
Memory-Map Shuffling: An Adaptive
Security-Risk Mitigation

Pierre Schnarz∗, Joachim Wietzke†, Andreas Rausch∗
∗Software Systems Engineering

Technische Universität Clausthal, Germany
Email: {pierre.schnarz—andreas.rausch}@tu-clausthal.de

†Hochschule Karlsruhe, Karlsruhe, Germany
Email: joachim.wietzke@hs-karlsruhe.de

Abstract—Automotive products, such as electronic control units,
evolve increasingly towards adaptive solutions. From many per-
spectives, solutions need to be flexible with regards to the entire
originating process and operation process. Here, the product
development cycle, the product life-cycle and even product lines
describe the dimensions a solution might have to adapt to. Certain
requirements to secure the product continuously add further
complexity to the aforementioned dimensions. Adversaries adapt
- so the protection shall as well. However, adapting, particularly,
technical solutions to products, implies the need for agnostic
approaches. In this article, we propose a security-risk mitigation
concept which aims to fit into the evolving automotive originating
process applied to a particular class of electronic control units.
Technically, the proposed approach shuffles the system memory-
map of an asynchronous multiprocessing system. On the interme-
diate layer between the hardware and software, the assignment
of memory and resources is obfuscated to a potential adversary
who managed to breach one of the higher level memory protection
mechanisms. As a result, the proposed mitigation adds either a
further level in a defense-in-depth security architecture or fixes
a structural vulnerability of certain hardware architectures.

Keywords–Security; Mixed-Criticality; Obfuscation; Automotive.

I. INTRODUCTION

When it comes to automotive security, hardened electronic
control units (ECU) are required to resist the emerging threat
and attack landscape [1] [2]. Being resistant to threats and
attacks is a continuous process. This is motivated by the
fact that the adverse actions and methods against the system
evolve over time. In other words, the adversaries change and
find new methods, entry-points and tools to compromise a
particular system. As a result, the risks that are related to the
functionality of the system would increase. New countermea-
sures are necessary to limit the likelihood of an impact on
safety, financial, operational or privacy aspects [3] [4]. The
mentioned continuous process of reacting to the evolving secu-
rity incidents has multi-dimensional impacts on the origination
process of automotive products. These dimensions include: the
product life-cycle including the development life-cycle and
on a larger scale the product-line evolution. The technical
goal of a security mitigation is the reduction of a security-
risk. Besides that, the mitigations are required to fit into
the aforementioned adaptive origination process. Depending
on the particular phase in which a certain product faces the
need for risk mitigation, the range of immutable (or static)
system components might be wide. For example, changes to
the hardware are nearly impossible after the start of production

(SOP). As a result, changes to the software components of a
product are targeted.

Adaptivity, the evolutionary environment and cost reduc-
tions are just a few arguments to move vehicular functions into
a highly integrated platform (such as ECUs). The results are
very powerful but complex systems. Important is the aspect of
mixing functions which imply diverse system quality demands.
For example, a single platform aggregates functions which on
the one hand operate break-assistance features and infotain-
ment in parallel. Such systems are usually referred to as mixed-
criticality systems (MC-system) [5]. From an organizational
point of view, these functions are required to operate as they
did on separated ECUs before. This is particularly true for
security. In particular, the separation and isolation aspects
are key in such environments. It must be ensured that no
interference between certain functions is possible. However,
for example in security, the strength might need to be adapted
over time due to the emerging threat landscape. This is even
more important, since the functions will be adapted over the
product-lifetime.

In this work, we propose a technical mitigation concept
which is adaptable to highly integrated platforms. The concept
is also driven by the evolutionary automotive product orig-
ination landscape. Technically, the mitigation approach aims
to protect memory partitions, of certain functions, from ex-
ploitation. This is achieved by shuffling of address translation
mappings of commodity virtualization mechanisms. Due to the
obfuscated memory structure, the risk of further compromisa-
tion is mitigated. Metrics to characterize the exploitability [6]
and effectiveness [7] are given.

In section V the memory-map shuffling concept is intro-
duced and analyzed. The rest of the article is structured as
follows. In section III the target of evaluation (ToE) is defined.
In the following sections the threat analysis (compare Section
IV) and the particular attack vectors (compare Section IV-B)
are described. Section VI gives an outline of the effectiveness
of the given approach. Lastly, section VII contains concluding
remarks.

