
A Low Cost Adaptive Wireless Sensor Network for Accelerometer Data Collection

Ying Li, Peter Gould

Multiple Access Communications Limited

Southampton, UK

Email: ying.li@macltd.com, peter.gould@macltd.com

Abstract—This paper presents an accelerometer data collection

system implemented with low cost off-the-shelf wireless sensor

nodes. The design is focused on addressing some practical

issues including effective sensor data offloading schemes

suitable for different usage scenarios. Making the system

highly configurable and adaptive in terms of selecting

appropriate triggers for starting/stopping data collection and

appropriate data offloading schemes was also a key design

focus. The system has been developed for carrying out field

tests, which involved attaching some sensor nodes to railway

sleepers and gathering raw accelerometer data. The initial field

test on an operational rail track proved the configurability and
adaptability of our wireless sensor network system.

Keywords-wireless sensor; sensor network; accelerometer.

I. INTRODUCTION

In recent years, there has been increasing interest in
studying and developing wireless sensor network (WSN)
systems that use accelerometers for monitoring problems
relating to railway tracks or trains. [1] proposed a method of
using accelerometers to detect arriving trains in order to
warn maintenance personnel working on tracks. The authors
of [2] and [3] investigated the detection and classification of
train events by analyzing acceleration sensor data. [4]
reported that by processing accelerometer readings measured
at different locations of a train it is possible to distinguish
between the vibration due to the train itself and the vibration
due to deformation of the track. A prototype design of a
WSN for monitoring a railway bridge is presented in [5]. It is
evident from these studies that accelerometer sensor data is
likely to play an important part in the application of the
WSN technology to the railway sector. However, studies and
research reported in the literature so far are mostly proposals,
models and prototypes. What is needed is a robust WSN that
could be used to make in-situ measurements in a reliable and
flexible way.

Innovate UK has co-funded a two-year project called
Smart Green Railway Sleepers (SGRS), which started in
January 2014. One key aspect of this new project is to
design, develop and pilot a wireless sensor-enabled tag and
track system for use within railway sleepers (or railroad ties).
Embedding sensors into railway sleepers opens a host of
potential ways to improve the railway maintenance and
sleeper recycling approaches. However, there is a range of
challenging issues that need to be addressed before designing
and embedding an optimal WSN system into railway
sleepers becomes feasible, as highlighted in [6]. This paper

reports on our experience of designing such an adaptive
WSN system and provides an insight into practical issues
encountered in collecting raw accelerometer data, along with
approaches and methods used to address these issues.

The rest of this paper is organized as follows. Section II
presents the main system requirements and a design
overview. Section III details the challenging issues
encountered in our design. Section IV presents our
approaches and solutions. Section V draws conclusions to
this paper.

II. SYSTEM REQUIREMENTS AND DESIGN OVERVIEW

Our aim is to design a low cost WSN for collecting raw
accelerometer readings from sensors attached to railway
sleepers while a train passes. The WSN should include a
data sink node, a set of sensor nodes and optionally one or
more relay nodes. The data sink node is connected to a
laptop where an application controls the operation of the
WSN system and also handles the collected measurement
data, e.g., data visualization. One or more relay nodes are
required in case the data sink node is located outside the
radio range of the sensor nodes attached to railway sleepers.
These requirements can be met by existing low cost off-the-
shelf development boards, such as the CC2530ZNP-Mini kit
from Texas Instruments [7].

The CC2530ZNP-Mini node includes two processors: a
CC2530 system-on-chip running ZigBee Network Processor
(ZNP) firmware and a MSP430F2274 microcontroller
running application software, which controls the operation of
the ZNP. Each CC2530ZNP-Mini node includes a 3-axis
accelerometer that can be configured to sense acceleration in
the range of ±2g or ±8g at a sampling rate of 10Hz, 40Hz,
100Hz or 400Hz. A CC2530ZNP-Mini node can be
configured as a ZigBee coordinator, a ZigBee router or a
ZigBee end device. We have used a coordinator node as a
data sink node and end devices as sensor nodes.

