ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

A Component Model for Limited Resource Handling in Adaptive Systems

Karina Rehfeldt, Mirco Schindler, Benjamin Fischer and Andreas Rausch

Technische Universitt Clausthal
Clausthal-Zellerfeld, Germany
email: {karina.rehfeldt, mirco.schindler, benjamin.fischer, andreas.rausch} @tu-clausthal.de

Abstract—Dynamic adaptive systems are systems that change
their behavior at run time, based on system, user, environment
and context information and needs. System configuration in
terms of structure and behavior of open, self-organized systems
cannot completely be predicted beforehand: New components
may join, others may leave the system, or the behavior of
individual components of the system may change over time. These
components may compete for limited resources. Especially in
Internet of Things (IoT) applications where service consumers
directly interact with service providers, the necessity for a fair
and lightweight resource access method arises. Therefore, we
have elaborated a method which allocates provided services
to applications based on a fair and distributed process. Our
approach has been implemented on top of our component model
called Dynamic Adaptive System Infrastructure (DAiSI).

Keywords—dynamic adaptive systems; decentralized configura-
tion; resource allocation.

I. INTRODUCTION

Software-based systems pervade our daily life at work as
well as at home. Public administration or enterprise organiza-
tions can scarcely be managed without software-based systems.
We come across devices executing software in nearly every
household. The continuous increase in size and functionality
of software systems has made some of them among the most
complex man-made systems ever devised [1].

In the last two decades, the trend towards ’everything, every
time, everywhere’ has been dramatically increased through a)
smaller mobile devices with higher computation and commu-
nication capabilities, b) ubiquitous availability of the Internet
(almost all devices are connected with the Internet and thereby
connected with each other), and c) devices equipped with
more and more connected, intelligent and sophisticated sensors
and actuators. These trends also pushed research subjects like
Internet of Things (IoT) and applications for smart devices,
like smart City, smart home or applications in financial and
health technology.

Nowadays, these devices are increasingly used within an
organically grown, heterogeneous, and dynamic IT environ-
ment. Users expect them not only to provide their primary
services but also to collaborate autonomously with each other
and thus to provide real added additional value. The challenge
is therefore to provide software systems that are correct, stable
and robust in the presence of increasing challenges such as
change and complexity [2]. Especially in the Internet of Things
Domain small autonomous devices are expected to interact and
collaborate on their own. Nevertheless, the provided services
should be stable and reliable.

In open IoT Systems new sensors, actuators and services
may enter the system environment at any time and others may

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

leave the system. Hence, it is essential that our systems are able
to adapt to maintain the satisfaction of the user expectations
and environmental changes in terms of an evolutionary change.

Dynamic change, in contrast to evolutionary change, occurs
while the system is operational. Dynamic change requires that
the system adapts at run time. Therefore, we must plan for
automated management of adaptation. The systems themselves
must be capable of determining what system change is required
and initiate and manage the change process wherever needed.
This is the aim of self-managed systems.

Providing dynamic adaptive systems is a great challenge in
software engineering [2]. In order to provide dynamic adaptive
systems, the activities of classical development approaches
have to be partially or completely moved from development
time to run time. For instance, devices and software com-
ponents can be attached to a dynamic adaptive system at
any time. Consequently, devices and software components can
be removed from the dynamic adaptive system or they can
fail as the result of a defect. Hence, for dynamic adaptive
systems, system integration takes place during run time. In
our research group, we have for more than ten years developed
a framework for dynamic adaptive (and distributed) systems,
called Dynamic Adaptive System Infrastructure (DAiSI).

DAISI is a service-oriented and component based platform
to implement dynamic adaptive systems. Components can be
integrated into or removed from a dynamic adaptive system
at run-time without causing a complete application to fail. To
meet this requirement, each component can react to changes
in its environment and adapt its behavior accordingly.

At first, it was only possible for components to ask for a
special service based on a domain interface they referred to. In
[3], we extended the DAiSI component model by the concept
of interface roles which takes runtime information in account
for the composition and connection of services. With interface
roles a domain interface can be enriched. It allows specifying
the role of the interface on the basis of runtime information,
like the value of a specific parameter.

In DAISI, the components connect on local optimization
views. Each and every component tries to achieve their best
local configuration but the resulting overall system configu-
ration might not meet any global optimization goals or fails
to meet context requirements. Therefore, we have elaborated
an approach to specify context requirements. We introduced
the concept of service application specification and component
templates in [4]. A service application specification consists of
a set of component templates. A template is a placeholder for
a set of component with specific properties. The template can
be described without knowing individual components. During

37

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

run time, DAISI matches existing components to templates
autonomously. With this approach an application is build which
meets context requirements.

