulting from the F-SoC expansion is
the huge number of similar apps developed for different tasks
or usage-scenarios. The Google Play Store contain almost one
million apps each. After the user found an appropriate app in
this huge variaty of offers, it has to be installed manually and, in
many cases, be configured. In order to increase convenience and
efficiency, regarding the usage of mobile devices, it should be
possible to automatically detect a set of apps that are well-suited
to support a user’s task in a given situation and automatically
deploy, configure and connect those applications.

The mentioned requirements for context-aware, mobile app-
infrastructures can be summarized as follows. Apps have to
support:

R1 unanticipated adaptation by meta-adaptation, i.e.,
the adaptation mechanisms need to be adaptable
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themselves, because the developer cannot foresee all
possible situations the application will operate in.

R2 runtime composition. In order to support complex
tasks, apps have to be combined to ad-hoc systems
of systems (SoS). Those apps can either be executed
on the same device or be integrated as services in a
distributed system.

R3 automatic provisioning. Based on the context and the
task of a user, a collection of suitable apps have to be
provided.

In this paper, we present an approach which satisfies all
three requirements by introducing the concept of extrinsic
meta-adaptation in a self-adaptive control loop. Usually, the
mechanisms required for self-adaptive systems are implemented
statically. Even though, many approaches propose architectures
to support adaptive monitoring and analysis by distributing
those steps to a varying network of collaborating systems,
plan and execute are usually fixed in their implementation.
Even though every self-adaptive systems relies on a component
model that can theoretically be extended at runtime, currently
there is no process how to dynamically extend the knowledge
base used for adaptation as well as how to adapt the adaptation
process itself. Furthermore, systems with a flexible monitor and
analyze phase are able to dynamically extend the information
sources that are used for decision making, while the strategies
how those information are processed remain fixed. A self-
optimizing system for non-functional properties for example,
might at runtime extend the information required to perform
optimization and include new components that can be used
by the planning component, but will still only optimize non-
functional properties. In situations where it is necessary to adapt
for self-healing or functional requirements, such a system will
fail. Meta-adaptation allows to adapt the adaptation process
itself (e.g., introduce new plan and execute logic, etc.) at
runtime. We want to propose an adaptation mechanism where
apps on mobile devices can automatically be adapted, connected,
and provided from an environmental infrastructure. Because
the meta-adaptation is provided by the environment itself (i.e.,
extrinsic), the overall adaptation process can be extended at
runtime by changing the location without redeployment of the
entire self-adaptive system.

This paper is structured as follows: In Section II, we give
a short introduction to the Smart Application Grids (SMAGs)
approach, which is used as a basis for the approach presented
in this paper and introduce the concept of meta adaptation in
Section III. We discuss our approach in Section IV. Section
V provides an evaluation of the presented concept using an
example. In Section VI, related work is presented. Finally,
Section VII presents our conclusion and future work.

II. SMART APPLICATION GRIDS

In order to dynamically adapt an application to varying
contexts, the structure and behaviour of an application has to
be changed at runtime. Hence, the application architecture has
to be variable and extensible. Variability enables the adaptation
of existing behaviour at runtime within a given variability space.
In contrast to that, extensibility allows to scale the variability
space and build the foundation for Meta Adaptation.
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Fig. 1. The Meta-Levels of Smart Application Grids