An end device is designed to support the following
simple operational states.

 Network Discovery: At power on or wake up from
sleep, a node searches for its network. If successful,
it configures the accelerometer and enters the Wait
for Event state. Otherwise, it enters the Sleep state.

 Sleep: The Sleep duration is user configurable. At
the expiration of the sleep time, an end device enters
the Network Discovery state again.

 Wait For Event: In this state, the MSP430F2274
stays in a low power mode until one of the following

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

three events occurs: 1) a trigger event for starting
sensor data measurement; 2) the reception of a
control message from the coordinator; 3) a detection
of the network being lost. At the reception of a
control message, the end device processes the
message, e.g., changing motion detection threshold
level, and remains in the current state. At the
detection of the network being lost, the node enters
the Sleep state. At the detection of a trigger event,
the node enters the Data Measurement state.

 Data Measurement: In this state, an end device
measures accelerometer values and stores the
measurement data locally. After a user configurable
number of data samples have been collected, the end
device enters the Data Offload state.

 Data Offload: In this state, the sensor data collected
by an end device is offloaded to the data sink node.
Once the data has been offloaded, the end device
goes back to the Wait For Event state.

The transitions between the above states are illustrated in

Figure 1. Note that, when no network is present, an end
device will enter the Sleep state in order to limit the power
consumption of the end node.

The number of data samples collected and stored locally
in a sensor node before being offloaded takes into
consideration the memory available on the hardware
platform and the usefulness of the measurement data. Among
the available 32 KB FLASH space in a sensor node, 12 KB
is reserved for buffering measurement data. This would give
a maximum of 10 seconds worth of accelerometer readings
at a sample rate of 400 Hz, which is sufficient for a useful
fast Fourier transform (FFT) analysis.

To initiate a measurement session, the coordinator is
plugged into a laptop via a USB port and forms a network
for other nodes in its radio range to join. It has two main
functions: 1) taking control and configuration commands
from the application running on the laptop and transmitting
them to end devices; 2) receiving accelerometer
measurement data from end devices and passing them to the
application running on the laptop where measurement data
can be displayed graphically.

Network
Discovery

Sleep

Wait For
Event

Data
Measurement

Data
Offload

Power On

Wake-up Timer Expired

No Network

Data Measurement
Complete

Measurement Trigger

No Network
No Network

Found
Network

Data Offloading No Network

Figure 1. End device state transition diagram.

The data sink node is designed to pass each received
packet to the laptop immediately for two reasons: firstly,

there is not enough memory space for storing sensor data
from more than one sensor node without adding external
memory to the hardware platform; secondly, minimizing
data processing at the data sink node reduces the time
required for the measured sensor data to reach the laptop so
that sensor data can be inspected in near real time.

III. CHALLENGING ISSUES

One of the challenging issues associated with this system
is the design of data offloading schemes. Ideally, an end
device starts to transmit collected measurement samples as
soon as it enters the Data Offload state. The sooner a node
offloads its collected data, the sooner it becomes ready for
the next round of measurements. However, in an application
where several nodes take sensor data measurements in a
correlated manner, e.g., all sensor nodes start to take
measurements as a train passes and want to offload their
collected data as soon as possible, excessive packet
collisions at the receiver of the data sink node would occur
unless some sort of data offload scheduling scheme is
deployed. Missing samples from a set of collected
accelerometer readings could potentially lead to some
distortions in data analysis results, rendering that whole data
set useless. So, it is vitally important that a complete set of
measurement samples reaches the data sink node reliably.

We could design a handshake process between the data
sink node and each sensor node to schedule data offloading,
e.g., messages to indicate which sensor node has data to
offload and messages to dictate when and which sensor node
should offload its data. This approach has at least two
drawbacks. Firstly, this signalling would consume precious
coding space in the MSP430F2274. Secondly, the signalling
overhead increases when the number of sensor nodes
increases and the channel condition gets poorer. For these
reasons, we adopted an approach of making maximum use of
what is available on the hardware platform.

