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Abstract—This paper presents an accelerometer data collection 

system implemented with low cost off-the-shelf wireless sensor 

nodes. The design is focused on addressing some practical 

issues including effective sensor data offloading schemes 

suitable for different usage scenarios. Making the system 

highly configurable and adaptive in terms of selecting 

appropriate triggers for starting/stopping data collection and 

appropriate data offloading schemes was also a key design 

focus. The system has been developed for carrying out field 

tests, which involved attaching some sensor nodes to railway 

sleepers and gathering raw accelerometer data. The initial field 

test on an operational rail track proved the configurability and 
adaptability of our wireless sensor network system.  

Keywords-wireless sensor; sensor network; accelerometer. 

I.  INTRODUCTION 

In recent years, there has been increasing interest in 
studying and developing wireless sensor network (WSN) 
systems that use accelerometers for monitoring problems 
relating to railway tracks or trains. [1] proposed a method of 
using accelerometers to detect arriving trains in order to 
warn maintenance personnel working on tracks. The authors 
of [2] and [3] investigated the detection and classification of 
train events by analyzing acceleration sensor data. [4] 
reported that by processing accelerometer readings measured 
at different locations of a train it is possible to distinguish 
between the vibration due to the train itself and the vibration 
due to deformation of the track. A prototype design of a 
WSN for monitoring a railway bridge is presented in [5]. It is 
evident from these studies that accelerometer sensor data is 
likely to play an important part in the application of the 
WSN technology to the railway sector. However, studies and 
research reported in the literature so far are mostly proposals, 
models and prototypes. What is needed is a robust WSN that 
could be used to make in-situ measurements in a reliable and 
flexible way. 

Innovate UK has co-funded a two-year project called 
Smart Green Railway Sleepers (SGRS), which started in 
January 2014. One key aspect of this new project is to 
design, develop and pilot a wireless sensor-enabled tag and 
track system for use within railway sleepers (or railroad ties). 
Embedding sensors into railway sleepers opens a host of 
potential ways to improve the railway maintenance and 
sleeper recycling approaches. However, there is a range of 
challenging issues that need to be addressed before designing 
and embedding an optimal WSN system into railway 
sleepers becomes feasible, as highlighted in [6]. This paper 

reports on our experience of designing such an adaptive 
WSN system and provides an insight into practical issues 
encountered in collecting raw accelerometer data, along with 
approaches and methods used to address these issues.  

The rest of this paper is organized as follows. Section II 
presents the main system requirements and a design 
overview. Section III details the challenging issues 
encountered in our design. Section IV presents our 
approaches and solutions. Section V draws conclusions to 
this paper. 

II. SYSTEM REQUIREMENTS AND DESIGN OVERVIEW 

Our aim is to design a low cost WSN for collecting raw 
accelerometer readings from sensors attached to railway 
sleepers while a train passes.  The WSN should include a 
data sink node, a set of sensor nodes and optionally one or 
more relay nodes. The data sink node is connected to a 
laptop where an application controls the operation of the 
WSN system and also handles the collected measurement 
data, e.g., data visualization. One or more relay nodes are 
required in case the data sink node is located outside the 
radio range of the sensor nodes attached to railway sleepers. 
These requirements can be met by existing low cost off-the-
shelf development boards, such as the CC2530ZNP-Mini kit 
from Texas Instruments [7]. 

The CC2530ZNP-Mini node includes two processors: a 
CC2530 system-on-chip running ZigBee Network Processor 
(ZNP) firmware and a MSP430F2274 microcontroller 
running application software, which controls the operation of 
the ZNP. Each CC2530ZNP-Mini node includes a 3-axis 
accelerometer that can be configured to sense acceleration in 
the range of ±2g or ±8g at a sampling rate of 10Hz, 40Hz, 
100Hz or 400Hz. A CC2530ZNP-Mini node can be 
configured as a ZigBee coordinator, a ZigBee router or a 
ZigBee end device. We have used a coordinator node as a 
data sink node and end devices as sensor nodes.  

An end device is designed to support the following 
simple operational states.  

 Network Discovery: At power on or wake up from 
sleep, a node searches for its network. If successful, 
it configures the accelerometer and enters the Wait 
for Event state. Otherwise, it enters the Sleep state. 

 Sleep: The Sleep duration is user configurable. At 
the expiration of the sleep time, an end device enters 
the Network Discovery state again. 