Traditionally, variability is assured by applying the Template
Hook Meta Pattern [2]. The application logic is separated in
a fixed (template) and variable part (hook). By exchanging
the hook at runtime, an application’s behavior is adapted
dynamically. This very simple procedure introduces three
problems. First, the replacement of the complete hook can
be expensive concerning resource usage and replacement time.
Second, the system might be in an inconsistent state during
reconfiguration. Third, if the hook is stateful, the state has
to be migrated to the new hook, which can be expensive as
well. Because in many designs, the hook can also have external
references, both incoming and outgoing, those references have
to be migrated, too. To tackle those shortcomings, invasive
composition techniques (i.e., Aspect Oriented Programming)
for dynamic context-aware adaptation were investigated [3].
With runtime weaving it is possible to exchange program
code in a very fine-grained manner during the lifetime of
an application. Still, aspects introduce some problems as well.
First, it is a code-composition technique on meta-layer M1
[4], i.e., the class-layer. Consequently, it is only possible to
change the behaviour of all objects instantiated by a given
class [5]. However, for many scenarios it is necessary to have
an adaptation technique on meta-layer M0, i.e., the object-
layer, which allows to change the behaviour of individual
objects. Another major drawback of aspects is that they
are a white-box composition technique (i.e., aspects rely on
the internals of the application subject to adaptation) which
decreases reusability. Consequently, reusing adaptive behaviour
across different applications and domains is insufficiently
supported. In order to support invasive software composition
on an architectural (component) level, we developed our Smart
Application Grids (SMAGs) framework. SMAGs is a model-
driven, platform independent design and operation principle for
fine-grained, dynamic and unanticipated adaptation with a focus
on increased reuse. SMAGs consists of many small, distributed
applications that are linked dynamically. Role-Based Design and
Programming [6] is used to change the structure and behaviour
of individual applications as well as to express dynamically
varying relationships across several distributed applications. A
role is a dynamic service of an object in a specified context,
offering the possibility to express separation of concerns,
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interface-structuring, dynamic collaboration description, and
access restriction [7]. Roles are played by objects, dynamically
altering the structure and behaviour of the player. In other
words, roles enable an adaptation technique on meta-layer M0,
the object-layer. On the one hand, roles can extend the object’s
state and functionality (i.e., introduce new methods and/or
attributes). On the other hand, the objects existing behaviour can
be changed. Furthermore, roles contain references to other roles.
Since roles can be played and discarded at runtime, they are
capable of expressing dynamically changing relationships across
multiple system entities (e.g., objects, components, etc.). The
major difference to other invasive composition approaches (e.g.,
aspects) is that roles are played within a context (e.g., ”a person
plays the student role within the context of an university”). This
tight coupling between behaviour and environmental conditions
makes Role-Based Design a powerful approach to model Self
Adaptive Systems (SAS).

As depicted in Figure 1, at design-time, a platform
independent Meta Architecture defines Component Types
which specify provided and required Port Types. A Port-
Type represents an interface specification. From several Meta
Architectures a platform specific architecture can be derived,
describing Components implementing Component Types and
Ports implementing Port-Types. Ports can be grouped into Port
Models. Each Port Model is associated with a binding to compo-
nents and with environmental conditions, stating when it should
be integrated into the application. At runtime, Components can
be instantiated and connected by their matching required and
provided Port Types. With the instantiation of Ports/Port Models
and their binding to Components, the behaviour of individual
Component Instances as well as the structure of the overall
application can be adapted according to a given context. For
more detailed information we refer to [6].

The SMAGs approach proposes an adaptation architecture.
In [6], an overview of this architecture is presented. It
represents a MAPE-K loop with the Sensor Layer monitoring
the environment and transferring the gathered information to
a Context Model. An Inference Layer relates existing and
deduces new information based on the data in the Context
Model. An Adaptation Layer creates reconfiguration plans based
on the information from the Context Model and the current
configuration of the adaptive application. Those plans are then
executed by a Runtime Environment. Because the adaptation
architecture itself is a SMAGs-based application, the concrete
implementations (e.g., the Context Model representation etc.)
can be changed at runtime. This adaptive adaptation architecture
enables Meta Adaptation.

Furthermore, the SMAGs approach is based on a distributed
repository infrastructure. A repository can be used to store
the meta-architecture and architectural information as well as
component and port implementations. These artefacts can either
be reused at design-time for the design and implementation
of new systems or at runtime to extend a running application
with new components and ports. Additionally, each repository
exposes a Service Trader. Applications can register remotely to
offered functionality alongside with contextual information at
the Service Trader. Other applications can query the published
services to autonomously create dynamically varying SoS. The
SMAGs approach is used to model a novel adaptation paradigm
for unanticipated adaptation in mobile scenarios.