The development of DAiSI was always motivated through
running application examples and demonstrators. As DAiSI has
been developed for more than ten years, we have demonstrated
the application of our approach and our infrastructure in
a couple of different research demonstrators and industrial
prototypes and products [5] or [6].

Nowadays, IoT-Applications are an emerging field. IoT is
different to classic monolithic software systems. Instead of
one big application multiple applications for various users are
needed. In the EU project BIG IoT [7], an architecture for
interoperable IoT-Systems is introduced. The general idea is
to use a central marketplace where service and data providers
register their service offerings and service consumers are
able to search for their required services and data. But to
keep the system scalable, the marketplace only takes care of
establishing the connection between consumer and provider. If
the consumer directly interacts with providers the necessity to
control resource access arises. Since there is no central instance
to take care of resource management a distributed method is
needed. But also, the method to allocate provider resources for
consumers should be fair and lightweight.

The goal of this paper is to introduce such a method on
top of the DAiSI component model. The rest of this paper is
structured as follows: In Section II, we give an overview of
relevant related work. Section III gives a short overview of the
DAIiSI component model with a few hints for further reading.
Our extension for limited resource handling is introduced
in Section IV, before the paper is wrapped up by a short
conclusion in Section V.

II. RELATED WORK

In the field of large-scale systems component-based devel-
opment is a solid and state-of-the-art approach [8], [9], [10].

In many cases the used framework influences the archi-
tectural structure of a system or the other way around a
framework is chosen cause of the underlying architecture and
its concepts. One example for component based development
are middlewares, which not only defines services and establish
an infrastructure, but also specifies a component model on
top [11]. The CORBA Component Model (CCM) [12] from
CORBA [13], a component based middleware, describes differ-
ent types of communication as synchronous or asynchronous
calls by the port type. These ports are characterized in the
interface description of the component.

Another example is the middleware DREAM [14], which
defines atomic and composed components, so the intercon-
nection between components could be hierarchical. The con-
nection of components takes place at runtime, but it allows
only asynchronous communication. The component model
of the middleware RUNES [15] allows the dynamic adding
and termination of components at runtime, too as CORBA
and DREAM. Furthermore it supports the implementation
of a separate algorithm, which realize the arrangement of
components.

One of the first frameworks, which supports dynamic
adaptive reconfiguration was CONIC. A CONIC application
was maintained by a centralized configuration manager [16].

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

Besides it provides a description technique to adapt and modify
the structure of the integrated modules of an application.
Another framework, building on the knowledge gained through
the research in CONIC, was a framework for Reconfigurable
and Extensible Parallel and Distributed Systems (REX) [17].
This frameworks defines its own interface description language
to specify the interconnection. Components were considered
as types, allowing multiple instances of any component to
be present at run-time. The framework allowed the dynamic
change of the number of running instances and their wiring
[18]. Both, the CONIC and REX framework allowed the dy-
namic adaptation of distributed applications, but only through
explicit reconfiguration programs for every possible reconfig-
uration.

R-OSGi [19] takes advantage of the features developed for
centralized module management in the OSGi platform, like
dynamic module loading and unloading. It introduces a way
to transparently use remote OSGi modules in an application
while still preserving good performance. Issues like network
disruptions or unresponsive components are mapped to events
of unloaded modules and thus can be handled gracefully a
strength compared to many other platforms. However, R-OSGi
does not provide means to specify application architecture
specific requirements. As long as modules are compatible with
each other they will be linked. The module developer has to
ensure the application architecture at the implementation level.
Opposed to that, our approach proposes a high level description
of application architectures through application templates that
can be specified even after the required components have been
developed.

There are many service-oriented approaches and service-
orientated Architectures (SOA) [20], which are capable to
handle a dynamic behavior. Unknown components can be
integrated into it. However, they have the uncomfortable
characteristic that the system itself does not care for the
dynamic adaptive behavior. The component needs to register
and integrate itself. Also, it has to monitor itself whether
the used services are still available and adapt its behavior
accordingly, if that is no longer the case. But components can
be developed independently and reused [21].