The basic mechanism for reliable packet delivery in the
presence of packet collisions and/or radio interference is
packet acknowledgement and retransmissions. The ZNP
offers two acknowledgement modes: medium access layer
acknowledgement (MAC-ACK) mode and application
support layer acknowledgement (APS-ACK) mode.

 In MAC-ACK mode, the acknowledgement is from a
neighbouring node. If there are multiple hops
between a sensor node and the data sink node,
receiving a positive MAC-ACK cannot be used as an
indicator that a packet has reached the data sink
node. The MAC-ACK mode is always on and cannot
be disabled on this platform via the application
programming interface (API). The two parameters
governing the MAC-ACK mode operation are the
maximum duration of waiting for an
acknowledgement, Tmac_wait, and the maximum
number of retries, Nmac_retry. These two parameters
are also out of the control of the MSP430F2274 in
this platform. However, the MSP430F2274 is
informed of each packet transmission result: a
positive result means that an acknowledgment to the
packet has been received while a negative result

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

means that there is no acknowledgement for a packet
after the packet has been transmitted Nmac_retry + 1
times and the Tmac_wait timer has expired after each
transmission.

 In APS-ACK mode, an acknowledgement is from
the final destination node. Receiving an
acknowledgement for a packet in APS-ACK mode is
an indication that the packet has reached the ZNP of
the data sink node. Unlike MAC-ACK mode, the
APS-ACK mode can be enabled or disabled by the
MSP430F2274 via the application programming
interface (API). The maximum duration of waiting
for an acknowledgement, Taps_wait, and the maximum
number of retries, Naps_retry, for the APS-ACK mode
operation are also under the control of the
application processor.

One problem with MAC-ACK and APS-ACK is that an
acknowledgement is sent by the ZNP. The ZNP and the
MSP430F2274 processor in a node communicate via an
internal serial peripheral interface (SPI). At the reception of a
packet from a sensor node, the ZNP in the data sink node
puts the packet into a buffer and notifies the MSP430F2274
that the packet is available via the SPI. ZigBee has an over-
the-air data rate of 250 kb/s while the serial port data rate is
configurable from 9.6kb/s to 115.2 kb/s. This means that
while the MSP430F2274 processor is busy sending a
received packet to the connected laptop, the next packet
received and buffered by the ZNP may be over-written by
subsequent packets, leading to the loss of one or more
packets. To avoid losing packets in this way, one possible
approach is for a sensor node to introduce a delay between
receiving a positive acknowledgement for a packet and
transmitting the next packet. If there is just a single sensor
node offloading data, the sensor node could easily estimate
the minimum delay. But in the case of multiple sensor nodes,
estimating the required delay by a sensor node becomes
difficult, especially when the number of sensor nodes
offloading data varies. To ensure reliable end-to-end packet
delivery, the application layer acknowledgement (APP-
ACK) mode was introduced.

 In APP-ACK mode, an acknowledgement is from
the application layer of the final destination node.
The two parameters, Tapp_wait and Napp_retry, are used
to denote the maximum duration for waiting for a
positive acknowledgement and the maximum
number of retries, respectively, at the application
layer.

The three acknowledgement modes are illustrated in
Figure 2. It is shown that for a relay node, the packet
relaying function is taken care of by the ZNP and does not
involve the application processor. For each
acknowledgement mode, “PULL” type schemes could be
designed, in which a data sink node actively schedules and
controls which sensor node should transmit and when. This
would require dedicated control signalling messages, which
are not desirable for the reasons mentioned before.

Data sink node
(ZigBee coordinator)

Data sensor node
(ZigBee end device)

Data relay node
(ZigBee router)

MSP430F2274
Application
processor

CC2530ZNP:

- APS layer

- Networking

- MAC layer

SPI

MSP430F2274:
Application
processor

CC2530ZNP:
- APS layer
- Networking
- MAC layer

SPI

MSP430F2274
Application
processor

CC2530ZNP:

- APS layer

- Networking

- MAC layer

SPI

APP-ACK

APS-ACK

MAC-ACKMAC-ACK

Figure 2. An illustration of three acknowledgement modes.