III. EXTRINSIC META-ADAPTATION

Adaptation mechanisms for context-aware software system
can be classified into parametrised, control-flow based and
compositional adaptation [6]. For parametrised adaptation the
application units expose predefined parameters that can be
changed at runtime. Control-flow based adaptation triggers
the execution of application-specific behaviour to react on
environmental changes. Compositional adaptation allows to
change the structure of the application (e.g., create, remove, or
reconnect components, etc.). The available components as well
as the provided composition operators define which variants
of the system are valid configurations, constituting the variant
space. The other key modelling element, is the adaptation
strategy that describes when adaptation has to be triggered and
how the system should be reconfigured in a given situation.
Therefore, a context metamodel describes all types of contextual
information that may be available at runtime. Whenever the
concrete context model changes, the system checks whether or
not one of the variants within the variant space is better suited
than the current system configuration. When the system detects
a better alternative, a reconfiguration plan is generated. However,
the main problem for software developers is that they cannot
foresee all possible conditions that should trigger adaptation
as well as all other systems, with which the application might
collaborate. When the variant space as well as the adaptation
strategy is fixed, unplanned situations cannot be handled. In
order to support adaptation in unanticipated situations the
adaptation process itself must be variable and extensible. This
concept of adapting the adaptation is called meta-adaptation [8].
Figure 2 shows how meta-adaptation can be achieved by
extending (1) either the application’s variability space or (2)
the adaptation logic itself.

Variability-Space The variability space (Figure 2 top-right)
defines which variants of the system exist. In theory, an adap-
tation process investigates all different alternatives to decide
whether or not there is a better configuration of the system w.r.t.
the current environmental conditions. The variability space is
constructed using all possible component/port combinations
and is constrained by architectural templates and rules. Adding
new artefacts or changing existing ones changes the variability
space at runtime (Extension). This allows to create new variants,
not considered at design-time, satisfying dynamic requirements
the developers could not foresee.

Adaptation Process When the implementation of a MAPE-
K loop itself provides variability and extensibility, the adapta-
tion loop itself can be reconfigured (Figure 2 bottom-right). In
the SMAGs approach, the MAPE-K loop is implemented using
the same composition system as the system it is adapting. By
this design, it is possible to adapt the adaptation architecture,
which enables meta-adaptation. Figure 2 shows a second MAPE-
K loop that uses the Runtime Environment of the adapted
application as an executor for the reconfiguration plan. The
second loop can be implemented in any application. This allows,
for example, to exchange the context model representation, to
introduce parallel representations with different characteristics
(e.g., probability) of the context model, to introduce new
sensors, extend the inference mechanisms or introduce new
planners and executors.

SMAGs supports both dimensions of meta-adaptation. The
repository infrastructure enables applications to extend the
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Fig. 2. The SMAGs Meta-Adaptation Process

variability space at runtime, by importing new model artefacts
(i.e., (Meta) Architectures and Port Models) as well as imple-
mentation artefacts (i.e., Components and Ports). Furthermore,
SMAGs supports runtime reconfiguration of the adaptation
process because the MAPE-K loop is itself implemented as
a SMAGs application. This enables the developer of meta-
adaptive applications to change parameters of existing MAPE-
K loop components as well as to change the structure of
MAPE-K loops. Furthermore, the introduction and binding
of new ports can extend or change the behaviour of existing
components. This allows to dynamically adapt the context
model representation (e.g., add the concept of uncertainty
to specific model entries) and to bind according inference
strategies.

These two dimensions build a foundation to create location-
aware unanticipated adaptation by integrating meta-adaptive
systems within the environment. Whenever a mobile application
is situated in the same location, the meta-adaptive system can
provide location-specific adaptation knowledge.