In the context of IoT, Stankovic highlighted in [22] eight
research topics and challenges. One of them are “Architec-
ture and Dependencies”, he mentioned that the sharing of
components across simultaneously running applications can
result in many systems-of-systems interface problems. The
main reason for this is the interaction with actors. A simple
example is described in [22] also, imagine a Smart Home
system controlling windows, shades and thermostats. If the
sensors and actuators are shared between applications, than it
could lead to conflicts when these applications have there own
assumptions and strategies to modify the room temperature. As
shown in [23] this problem occurs always if a resource like
an actuator is limited or applications are competing for these
resources. This leads to specific infrastructures like DepSys
[24] a sensor and actuator infrastructure for smart homes
that provides comprehensive strategies to specify, detect, and
resolve conflicts.

Anders and Lehner presented a decentralized graph-based
approach for agent networks to solve resource allocation
problems [25]. Their approach works for structures where you
can easily derive such a network like in smart grid systems.

38

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

But we are looking at systems where the agents are changing
at runtime and where no clear network for resource exchange
can be determined.

Therefore we are using a market-based approach like
the ones introduced in [26]. Market-based approaches are
generally useful because of their simplicity but effectiveness
to achieve a sustainable solution by using little information
like price and offer and simple interaction like trading. As
presented in the next sections our approach builds up on
distributed component models and handles the conflicts of
limited resources in a general and generic way.

III. DAISI COMPONENT MODEL

In this section, we want to shortly introduce the existing
DAIiSi component model. We build our extension on top of
the existing component model in section IV. We will use a
common example throughout the whole paper which we will
introduce next.

Imagine a biathlon training center. The training center
consists of a skiing track and a shooting range with sev-
eral shooting lanes. Biathlon teams are able to train under
their trainer’s watch. The training center provides a training
overview system for each trainer where he can see the current
training data of his athletes. For that purpose, each athlete is
equipped with at least a pulse sensor. Moreover, a device which
measures the currently used skiing technique is attached to the
athlete’s gear.

Fa:

2 3
a_'C&hlgt_e ITechnique[1..1]

confl

IAthIete[
==
— A

1
IPulse[1..1]

ry:
IShootingLine[1..1]

Figure 1. A DAISI component representing an athlete.

The DAISI component model is best explained with an
example. In Fig. 1, a DAiSI component representing a biathlon
athlete is shown. The actual component is the blue rectangle
in the background. A DAIiSI component consists of different
configurations, each of them including one or more provided
and required services. The athlete has three different configu-
rations depicted by yellow boxes. Configurations in DAiSI are
ordered manually by the designer. The top-most configuration
is the best one and therefore the one a component strives
to achieve. In Fig. 1, each configuration offers the service
IAthlete depicted with a full-circle based on the UML lollipop
notation. Accordingly, a required service is depicted by a
semicircle. The best configuration in our example requires
three different services: ITechnique, a service provided by the
skiing technique measuring device; [Pulse, a service provided
by the pulse device and IShootingLine which is the shooting
line evaluating the shooting performance of an athlete.

Fig. 2 shows the DAiSI component model. The different
aspects are covered in various papers which were published
throughout the years. Therefore, we will stick to a general
introduction here and refer to the detailed papers. The orange
parts are the extensions introduced in this paper.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

The domain architecture of a DAISI application defines
domain interfaces. On the basis of these domain interfaces
is decided whether required and provided services can be
connected. In [3], the domain interfaces are extended by
interface roles. As already mentioned in the introduction inter-
face roles allow the specification of additional constraints for
the compatibility of interfaces that use run-time information,
bound services and the internal state of a component.

Applications are used to specify context requirements.
They narrow down the possible structure of a application
configuration. Blueprints for components, so called Templates
specify (needed and offered) RequiredTemplateInterfaces and
ProvidedTemplateInterfaces which refer to DomainInterfaces
and thus form a structure which can be filled with actual
services and components by the infrastructure. A more detailed
discussion about templates and applications can be found in

[4].

biathlonApp:

ITrainer ! IAthIete

L_-‘l RN ,___% tAthlete: E
N_R
5
4

: pq: £
1| bicathlete C:CAthlete

IAthIete[l]
. J 7

Yy
S

_J tTrainer:
STV
1

IAthlete 1_

Pyt
ITrainer[l]

Figure 3. Example for an application with two different component
templates.

Fig. 3 shows an example for the usage of templates and
applications. biathlonApp specifies an application consisting
of two component templates. The first component template
tTrainer can be filled with components providing a service
referring to the domain interface ITrainer and requiring a ser-
vice referring to [Athlete. Following this, the second template
tAthlete is compatible with components provding an IAthlete
service.