 Wait For Event: In this state, the MSP430F2274 
stays in a low power mode until one of the following 
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three events occurs: 1) a trigger event for starting 
sensor data measurement; 2) the reception of a 
control message from the coordinator; 3) a detection 
of the network being lost. At the reception of a 
control message, the end device processes the 
message, e.g., changing motion detection threshold 
level, and remains in the current state. At the 
detection of the network being lost, the node enters 
the Sleep state. At the detection of a trigger event, 
the node enters the Data Measurement state. 

 Data Measurement: In this state, an end device 
measures accelerometer values and stores the 
measurement data locally. After a user configurable 
number of data samples have been collected, the end 
device enters the Data Offload state. 

 Data Offload: In this state, the sensor data collected 
by an end device is offloaded to the data sink node. 
Once the data has been offloaded, the end device 
goes back to the Wait For Event state. 

 
The transitions between the above states are illustrated in 

Figure 1. Note that, when no network is present, an end 
device will enter the Sleep state in order to limit the power 
consumption of the end node. 

The number of data samples collected and stored locally 
in a sensor node before being offloaded takes into 
consideration the memory available on the hardware 
platform and the usefulness of the measurement data. Among 
the available 32 KB FLASH space in a sensor node, 12 KB 
is reserved for buffering measurement data. This would give 
a maximum of 10 seconds worth of accelerometer readings 
at a sample rate of 400 Hz, which is sufficient for a useful 
fast Fourier transform (FFT) analysis. 

To initiate a measurement session, the coordinator is 
plugged into a laptop via a USB port and forms a network 
for other nodes in its radio range to join. It has two main 
functions: 1) taking control and configuration commands 
from the application running on the laptop and transmitting 
them to end devices; 2) receiving accelerometer 
measurement data from end devices and passing them to the 
application running on the laptop where measurement data 
can be displayed graphically. 
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Figure 1.  End device state transition diagram.  

The data sink node is designed to pass each received 
packet to the laptop immediately for two reasons: firstly, 

there is not enough memory space for storing sensor data 
from more than one sensor node without adding external 
memory to the hardware platform; secondly, minimizing 
data processing at the data sink node reduces the time 
required for the measured sensor data to reach the laptop so 
that sensor data can be inspected in near real time. 

III. CHALLENGING ISSUES 

One of the challenging issues associated with this system 
is the design of data offloading schemes. Ideally, an end 
device starts to transmit collected measurement samples as 
soon as it enters the Data Offload state. The sooner a node 
offloads its collected data, the sooner it becomes ready for 
the next round of measurements. However, in an application 
where several nodes take sensor data measurements in a 
correlated manner, e.g., all sensor nodes start to take 
measurements as a train passes and want to offload their 
collected data as soon as possible, excessive packet 
collisions at the receiver of the data sink node would occur 
unless some sort of data offload scheduling scheme is 
deployed.  Missing samples from a set of collected 
accelerometer readings could potentially lead to some 
distortions in data analysis results, rendering that whole data 
set useless. So, it is vitally important that a complete set of 
measurement samples reaches the data sink node reliably.  

We could design a handshake process between the data 
sink node and each sensor node to schedule data offloading, 
e.g., messages to indicate which sensor node has data to 
offload and messages to dictate when and which sensor node 
should offload its data. This approach has at least two 
drawbacks. Firstly, this signalling would consume precious 
coding space in the MSP430F2274. Secondly, the signalling 
overhead increases when the number of sensor nodes 
increases and the channel condition gets poorer. For these 
reasons, we adopted an approach of making maximum use of 
what is available on the hardware platform.   

The basic mechanism for reliable packet delivery in the 
presence of packet collisions and/or radio interference is 
packet acknowledgement and retransmissions. The ZNP 
offers two acknowledgement modes: medium access layer 
acknowledgement (MAC-ACK) mode and application 
support layer acknowledgement (APS-ACK) mode. 

 In MAC-ACK mode, the acknowledgement is from a 
neighbouring node. If there are multiple hops 
between a sensor node and the data sink node, 
receiving a positive MAC-ACK cannot be used as an 
indicator that a packet has reached the data sink 
node. The MAC-ACK mode is always on and cannot 
be disabled on this platform via the application 
programming interface (API). The two parameters 
governing the MAC-ACK mode operation are the 
maximum duration of waiting for an 
acknowledgement, Tmac_wait, and the maximum 
number of retries, Nmac_retry. These two parameters 
are also out of the control of the MSP430F2274 in 
this platform. However, the MSP430F2274 is 
informed of each packet transmission result: a 
positive result means that an acknowledgment to the 
packet has been received while a negative result 
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means that there is no acknowledgement for a packet 
after the packet has been transmitted Nmac_retry + 1 
times and the Tmac_wait timer has expired after each 
transmission.  