IV. THE CONTEXTPOINT

In the research area of context-aware and self-adaptive
systems, still no common definition of the term context was
established. The most accepted and used definition was given
by Anind K. Dey in 2001:
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”Context is any information that can be used to characterise
the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves.” [9]

Over the last decades many conceptual frameworks for
context modelling and interpretation were developed [10]
[11] [12] [13]. One commonality is that every definition and
conceptualization of the term context treats the location of both
the user and the application as a first class citizen. Consequently,
the location is a central entity of context-aware adaptation.
Nevertheless, already in 1998, Schmidt et al. [14] observed that
the exact physical location is only sufficient for a rather limited
set of adaptation scenarios. The more important information for
adaptation is the semantics of the location and the implications
that can be reasoned about the fact that an application is located
at a given place at a given time. Especially in indoor scenarios,
where it is hard to determine the absolute position of an object, a
symbolic representation of the location becomes very important.
When, for example, a person enters a meeting room, where a
meeting takes place at this time, it can derive that the person is
participating in a meeting. Because indoor localization is still
difficult and usually requires a special sensing infrastructure
involving high costs and high setup efforts, this kind of location
aware services could not gained wide spread acceptance.

The ContextPoint is a device that observes the environment
and acts as a coordinator for several self-adaptive applications
within this environment. The goal of ContextPoint is to provide
an easy to install and easy to use infrastructure to enable
context-aware adaptation based on the location of the user.
Figure 3 shows a context diagram of ContextPoint with three
types of interacting services: Mobile Devices, Environmental
Devices and Cloud Services mediated by the ContextPoint. The
basic principle for interaction is locality. When a user, carrying
a mobile device, is close to a ContextPoint, information and
services implied by the location and the task of the user are
provided automatically.

In this section, we first outline the Top-Level Architecture
of the ContextPoint. Afterwards, we explain the main features
and their relation to the requirements, stated in Section I.
Furthermore, we describe how the ContextPoint architecture
relates to the concept of meta-adaptation. Finally, we outline
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Fig. 4. The ContextPoint Architecture

the crucial aspect of privacy and security.

A. Top-Level-Architecture

ContextPoint is embodied as a device that is integrated in
the infrastructure of an arbitrary location, providing contextual
services by placing a mobile device at it. The ContextPoint
device as well as the mobile devices initiate communication
using Near Field Communication (NFC). Therefore, on the
mobile device a ContextPoint Root-App is running in the
background, receiving NFC-Events. When the device is placed
near the ContextPoint, it recognizes the ContextPoint’s signature
and initializes communication. The ContextPoint shares local
Wi-Fi credentials to enable the device to automatically connect
for a long-term communication. After the device connected
to the local Wi-Fi, the Root-App will register itself at the
ContextPoint device which contains a SMAGs repository storing
implementation artefacts, contextual information, and adaptation
rules; offering a Service Trader as well as providing access
control.

Figure 4 shows the Top-Level-Architecture of ContextPoint
with ContextPoint Participants as an abstraction of mobile
devices, environmental devices and cloud services which
are mediated by the ContextPoint. Each participant runs a
ContextPoint Root-App responsible for the communication
with the ContextPoint and the provision of base services for
Sensors, Actuators, Data, and Settings. This app acts as a
runtime environment for all SMAGs-Apps deployed on the
device. Each app can publish services and connect to services
offered by other participants. The Root-App is responsible
for the registration and de-registration at a ContextPoint.
After registration, different capabilities can be integrated into
the environmental infrastructure. The data delivered by the
Sensors can be used as additional data sources to construct the
ContextPoint context model. Simple services for manipulating
its Actuators as well as more complex Services can be
published at the Service Trader. In consequence, they can be
used by other applications registered at the same ContextPoint.
Furthermore, special services for accessing Data (e.g., user
profile) or reading and manipulating the devices Settings can
be published, to externally change the state of a device or
service.