With the interface roles and template extension we are
now able to describe an application. But in the case of IoT-
Domains with many different applications competing for lim-
ited resources we have to be able to describe the dependencies
between different application instances. In the next section, we
will show application scenarios in our biathlon training center
introducing our mechanisms and structures for distributed
limited resource handling.

IV. LIMITED RESOURCE HANDLING ON ToP OF DAISI

Recall our biathlon example. We have different biathlon
teams training in a training center with a limited amount of
shooting lanes. Driven by scenarios on top of this example,
we will introduce our extensions to the DAIiSI component
model which were introduced to handle limited resources.
The mapping of components to templates and the creation of
applications will then no longer be done simply on interface
matching criterias but also with regards to resource assign-
ments.

39

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

. 0.*
containedComponents . .
0 DynamicAdaptiveComponent selectedComponents
containedBy 1 assignedComponents
1.% contains {ordered}
ComponentConfiguration
declaredBy 1. providedBy 1.
0..* declares 0.* provides
o _0..” use: q q
q assignedTo 0. ProvidedService
0.* 0.* : assignedFrom 0.*
refersTo implf}m_en_tls
1 Domaininterface 1
refersTo
1 defines 0" refersTo
1
<<enumeration>> 1.% DomainArchitecture
Appli riority contains ®
1
0..1
containedApplications e System
entFunction() : int
0..
’1
containedinstances
0.*
Applicationinstance
priority 0. [|-weight :int
containedBy 1
contains
0..1 assignedTo 1. 0..1 assignedTo
quiredT rf: 0.* neededB Templatelnstance i offers ProvidedT rf:
needs ‘ offeredBy 0.*
* 0.* *
0 refersTo 0-
refersTo refersTo refersTo
1 1 1
o RequiredTemplatelnterface OntededBy T ProvidedTemplateinterface
- needs | 1 1 offers
offeredBy 0..*
0.* contains 1.% connectedTo 1 0.*
0.*
1 ‘containedBy
Application
=
0.*

Powered By Visual Paradigm Community Edition €

Figure 2. DAISI component model with Application Instances.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

The configuration mechanism of DAIiSI which is lengthly
introduced in [27], is extended by an agent-based mechanism
to broker the association of resources. We will not introduce
the technical algorithm here but the component model exten-
sion.

A. The Need for Application Instances

Two kind of teams are training in our training center:
amateur teams and professional teams. They differ in their
configuration and usage of training devices.

r

amateurApp:

ptle _______ rtTl _______

ITrainer:' 1.1 1IAthlete[1..4] :' 1.4 [)
':_‘,.-—~| tTrainer: :.-—~(___ - _>u;‘,—-—~| tAthlete: : ’

— - ,

ptAl: | RGN

IAthlete rtA, \4 , 1.11

IShootingLine[1..1] ~%_r--=~ tShootingLine: !

ptSl: | !

IShootingline = = = = = =~

Figure 4. Application for amateur team.

Fig. 4 shows the application and templates for an amateur
team. One trainer is training with up to 4 athletes. Each athlete
has a pulse measuring device and can use a shooting line. On
the other hand, Fig. 5 shows the professional team application.
A professional athlete will always use a technique device also.

With the help of our component model until now, we can
specify these two application types. But in the training center
more than one amateur or professional team might be training.
Therefore, the need to introduce an instance level arises.
Application and template instances are the first extension made
to the DAISI component model.

r erotessonangp: 1
professionalApp:
ptPl: _______
IPulse Ir 1.1
[tPulse 1
71" [
Ay L o)
TPulsel..1]
e 1.4
PtTy: Ty 1 - PESit _ o
ITrainer I 1..1 |IAthlete[1..4] 1 : IShootingLineI 1.11
- ! i o - -~ . -~ -\ " e |
-=~ : el == 2D - H P G G el :
(¥--~ Hrainer :. -0 : tAthlete i H(r--~ tShootingLine X
1 _ ptA;: | IIShootingLine[1..1] ' _ _ _ _ _ _)
""" IAthlete | [BNPN
_____ _J NN
3 N o2
ITechnique[1..1] 5| r 111
(_‘r——~: tTechnique: !
ptTy: !
ITechnique — = = =~ =~ ’

Figure 5. Application for professional team.

The orange parts in Fig. 2 are the extensions made to the
component model for limited resource handling. To be able to
model a system based on instances, we introduce application
instances and template instances. They represent the instance
level of our component model. Consequently, the components
and provided/required services are no longer bound to the
template types but to template instances.