 In APS-ACK mode, an acknowledgement is from 
the final destination node. Receiving an 
acknowledgement for a packet in APS-ACK mode is 
an indication that the packet has reached the ZNP of 
the data sink node. Unlike MAC-ACK mode, the 
APS-ACK mode can be enabled or disabled by the 
MSP430F2274 via the application programming 
interface (API). The maximum duration of waiting 
for an acknowledgement, Taps_wait, and the maximum 
number of retries, Naps_retry, for the APS-ACK mode 
operation are also under the control of the 
application processor.  

One problem with MAC-ACK and APS-ACK is that an 
acknowledgement is sent by the ZNP. The ZNP and the 
MSP430F2274 processor in a node communicate via an 
internal serial peripheral interface (SPI). At the reception of a 
packet from a sensor node, the ZNP in the data sink node 
puts the packet into a buffer and notifies the MSP430F2274 
that the packet is available via the SPI. ZigBee has an over-
the-air data rate of 250 kb/s while the serial port data rate is 
configurable from 9.6kb/s to 115.2 kb/s. This means that 
while the MSP430F2274 processor is busy sending a 
received packet to the connected laptop, the next packet 
received and buffered by the ZNP may be over-written by 
subsequent packets, leading to the loss of one or more 
packets. To avoid losing packets in this way, one possible 
approach is for a sensor node to introduce a delay between 
receiving a positive acknowledgement for a packet and 
transmitting the next packet. If there is just a single sensor 
node offloading data, the sensor node could easily estimate 
the minimum delay. But in the case of multiple sensor nodes, 
estimating the required delay by a sensor node becomes 
difficult, especially when the number of sensor nodes 
offloading data varies. To ensure reliable end-to-end packet 
delivery, the application layer acknowledgement (APP-
ACK) mode was introduced. 

  In APP-ACK mode, an acknowledgement is from 
the application layer of the final destination node. 
The two parameters, Tapp_wait and Napp_retry, are used 
to denote the maximum duration for waiting for a 
positive acknowledgement and the maximum 
number of retries, respectively, at the application 
layer. 

The three acknowledgement modes are illustrated in 
Figure 2. It is shown that for a relay node, the packet 
relaying function is taken care of by the ZNP and does not 
involve the application processor. For each 
acknowledgement mode, “PULL” type schemes could be 
designed, in which a data sink node actively schedules and 
controls which sensor node should transmit and when. This 
would require dedicated control signalling messages, which 
are not desirable for the reasons mentioned before.  
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Figure 2.  An illustration of three acknowledgement modes.  

Therefore, simpler “PUSH” type schemes were adopted 
as described in the next section. 

IV. DATA OFFLOADING SCHEMES 

Three schemes are implemented in the system, each 
based on using one of the three acknowledgement modes. 

A. Scheme based on MAC-ACK mode 

A sensor node starts to offload its data to the data sink 
node as soon as it enters the data offload state. After each 
packet transmission, the ZNP sends the MSP430F2274 
processor a positive or negative result depending on whether 
the MAC layer within the ZNP of the sensor node has 
received a MAC layer acknowledgment or not. 

At the MSP430F2274 of an end device, when a positive 
result is received, the sensor node waits for a period of 
Tapp_pos before sending the next packet. Tapp_pos must account 
for, as a minimum, the time required for the data sink node to 
process a received packet, e.g., sending it through the serial 
port. When a negative result is received, the sensor node will 
wait for a period of Tapp_neg before retransmitting the packet 
again. After Napp_retry retries without success, the sensor node 
will assume that the link to the data sink node has been lost 
and therefore go into the Sleep state. The data sink node does 
not perform any scheduling and simply passes whatever it 
receives to the connected laptop. 

This scheme is simple and ideal for the usage scenario 
where the WSN consists of a data sink node and a single 
sensor node because acknowledgement is relatively fast in 
MAC-ACK mode. However, in the case of multiple sensor 
nodes, there is no guarantee of end-to-end packet delivery, 
although the reliability can be improved at the expense of 
increased data offload latency.  

B. Scheme based on APS-ACK mode 

This scheme works in the same way as Scheme A except 
that an acknowledgement is from the APS layer. If an APS 
layer acknowledgement is not received after a period of 
Taps_wait after a packet being transmitted, the APS layer within 
the ZNP of the sensor node will retransmit the packet again. 
After Naps_retry retries without success, the APS layer will 
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send a negative result to the MSP430F2274. Otherwise, a 
positive result will be sent to the MSP430F2274. 