B. Location Specific Apps

In the App Repository of ContextPoint, location specific apps
(e.g., a slide-presentation app for a meeting room) can be stored
together with general metadata, contextual information and
access rights. When a mobile device registers at a ContextPoint,
the Root-App queries the App Repository and presents an
overview of all available apps to the user. Based on the user’s
identity, this list might be filtered according to the access
rights of the applications and roles of the user (e.g., speaker)
and the current context. Furthermore, the list can be filtered
and prioritized using contextual information (e.g., business
applications) and application specific metadata using roles. The
user can then select apps that are automatically installed within
the Root-App. Together with the application, the ContextPoint
device provides a context- and user-specific initial configuration
(e.g., use the meeting room’s projector as a default presentation
device). This automatic App-Provisioning covers requirement
R3.

C. Location Specific Settings

Each participant can expose read and write services for its
settings to the environment. Alongside with a capability model
of the participant, an access control component is generated by
the Root-App. Based on the context, the user and the defined
access rights, other devices as well as the ContextPoint itself
can evaluate and change the settings of the participant (e.g.,
mute the mobile device). This kind of parameterized adaptation
allows to change the state of a participant in unforeseen ways,
addressing requirement R1.

D. Service Trader

SMAGs applications can offer a subset of their provided
functionality for remote access (e.g., an interface to present and
control a presentation on a smart projector). Those dynamically
published services can be registered at the ContextPoint.
Alongside with the structural description, a subset of the
applications’ context model, the identity and metadata of the
owning user as well as the functionality can be published. Other
participants can search for required services that are appropriate
with respect to their own context (e.g., search for presentation
services). This search is provided by the Service Trader R2.

E. Checkout

A participant can be signed off from the ContextPoint by
either using a checkout service of the Root-App or when the
connection to the ContextPoint is lost. SMAGs Repositories
can be interconnected by a Peer-to-Peer network [6]. This
infrastructure is used to notify ContextPoint devices when a
participant signs in another ContextPoint. In order to avoid
concurring adaptations, ContextPoints will close the connection
to participants that are still signed in, but have been detected
at another ContextPoint devices.

F. Meta Adaptation

In the SMAGs approach, the MAPE-K loop is modelled
explicitly using a component architecture, whereby the flow
between the components is modelled implictly using events.
As depicted in Figure 4, the ContextPoint runs a MAPE-K
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loop that can adapt participants. Like any other SMAG-based
control loop, the loop itself is a SMAGs application.

Consequently different adaptation strategies and context
models can be used for different participants or situations. The
ContextPoint gathers contextual information using sensors ex-
posed by other participants (e.g., mobile devices, environmental
sensors) and stores this information in its local context model.
The execution layer of this control loop is the SMAGs runtime
environment of the corresponding participant. This allows
the ContextPoint to query a participants application runtime
model to decide whether or not an adaptation is necessary.
Since SMAGs supports parametrized, control-flow based, and
compositional adaptation; all three adaptation mechanisms can
be used to adapt the MAPE-K loop. This Meta Adaptation
triggered by the environment supports adaptation that the
developer initially did not foresee, which supports requirement
R1. Since meta-adaptive SMAGs apps can dynamically connect
several applications within one control-flow, also requirement
R2 is tackled.