A. Related Work
The idea of obfuscating addresses is not new in certain

areas. On application level, address obfuscation is adopted
by many operating systems. Particularly, in general purpose
operating systems such as Linux, Windows and Mac OSX this
technique is actually state-of-the art. As of today, this is said to
be one of the most effective countermeasures against memory

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

exploits. Recent efforts brought that technique down to the
system level, by randomizing the operating system’s (OS)
kernel address space [8]. In Linux, for example, the developers
aimed for a significant increase of system security by making
attacks into the monolithic kernel space less predictable for
adversaries. In [9] Bhatkar et al. describe address obfuscation
as an efficient approach to combat memory error exploits.
The authors argue that these attacks require an attacker to
have an in-depth understanding of the internal details of a
victim program, including the locations of critical data and/or
code. Therefore, program obfuscation is a general technique
for securing programs by making it difficult for attackers to
acquire such a detailed understanding. Kil et al. extend in
[10] the idea of address space layout permutation to enable
a finer grained randomization. Generally, they address one of
the biggest drawbacks of current address space randomization
implementations, namely the lack of a cryptographic secure
entropy. Possible adversaries are able to guess the locations
statistically in a very short amount of time, since the number
of bits used for randomization is very limited. The permutation
of address layouts facilitate to combat attacks using techniques
such as buffer-overflows, format string attacks and code re-
usage attacks like return oriented programming (ROP). In
[11] Shuo et al. introduces a method to utilize hardware
virtualization in order to prevent ROP attacks within the kernel.
In [12] Rushanan et al. elaborate on the concept of malicious
behavior based on direct memory access (DMA) transfers. The
attacks are implemented using commodity desktop hardware.
Although the implementation is not applicable to embedded
hardware, the DMA issue is transferable to the attack surface
of embedded system-on-chips (SoC).

II. SECURITY OF EVOLVING AUTOMOTIVE PRODUCTS

The issue of securing products depends on the evolutionary
state inside the product life-cycle (PLC) or outside within
the product-line. Generally, the PLC is mainly focused on
when it comes to security processes. PLCs of automotive
products are roughly dividable into two main phases. First,
in the pre-SOP phase, the product will be developed using
a suitable development cycle, such as the v-model. Second,
in the post-SOP phase, the product needs to be maintained.
From the security perspective, two major goals are spread
over these two phases. The first goal is to create a state in
which the system can be treated as secure. In other words,
to be aware of risks in the first place and to mitigate or
accept them in the second. The second goal is to keep a
certain risk threshold in which the system is still in this secure
state. Most commonly, the applied method to find security
requirements in the pre-SOP phase is risk assessment [3].
For every function the system has, a potential impact and
likelihood will be analyzed. With respect to the particular risk,
a risk treatment phase follows and the specific strategies to
mitigate those risks will be defined. Those mitigations are
fed as logical requirements and technical requirements into
a system design. In the verification and validation phase of
the v-model, appropriate security testing methods are applied
to raise confidence in the absence of severe vulnerabilities.
Security testing methods include fuzzing (negative testing) and
penetration testing. In other words, during the development,
the foundations for determining the security requirements are
built accompanied by techniques to gain confidence in the
derived logical and technical security architecture. During the

post SOP phase, the system should be observed. If an incident
occurs a proper response should be initiated. Accordingly, if
this response requires a security update (software) the devel-
opment of this update will traverse the secure development v-
model for the new function. Limiting factors for the upcoming
security mitigations are immutable components of the system
which might be functional or technical. A prominent example
is the hardware platform which is obviously hard to modify
once it is deployed. However, this immutability is not only true
for products that are already deployed, as practically within
product lines the engineering strategy such as top-down and
bottom-up might also imply further restrictions. For example, a
hardware platform is to be integrated (bottom-up) for a certain
set of software functions. Some of the functions then need to
be fitted and developed onto (top-down) the hardware platform.
This also implies restrictions for security solutions. This might
appear in many reuse situations in automotive product line
development. To summarize, security solutions need to fit into
this evolving landscape.