At the application layer, when a positive result is 
received, the sensor node waits for a period of Tapp_pos before 
transmitting the next packet. Tapp_pos must account for, as a 
minimum, the time required for the data sink node to process 
a received packet. When a negative acknowledgement is 
received, the sensor node will wait for a period of Tapp_neg 
before retransmitting the same packet again. After Napp_retry 
retries without success, the sensor node will assume that the 
link to the data sink node has been lost and therefore go to 
the Sleep state. 

This scheme can provide reliable end-to-end data 
delivery for the usage scenario where there is only one 
sensor node, but one or more relay nodes are required to 
relay packets from the sensor node to the data sink node. In 
the case of multiple sensor nodes, the end-to-end packet 
delivery reliability can be improved at the expense of 
increased data offloading latency, e.g., by increasing the 
value of Tapp_pos, Tapp_neg and/or Napp_retry. 

C. Scheme based on APP-ACK mode 

When this scheme is enabled, the APS-ACK mode will 
be disabled. A sensor node starts to transmit collected data as 
soon as it enters the Data Offload state. After a packet is 
delivered to the ZNP, the MSP430F2274 waits for an 
application layer acknowledgement for a maximum period of 
Tapp_wait. If an acknowledgement is received within Tapp_wait, 
the sensor node transmits the next packet after a delay of 
Tapp_pos. If no acknowledgement is received when Tapp_wait 
expires, the previous transmission is considered to have 
failed and the same packet is retransmitted after a delay of 
Tapp_neg. After Napp_retry retries without success, the sensor 
node will assume that the link to the data sink node has been 
lost and therefore enters the Sleep state.  

The MSP430F2274 of the data sink node issues an 
acknowledgement for each packet received from a sensor 
node in addition to sending each received packet to the 
connected laptop.  

This scheme enables reliable end-to-end packet delivery 
regardless of the number of sensor nodes in the network and 
network topologies. Like the previous two data offloading 
schemes, this scheme also uses inter-packet intervals, Tapp_pos 
and Tapp_neg, to regulate traffic from the sensor nodes towards 
the data sink node. The key difference is that with this 
scheme the setting of these parameters can be dynamic as 
well as static. The dynamic setting is achieved by including 
the values of these parameters in an acknowledgement 
packet, making this scheme suitable for a range of usage 
scenarios.  For example, when there is just a single sensor 
node, the parameter, Tapp_pos for that node could be set to zero 
so that the sensor node can transmit the next packet as soon 
as an acknowledgement to the previous packet is received. 
When there are a number of sensor nodes, the parameter, 
Tapp_pos for each sensor node could be set to a different value 
based on a user configurable priority list in the data sink 
node.  

In summary, Table 1 lists the parameters applicable to 
the three data offloading schemes. 

TABLE I.  PARAMETERS APPLICABLE TO EACH SCHEME 

Parameters 

Data offloading schemes 

MAC-ACK 

based 

APS-ACK 

based 

APP-ACK 

based 

Parameters 

withinin 

MSP430F2274 

Tapp_pos √ √ √ 

Tapp_neg √ √ √ 

Tapp_wait   √ 

Napp_retry  √ √ √ 

Parameters 

within ZNP 

Taps_wait  √  

Naps_retry  √  

Tmac_wait √ √ √ 

Nmac_retry √ √ √ 

 
Appropriate settings for these parameters depend on the 

data offloading scheme whilst the optimal data offloading 
scheme is in turn highly dependent on the usage scenarios. 
Considering the complex and dynamic nature of the 
environment in which our system is used, we have 
implemented our system such that most system operation 
parameters including the data offloading scheme, threshold 
level for triggering data collection, accelerometer sampling 
rate, etc., can be reconfigured on the fly during the system 
operation.   

 

V. CONCLUSION 

We have developed a low cost and adaptive WSN system 
for collecting raw accelerometer sensor data from railway 
sleepers. Our system is characterized by built-in adaptive 
sensor data offloading schemes and a remote control 
capability so that configurations can be changed after 
deployment. These features proved valuable for the initial 
field test involving collecting raw accelerometer data over a 
section of operational railway line where carrying out data 
collection reliably and quickly is crucial because accessing 
an operational rail track is very costly. In the initial field test, 
the live track was only accessible for a short time and some 
basic tests were performed. For example, different 
accelerometer configurations were used to allow the 
measurement of acceleration at different resolutions for 
various track conditions, e.g., train approaching, train 
passing sensor, train passing on adjacent track. The full 
benefits of our system will be explored in future field trials.        
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