G. Security and Privacy

We are aware that the proposed architecture creates serious
security (e.g., abuse of devices) and privacy (e.g., unauthorized
access to personal data) threats. On the one hand, the owner
of a ContextPoint device must be sure that only approved
participants can get access to the provided service- and data-
infrastructure. On the other hand, a participant wants to make
sure that private data cannot be accessed by other participants
and that neither data nor services from potentially compromised
sources are used. Because the software running on ContextPoint
devices and the participants devices is realized by SMAGs
applications, the role-based adaptation mechanism can be used
for security and privacy adaptation. Currently, the following
mechanisms are included: First, every ContextPoint device has
at least one owner that can regulate which participants can
sign in. By default two sign-in strategies are supported. Either
the owner grants the access for all users, or he has to confirm
each user. Second, in order to ensure client-side privacy, Filter-
Ports [6] can be used to restrict access functionality offered
by a component. Special Access Ports by default restrict any
access to the underlying functionality, only granting access to
those participants the user has defined. Hence, within the Root-
App the user has the possibility to define which services can
be used by which other participants. One serious threat is the
possible abuse of the capabilities of Meta Adaptation. One way
to address this issue is to use Access-Ports for the MAPE-K
loop, too. Because the services of the runtime environment for
querying the application model and executing reconfiguration
scripts are SMAGs Ports, Filter-Ports can equally be used
to restrict the access to the remote services of the runtime
environment. When a user does not trust the ContextPoint at
a given location he can force the application to not expose
any information about the application architectures and forbid
any remote access to the reconfiguration system.Security and
privacy threats are important topics for adaptive systems in
general, especially in extrinsic unanticipated adaptation. We
argue that the role-based adaptation mechanism of SMAGs is
a well suited mechanism towards safe and secure self-adaptive
systems, which is to be investigated in detail in future work.

V. IMPLEMENTATION

To show that the proposed architecture concept for location-
based extrinsic Meta Adaptation is feasible, we have imple-
mented ContextPoint as well as several ContextPoint apps
using the Java-based implementation of the Smart Application
Grids runtime environment. As ContextPoint device, we used
a Windows 7 notebook with a Standard JVM. In future, we
plan to investigate the use of a Raspberry Pi [15] due to
its smaller dimensions and lower energy consumption. On
the notebook a ContextPoint application was running on top
of the SMAGs runtime environment, supporting the features
presented in Section IV. A USB NFC Reader was connected
to the notebook for the initial sign-in procedure for NFC-ready
mobile devices. As a mobile, device we used a Nexus 7 Android
tablet with Android version 4.1.

Our sample scenario is based on a smart meeting room with
a built-in, remotely controllable projector, a light system and the
ContextPoint device. When a person enters the meeting room he
holds his smartphone against the ContextPoint, which exchanges
the local Wi-Fi credentials via NFC. The Mother-App running
on the smartphone receives the ID of the ContextPoint and
the Wi-Fi credentials. Afterwards the user is asked if the
smartphone should login into the local Wi-Fi. After the user
confirmed to log in, the Mother-App scans the local Wi-Fi
for the ContextPoint with the given ID using the Universal
Plug and Play (UPNP) protocol. When the Mother-App has
found the corresponding ContextPoint it uses the registration
API to authenticate and publish a description of available
services. In this case the smartphone exposes a brightness
sensor that can be used to determine the rooms brightness. The
ContextPoint determines via its context model that a meeting
is taking place in this room at the time the person enters the
room. Based on a rule, the owner of the ContextPoint defined,
the smartphone is muted by the ContextPoint (Requirement
R1). Furthermore, a ”meeting app” and a ”presentation app”
are offered to the user (Requirement R3). The meeting app
provides the user with meeting specific information that is
preconfigured to show the goal and agenda of the meeting as
well as all logged-in participants alongside with their shared
profile information of this particular meeting. The presentation
app lists all presentation files on the device as well as on the
cloud storage associated to the user and offers the capability
to start them in a slide show. Based on the information of
the context model, the ContextPoint automatically deploys
a Filter-Port that orders the presentations by their defined
category, so that meeting related presentations are shown first
(Requirement R1). For the slide show functionality each slide
can be shown on a presentation device which is by default
the screen of the device executing the app. Within the room
a projector is installed which can be used remotely as a
presentation device. Therefore, another notebook is connected
to the projector via cable, running a SMAGs app that remotely
offers the ”ISlideShowPresenter” interface. The ContextPoint
device offers to dynamically connect the projector with the
presenter app to extend the display (Requirement R2). When
the user agrees, the slide-show is automatically presented using
the rooms projector. Whenever a slide changes, metadata about
the slides is transferred along with the original content. The
ContextPoint can dynamically include a Port Model within the
presentation app that investigates the metadata of each slide
when it is shown. When the brightness in the room is high
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(sensed by the brightness sensor) and media content is shown
(e.g., a video within the slide), the Port Model automatically
controls the rooms light system to decrease the brightness
and increase the visibility of the video (Requirements R1 and
R2). Afterwards it will illuminate the room again. This sample
application was deployed on exemplary meeting room setup
on a local exhibition. With the realization of this example we
have shown that the presented approach supports the presented
requirements within this scenario.