III. MIXED-CRITICALITY SYSTEM

Mixed-criticality systems integrate multiple organizational
domains (MC-domains), each of which potentially has differ-
ent demands on the necessity (criticality) of the fulfillment
of quality goals. Quality goals are for example dependability
aspects, performance, etc. [13]. MC-domains are facilitated by
combining several functional and technical components of a
system. As an example, technically it might contain a software
stack including OS, containers and applications. The technical
implementation of the MC-system is discussed in the following
section.

A. Facilitate MC-systems by Means of AMP
Where the definition of MC-systems describes a func-

tional and logical setup, AMP refers to the technical part.
In general, AMP is a system utilization paradigm which
aims to control hardware elements independently by multiple
operational units. As such, AMP systems can facilitate a MC-
system by assigning technical means at the hardware level
and software level. In other words, it is a configuration of
the hardware to create the logical layers on top of it. In the
following, this level is referred to as the intermediate level. As
mentioned in Section III, the separation of functionality is a
fundamental requirement to implement a proper MC-system.
From the hardware level up to the application level, there are
several technical possibilities to create a logical separation.
Technically, each layer of a system provides means to create
separated domains. For example, applications are separated
most commonly in processes and threads which are provided
by the OS. At the lower architectural layers, virtualization
technologies emerge within the automotive environment. The
aim is to combine multiple OS in one platform [14] [15].

B. Target of Evaluation
In this work, the target of evaluation (ToE) adopts the AMP

paradigm and facilitates a MC-system on the intermediate
level. In Figure 1 the ToE is depicted. It shows two MC-
domains, MC-domain1 in red color and MC-domain2 in blue
color. The figure indicates a software stack assigned to each of
the two domains. Furthermore, the hardware layer is modeled.
It shows a minimalistic set of elements of a commodity

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

Memory
Part1 Part2

PE1 PE2

MMU(2nd)

Software
Stack1

Software
Stack2

MC-domain 1 MC-domain 2

Communication Architecture

Figure 1. Target of evaluation.

SoC. The elements inlcude processor cores such as processing
elements (PE) (denoted by PE1 and PE2), a communication
architecture and main memory. PE1 is assigned to MC-
domain1. Accordingly, PE2 is assigned to MC-domain2. Each
Mc-domain includes its own memory partitions, which are
denoted by Part1 and Part2.

C. Memory-Maps in AMP Based Systems
In an AMP system, typically three types of addresses

are handled. First, the virtual address (VA) space at user
level which is maintained by the operating system to provide
horizontal memory separation of processes. Second, the phys-
ical address (PA) space which represents the address of the
main-memory. Last, the intermediate physical address (IPA)
space which is introduced to be able to separate the MC-
domains (or virtualized OS). The translation from VA to IPA is
referred to as stage 1 translation and those from IPA to PA as
stage 2 translation respectively. Depending on the particular
implementation of the PE the translation is handled by a
memory management unit (MMU) in hardware. The structure
which is used to identify corresponding addresses is referred
to as a mapping table filled with a finite set of translation
entries. In the translation process, the MMU extracts the most
significant bits of the input address to index the translation
table. The output address resides at the given index. In practice,
those entries map to a specified amount of memory which
is commonly referred to as a memory page. The granularity
differs among hardware architectures. A simplified example of
a typical address map is shown in Figure 2. The figure shows
the entire PA space (PA) on the bottom. Above, the IPA stage
mapping is depicted. The relationship between the two address
stages represents the actual mapping. In this case, the so-called
identity mapping is shown. Identity mapping means that there
is no translation (or redirection) of memory addresses between
stage 1 and stage 2. The MMU is only used for memory
protection in this case.

D. Memory Access Control
Accesses to the distinct hardware elements is enforced by a

MMU. Since this work focuses on access control, other means
such as interrupt routing are not considered any further. In this
type of AMP-based system, the access control is configured
by the memory-map table of the particular MMU. In Figure
3 the access control principle for the intermediate level is
shown. The PE are considered to be the subjects requesting

IPA

PA

MC-domain1
page

MC-domain2
page

VA

Figure 2. Identity memory-mapping principle.

access to a certain memory area. In this case, those memory
areas are the partitions (Part1 and Part2 shown in Figure 1)
and therefore the accessed objects. The MMU enforces the
memory accesses. The access control policy is manifested in
the memory-map. An important prerequisite is that the MMU
memory-map, in this particular case a second-stage MMU,
must not be accessible by any of the MC-domains itself.
This must be handled by a higher privileged instance. Most
commonly this is referred to as the hypervisor.