Another new structure is the system. A system is a set of
various application instances. It describes the overall config-
uration of a set of components in these application instances.
Each of these application instances may use resources and may
even share a resource if the resource allows.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

With the help of this extension, we can now describe a
system consisting of two amateur team application instances
and one professional team application instance.

B. Application Priority

In our example, we have a clearly limited resource: the
shooting lanes. Each shooting lane can only be used by one
athlete at a time. So the shooting lanes directly influence how
many athletes can train on the track. We assume that it is
acceptable for a training amateur team to share the shooting
lanes. But the professional athletes must have exclusive usage
of a shooting lane to train under competitive conditions.

Also, the training of professional athletes is more impor-
tant, so they should always be preferred to amateur teams.
To be able to describe this in our component model, we use
ApplicationPriority. ApplicationPriorities are priority classifi-
cations for application types. A DomainArchitecture (in our
case the biathlon training domain) defines a set of ordered
priorities. These priorities are considered by the configuration
mechanism when it comes to limited resources. To put it
simple, an application type with a higher priority will always
be preferred to applications with lesser priority when it comes
to limited resources.

Applied to our biathlon example it means that professional
team application gets a higher priority than amateur team
application. When a professional team wants to use the training
center, the assignment of resources will always be in their
favor. Application priorities act on type level. But we also need
a mechanism for priority on instance level, for example when
two different amateur team instances are training. This priority
should include run time information because the priority of an
application instance may change over time. In the next section,
we will introduce our concept and motivate it by another
example.

C. Weight

Now that we are able to account for priority on type level,
we introduce our concept for priority on instance level. Every
ApplicationInstance has a weight. The weight is an indicator
for the configuration mechanism how valuable an application
instance is for the overall system. During the assignment of
resources the weights are used to decide which application
ultimately gets the resource.

In our biathlon training center, a training schedule exists. It
defines training times for teams. We assign each team instance
a weight based on the training schedule. Thereby, we want to
make sure that each team may train on their assigned training
time but if there are still available shooting lanes in the center,
additional teams may train. To be able to achieve that, we
assign a team exactly on their training schedule the weight 1.
The more the current time differs from their assigned training
time, the lower the team’s weight gets until it reaches 0. So
for instance, until half an hour before their training schedule
a team gets the weight 0, a quarter to their training schedule
they get the weight 0.5 and exactly on their training schedule
they get the weight 1.

Going back to our resource assigning mechanism, if two
teams are competing for a shooting lane the team with higher
weight, thus closer to their training schedule, will get the
assignment of the shooting lane. But a team with weight

41

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

0 is also able to get the shooting lane, if no team with a
higher weight is asking for it. In the case of same weights,
the assignment has to be done randomly. In the end, we have
extended our DAiSI component model by an instance level and
priorities on type and instance level. With the help of these new
features we are now able to handle limited resources on top
of DAISI. It exists a proof-of-concept implementation which
will be published in the PhD-Thesis of Benjamin Fischer.

V. CONCLUSION

We introduced an enhancement to our DAiSI component
model which allows modeling for limited resource handling.
Limited resources are especially a problem in systems with
competing applications or shared actuators, for instance IoT
systems. To be able to model more than one possible appli-
cation, which is necessary for IoT systems, an instance level
was created. The assignment of resources may be decided on
application type level on the basis of application priorities.
Additionally, weights are used on application instance level to
model the significance of an application instance to the overall
systems.

Klus et. al [4] presented a configuration algorithm to assign
components to applications. The introduced enhancement of
the component model in this paper may be used in an extended
configuration algorithm which also deals with the assignment
of limited resources. A possible implementation is conceived
and will be published in the PhD-Thesis of Benjamin Fischer.

REFERENCES

[11 L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K. Sullivan et al.,
“Ultra-large-scale systems: The software challenge of the future,” DTIC
Document, Tech. Rep., 2006.

[2] J. Kramer and J. Magee, “A rigorous architectural approach to adaptive
software engineering,” Journal of Computer Science and Technology,
vol. 24, no. 2, 2009, pp. 183-188.

[3] H. Klus, D. Herrling, and A. Rausch, “Interface Roles for Dynamic
Adaptive Systems,” Proceedings of ADAPTIVE, 2015, pp. 80-84.

[4] H. Klus, A. Rausch, and D. Herrling, “Component Templates and Ser-
vice Applications Specifications to Control Dynamic Adaptive System
Configurations,” in AMBIENT 2015, The Fifth International Confer-
ence on Ambient Computing, Applications, Services and Technologies,
vol. 5. Nice, France: IARIA, Jul. 2015, pp. 42 - 51.