VI. RELATED WORK

Much research has been done in the field of self-adaptive
and context-aware systems. Especially, in the domain of mobile
and ubiquitous computing, numerous research projects were
conducted. One of the first context-aware systems was ParcTab,
developed by Schilit in 1993 [16]. ParcTabs are individual
mobile devices that are dynamically connected to other devices
based on their location. At that time the major problem is
to physically connect those devices using a heterogeneous
network infrastructure. While those issues were solved over
the last decades, current research problems mainly focus to
autonomously provide the best suited services on the desired
devices based on the users location, time, and surroundings.

Many context-aware and location-based applications have
been developed. Bravo et al. presented a self-adaptive, context-
aware conference application using RFID tags for localizing
people within a conference building and distributed applications
sensing a shared context (including the current location of
the conference attendees) provided by a central server [17].
There are also other location-based services based on NFC-
Tags for advertisement [18] and content delivery [18]. All these
examples show that a lot of different use cases for context-
aware systems exist, which all treat location as a central aspect.
The commonality between these approaches is that they have
implemented their own architecture designed for their specific,
individual usage scenario. All those architectures support
a subset of the adaptation capabilities of the ContextPoint
approach. Thus, ContextPoint can be used as a platform for
context-aware and location-based applications as it supports all
required features of the discussed examples.

Another large research field concentrates on location-based
services. Huebscher and McCann, for instance, presented a
middleware for location-based, context-aware applications in
smart home environments [19]. In their approach, the context
(e.g., location, activity, etc.) is provided by Context Services,
which analyse data delivered by one or more Context Providers.
Based on the interpretation of the context, services are selected
for a current activity of the user. This is similar to the Service
Trader architecture of the ContextPoint approach. Nevertheless,
they neglect that service selection is only one aspect of context-
aware adaptation. Furthermore, traditional service-oriented
approaches cannot individualize single services for multiple
clients (only for every user or none). Since roles can adapt the
behaviour of a player based on relationships, a single service
instance can have different behaviour depending on the client
using this service.

Other research projects aimed to design variable MAPE-
K loops in order to adjust the adaptation process. In most
of the cases, only the monitoring and analyse phase can be

extended at runtime. The MUSIC project, for example, proposed
a self-adaptive architecture for mobile devices with Context
Plug-Ins [20]. This plug-in infrastructure enables to change
the adaptation process. Even though, the MUSIC architecture
does not prohibit the introduction and activation of plug-ins
at runtime, it is only possible to extend the monitoring and
analyse phase with new sensors and reasoners. In contrast, the
ContextPoint architecture allows to exchange the operation of
the whole MAPE-K loop (e.g., use alternative context model
representations, introduce new planners or even change the
control flow between the elements of the control loop).