Therefore, simpler “PUSH” type schemes were adopted
as described in the next section.

IV. DATA OFFLOADING SCHEMES

Three schemes are implemented in the system, each
based on using one of the three acknowledgement modes.

A. Scheme based on MAC-ACK mode

A sensor node starts to offload its data to the data sink
node as soon as it enters the data offload state. After each
packet transmission, the ZNP sends the MSP430F2274
processor a positive or negative result depending on whether
the MAC layer within the ZNP of the sensor node has
received a MAC layer acknowledgment or not.

At the MSP430F2274 of an end device, when a positive
result is received, the sensor node waits for a period of
Tapp_pos before sending the next packet. Tapp_pos must account
for, as a minimum, the time required for the data sink node to
process a received packet, e.g., sending it through the serial
port. When a negative result is received, the sensor node will
wait for a period of Tapp_neg before retransmitting the packet
again. After Napp_retry retries without success, the sensor node
will assume that the link to the data sink node has been lost
and therefore go into the Sleep state. The data sink node does
not perform any scheduling and simply passes whatever it
receives to the connected laptop.

This scheme is simple and ideal for the usage scenario
where the WSN consists of a data sink node and a single
sensor node because acknowledgement is relatively fast in
MAC-ACK mode. However, in the case of multiple sensor
nodes, there is no guarantee of end-to-end packet delivery,
although the reliability can be improved at the expense of
increased data offload latency.

B. Scheme based on APS-ACK mode

This scheme works in the same way as Scheme A except
that an acknowledgement is from the APS layer. If an APS
layer acknowledgement is not received after a period of
Taps_wait after a packet being transmitted, the APS layer within
the ZNP of the sensor node will retransmit the packet again.
After Naps_retry retries without success, the APS layer will

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

send a negative result to the MSP430F2274. Otherwise, a
positive result will be sent to the MSP430F2274.

At the application layer, when a positive result is
received, the sensor node waits for a period of Tapp_pos before
transmitting the next packet. Tapp_pos must account for, as a
minimum, the time required for the data sink node to process
a received packet. When a negative acknowledgement is
received, the sensor node will wait for a period of Tapp_neg
before retransmitting the same packet again. After Napp_retry
retries without success, the sensor node will assume that the
link to the data sink node has been lost and therefore go to
the Sleep state.

This scheme can provide reliable end-to-end data
delivery for the usage scenario where there is only one
sensor node, but one or more relay nodes are required to
relay packets from the sensor node to the data sink node. In
the case of multiple sensor nodes, the end-to-end packet
delivery reliability can be improved at the expense of
increased data offloading latency, e.g., by increasing the
value of Tapp_pos, Tapp_neg and/or Napp_retry.

C. Scheme based on APP-ACK mode

When this scheme is enabled, the APS-ACK mode will
be disabled. A sensor node starts to transmit collected data as
soon as it enters the Data Offload state. After a packet is
delivered to the ZNP, the MSP430F2274 waits for an
application layer acknowledgement for a maximum period of
Tapp_wait. If an acknowledgement is received within Tapp_wait,
the sensor node transmits the next packet after a delay of
Tapp_pos. If no acknowledgement is received when Tapp_wait
expires, the previous transmission is considered to have
failed and the same packet is retransmitted after a delay of
Tapp_neg. After Napp_retry retries without success, the sensor
node will assume that the link to the data sink node has been
lost and therefore enters the Sleep state.

The MSP430F2274 of the data sink node issues an
acknowledgement for each packet received from a sensor
node in addition to sending each received packet to the
connected laptop.

This scheme enables reliable end-to-end packet delivery
regardless of the number of sensor nodes in the network and
network topologies. Like the previous two data offloading
schemes, this scheme also uses inter-packet intervals, Tapp_pos
and Tapp_neg, to regulate traffic from the sensor nodes towards
the data sink node. The key difference is that with this
scheme the setting of these parameters can be dynamic as
well as static. The dynamic setting is achieved by including
the values of these parameters in an acknowledgement
packet, making this scheme suitable for a range of usage
scenarios. For example, when there is just a single sensor
node, the parameter, Tapp_pos for that node could be set to zero
so that the sensor node can transmit the next packet as soon
as an acknowledgement to the previous packet is received.
When there are a number of sensor nodes, the parameter,
Tapp_pos for each sensor node could be set to a different value
based on a user configurable priority list in the data sink
node.