[51 A. Rausch, D. Niebuhr, M. Schindler, and D. Herrling, “Emergency
management system,” in Proceedings of the International Conference
on Pervasive Services 2009 (ICSP 2009), 2009.

[6] C. Deiters, M. Koster, S. Lange, S. Liitzel, B. Mokbel, C. Mumme,
and D. Niebuhr, “Demsy-a scenario for an integrated demonstrator in
a smartcity,” NTH Computer Science Report, vol. 1, 2010.

[71 B. L project. Bigiot - bridging the interoperability gap of the internet
of things. [Online]. Available: http://big-iot.eu/ (2016)

[8] C. Szyperski, Component Software: Beyond Object-Oriented
Programming (2nd Edition), 2nd ed. Addison-Wesley Professional,
2002. [Online]. Available: http://amazon.com/o/ASIN/0201745720/

[91 A. MacCormack, J. Rusnak, and C. Y. Baldwin, “The impact of
component modularity on design evolution: Evidence from the software
industry,” SSRN Electronic Journal, 2007.

[10] B. Councill and G. T. Heineman, “Definition of a software component
and its elements,” Component-based software engineering: putting the
pieces together, 2001, pp. 5-19.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. A. Bernstein, “Middleware: a model for distributed system services,”
Communications of the ACM, vol. 39, no. 2, 1996, pp. 86-98.

N. Wang, D. C. Schmidt, and C. O’Ryan, “Overview of the corba
component model: Component-based software engineering,” G. T.
Heineman and W. T. Councill, Eds. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc, 2001, pp. 557-571. [Online].
Available: http://dl.acm.org/citation.cfm?id=379381.379581

Object Management Group - OMG, “Corba component model
specification,” 2006. [Online]. Available: http://www.omg.org/spec/
CCM/4.0/PDF

M. Leclercq, V. Quéma, and J. Stefani, “Dream: a component frame-
work for constructing resource-aware, configurable middleware,” IEEE
Distributed Systems Online, vol. 6, no. 9, 2005, p. 1.

P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis,
“The runes middleware: A reconfigurable component-based approach
to networked embedded systems,” in 2005 IEEE 16th International
Symposium on Personal, Indoor and Mobile Radio Communications,
vol. 2, 2005, pp. 806-810.

J. Magee, J. Kramer, and M. Sloman, “Constructing distributed systems
in conic,” IEEE Transactions on Software Engineering, vol. 15, no. 6,
1989, pp. 663-675.

J. Kramer, J. Magee, M. Sloman, and N. Dulay, “Configuring object-
based distributed programs in rex,” Software Engineering Journal,
vol. 7, no. 2, 1992, pp. 139-149.

J. Kramer, “Configuration programming-a framework for the devel-
opment of distributable systems,” in COMPEURO’90: Proceedings
of the 1990 IEEE International Conference on Computer Systems
and Software Engineering-Systems Engineering Aspects of Complex
Computerized Systems. IEEE, 1990, pp. 374-384.

J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-osgi: distributed
applications through software modularization,” in Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware.
Springer-Verlag New York, Inc., 2007, pp. 1-20.

H. Li and Z. Wu, “Research on distributed architecture based on soa,”
in 2009 International Conference on Communication Software and
Networks, pp. 670-674.

M. Turner, D. Budgen, and P. Brereton, “Turning software into a
service,” Computer, vol. 36, no. 10, 2003, pp. 38—44.

J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, 2014, pp. 3-9.

Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting
concurrent applications in wireless sensor networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 139—
152. [Online]. Available: http://doi.acm.org/10.1145/1182807.1182822

S. Munir and J. A. Stankovic, “Depsys: Dependency aware integration
of cyber-physical systems for smart homes,” in 2014 ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), pp. 127—
138.

G. Anders and P. Lehner, “Self-Organized Graph-Based Resource
Allocation,” in Self-Adaptive and Self-Organizing Systems (SASO),
2016 IEEE 10th International Conference on, Sept 2016.

S. H. Clearwater, Market-based control: A paradigm for distributed
resource allocation. World Scientific, 1996.

H. Klus, A. Rausch, and D. Herrling, “DAiSIDynamic Adaptive System
Infrastructure: Component Model and Decentralized Configuration
Mechanism,” International Journal On Advances in Intelligent
Systems, vol. 7, no. 3 and 4, 2014, pp. 595 — 608. [Online]. Available:
http:sse-world.deindex.phpdownloadfileviewinline370

42