Other approaches in the area of adaptive systems in mobile
scenarios with context-aware extensible adaptation focus on
the content presented on the device. While those approaches
use a similar distributed architecture, they provide user-profile
and device-capability adapted content [21]. The fine-grained
structure of the applications cannot be adapted and the overall
behaviour of an application cannot be changed. Van Sinderen
et al. propose an architecture for context-aware adaptation for
faster static evolution (i.e., at design-time) of self-adaptive
systems [22]. Therefore, ECA-Rules are evaluated against a
distributed context-management infrastructure to steer adapta-
tion and context-dependent services. For adaptation they focus
on component replacement and reconnection, the drawbacks
are discussed in [6]. Like in the proposed ContextPoint
architecture the monitoring and analyse phase can be distributed
across the environment, while in their concept the plan and
execute phase are integrated within the application. This,
however, hinders the adaptation to unanticipated scenarios for
mobile devices, because concepts that were not considered
during design-time of the ECA rules cannot be handled at
runtime. The presented Meta Adaptation architecture was first
conceptualized by Perrouin et al. [23]. They describe how Meta
Adaptation can be used to adapt MAPE-K loops at runtime
in order to adjust the adaptation process to the requirements
arising from contextual changes. The ContextPoint architecture
can be seen as a concrete implementation of this concept.
Combined with the reconfiguration capabilities of SMAGs, fine
grained and cross-cutting reconfigurations of an applications
MAPE-K loop can be modelled and realized. The proposed
architecture for location-based external Meta Adaptation aims
to dynamically connect local devices to build ad-hoc SoS.
Weyns et al. proposed three different architectural styles of self-
adaptation for SoS [24]. In his classification, the proposed
Meta Adaptation architecture would be categorized as an
instance of the Collaborative Adaptations architectural style
with multiple hierarchical MAPE-K loops. These are able to
include the information extracted in the monitoring phase and to
reconfigure these loops during execution phase. The presented
approach forms a Service-Oriented Architecture (SOA) [25],
since all applications expose services that can be integrated
into other applications. Traditionally, SOA-based approaches
rely on Web Services. As discussed by Piechnick et al. [6],
adaptation in classical Web-Service-based solutions use adaptive
orchestration or choreography. On the one hand, the selection
of services (i.e., which service instances), on the other hand,
the process itself (i.e., control- and data-flow between the
services) can be varied, to adapt the behaviour of the overall
application. Especially the service selection corresponds to
adaptation with component replacement (see Section II). In
contrast, SMAGs allows for varying the behavior of a single
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instance of a service based on the environmental situation and
the calling instance without the need to replace/create entire
service instances, which is important for stateful services, when
the state cannot be transferred easily. Web Services can be used
as a platform-independent communication infrastructure instead
of the current socket-based realization in SMAGs, whereby the
implementation of a service is a SMAGs component that can
be adapted using roles.

VII. CONCLUSION AND FUTURE WORK

Mobile devices changed the use and development of
software fundamentally. In the future, users will expect that
apps for mobile devices automatically adapt their behaviour
based on their physical location, their user profile, and the
current task. Furthermore, cheap, standardized, and easy to
install sensors and actuators for smart environments offer
new possibilities to gather environmental information. This
in turn will extend the functionality of a mobile device towards
environmental services. Traditionally, adaptive systems are
based an a self-adaptive control loop within the application,
which senses the environment and coordinates reconfiguration.
In this paper, we showed how the adaptation architecture of
Smart Application Grids can be used for Meta Adaptation and,
in consequence, to support unanticipated scenarios. Because
the MAPE-K loop of SMAGs applications is itself designed
as SMAGs components, it can be adapted at runtime as well.
This allows to create MAPE-K loops in other applications
that reconfigure the adaptation process of the original self-
adaptive system. Furthermore, we presented an architecture for
smart environments, the ContextPoint approach, which aims to
provide location-specific unanticipated adaptation. Therefore,
the symbolic location of a mobile device is determined by NFC
communication with a ContextPoint device. The ContextPoint
offers location- and context-specific apps, a Meta Adaptation
infrastructure to adapt the participating devices as well as
applications running on them in unforeseen ways. Thus, it
fully supports unanticipated adaptation, runtime application
composition, and automatic application provisioning. For future
work, security and privacy issues must be investigated, since
those aspects are crucial for a real world application. Further-
more, it must be investigated if low cost computing devices are
suitable to handle multiple participants. Additionally, it should
be investigated, which of the architectural styles, according to
Weyns et al. [24], are suitable for Meta Adaptation.
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