In summary, Table 1 lists the parameters applicable to
the three data offloading schemes.

TABLE I. PARAMETERS APPLICABLE TO EACH SCHEME

Parameters

Data offloading schemes

MAC-ACK

based

APS-ACK

based

APP-ACK

based

Parameters

withinin

MSP430F2274

Tapp_pos √ √ √

Tapp_neg √ √ √

Tapp_wait √

Napp_retry √ √ √

Parameters

within ZNP

Taps_wait √

Naps_retry √

Tmac_wait √ √ √

Nmac_retry √ √ √

Appropriate settings for these parameters depend on the

data offloading scheme whilst the optimal data offloading
scheme is in turn highly dependent on the usage scenarios.
Considering the complex and dynamic nature of the
environment in which our system is used, we have
implemented our system such that most system operation
parameters including the data offloading scheme, threshold
level for triggering data collection, accelerometer sampling
rate, etc., can be reconfigured on the fly during the system
operation.

V. CONCLUSION

We have developed a low cost and adaptive WSN system
for collecting raw accelerometer sensor data from railway
sleepers. Our system is characterized by built-in adaptive
sensor data offloading schemes and a remote control
capability so that configurations can be changed after
deployment. These features proved valuable for the initial
field test involving collecting raw accelerometer data over a
section of operational railway line where carrying out data
collection reliably and quickly is crucial because accessing
an operational rail track is very costly. In the initial field test,
the live track was only accessible for a short time and some
basic tests were performed. For example, different
accelerometer configurations were used to allow the
measurement of acceleration at different resolutions for
various track conditions, e.g., train approaching, train
passing sensor, train passing on adjacent track. The full
benefits of our system will be explored in future field trials.

ACKNOWLEDGMENT

This work has been co-funded by Innovate UK.

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

REFERENCES

[1] L. Angrisani, D. Grillo, R. Moriello, and F. Filo, “Automatic

detection of train arrival through an accelerometer,”
Instrumentation and Measurement Technology Conference
(I2MTC), May 2010, pp. 898–902, ISSN: 1091-5281, E-
ISBN: 978-1-4244-2833-5.

[2] E. Berlin and K. Van Laerhoven, “Sensor networks for
railway monitoring: detecting trains from their distributed
vibration footprints,” IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS), May
2013, pp.80–87, Print ISBN: 978-1-4799-0206-4.

[3] E. Berlin and K. Van Laerhoven, “Trainspotting: Combining
fast features to enable detection on resource-constrained
sensing devices,” The Ninth International Conference on
Networked Sensing Systems (INSS), June 2012, pp.1–8, E-
ISBN: 978-1-4673-1784-6.

[4] C. Wang, Q. Xiao, H. Liang, and X. Chen, “On-line vibration
source detection of running trains based on acceleration
measurement,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct. 2006, pp.4411-4416, E-
ISBN: 1-4244-0259-X.

[5] K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti, and R.
Kumar, “BriMon: A sensor network system for railway bridge
monitoring,” The Proceedings of the 6th International
Conference on Mobile Systems, applications and services,
2008, pp. 2-14, ISBN: 978-1-60558-139-2.

[6] Y. Li and P. Gould, “Embedding Wireless Sensors in Railway
Sleepers – Challenges and Choices,” Multiple Access
Communications Limited White Paper, available from
http://macltd.com/publications. [Retrieved: January, 2015].

[7] http://processors.wiki.ti.com/index.php/CC2530ZDK-ZNP-
MINI. [Retrieved: January, 2015].

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

http://macltd.com/publications
http://processors.wiki.ti.com/index.php/CC2530ZDK-ZNP-MINI
http://processors.wiki.ti.com/index.php/CC2530ZDK-ZNP-MINI