IV. THREAT AND ATTACK ANALYSIS

Threat and attack analysis facilitates two core methods
to identify and rate security risks. Threat analysis aims for
structured decomposition of systems and the derivation of
security threats [16]. A commonly accepted and applied threat
model is STRIDE (spoofing, tampering, repudiation, informa-
tion disclosure, denial-of-service and elevation of privilege)
which is shown in [17]. Depending on the system element,
a particular subset of the previously mentioned threats is
applicable. Attack analysis is an offensive method which
aims to foresee and factorize the behavior of an adversary.
During the assessment, the minimum effort to exploit a specific
component of the system is to be estimated. A qualitative
and quantitative statement (risk) results in the exploitability
estimation with regard to a particular threat. The exploitability
factors which are applied in this work are adopted from
the common vulnerability scoring system [6]. The ontology
between the threats and attacks are adopted from the risk model
given in [7]. To summarize up, the threats are a functional
categorization of security risks. Whereas, attacks refer to the
technical facilitation of a certain threat category.

A. Threat Landscape and Memory Asset
In the first place, our work focuses on tampering threats

on the memory partitions of the MC-domains. With regard to
the example given in Figure 3 one MC-domain tampers with
the memory partition (Parti) of another domain. Despite, the
compromising the integrity of main memory can be the root-
cause for further or even more advanced threats. It is worth to
mention, that tampering might lead to elevation of privileges
or one subsequent step of spoofing a communication link to
another entity. Even though denial-of-service attacks can be
mounted by tampering with the memory base of a system. This
is motivated by the fact, that software intensive systems rely on
their code and data base stored in the main memory. Tampering
with that does not only compromise and modify information,
but also the control flow integrity of their function. Meaning,
by having the ability to deliberately change the control flow,
an adversary might gain full or partial control of the vehicle’s

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

behavior. Impacts on safety and operation of the entire vehicle
are severe. As a result, memory storage is an important asset.

B. Attack Vector
As it is mentioned before, the factorization of attacks gives

insight on the exploitability of a particular threat. Technically,
it shall be assumed that an unintended access to main memory
is caused by a defect or vulnerability. Accordingly, in this
section, we elaborate on potential breaches. In the following,
the potential preconditions are elaborated. Ultimately, this
work considers attacks at the intermediate level. However,
in order to mount exploits on this level, the adversary is
required to break into the system first. There must be an entry
point for the attacker. In ECUs of a vehicle, this might be
facilitated by external telematic interfaces, internal vehicular
buses or entertainment media. A comprehensive analysis of
vehicular attack surfaces is shown by Checkoway et al. in
[18]. Once the adversary has successfully entered the system
further exploits might be necessary to break the memory
access control. We assume that the adversary needs to break
several levels before he reaches the intermediate layer. For
example, if he succeeded to take over an application he needs
to elevate his privileges towards OS level. This might be done
via a root/kernel exploit [19]. Once the adversary reached
the intermediate layer the memory access control mechanisms
(compare Figure 3) need to be exploited. By compromising
or circumventing these isolation controls, the main memory
then is fully exposed to further exploitation. As an example, in
various experiments, it has been demonstrated that state-of-the-
art multiprocessor SoCs running AMP-based multi operating
systems imply architectural weaknesses in memory protection
[12] [20] [21] [22]. This flaw suffers mostly from insufficient
hardware support for throughout system isolation. In addition,
the fixed and static memory layout at the intermediate system
level provides a wide surface for attacks. If an adversary
successfully circumvented the memory protection, the static
memory configuration enables an attacker to aim for partic-
ular data or information contained in the memory. Once the
memory isolation is breached, the adversary has full access to
the memory. Before the attacker can manipulate the data or
the code he must locate its target structure within the memory
space. Since multiple MC-domain partitions are present in the
main memory, the attacker first needs to determine the base
address of it’s targeted partition. Starting from this offset, the
re-interpretation of OS memory structures can be initiated. Re-
interpreting the kernel structure is a broad research field of
computer forensics, for example by Andrew Case et al. [23].
By assuming a consecutive memory structure the attack can
follow references within those structures until the target is
found. In addition to the re-interpretation of the structures,
the attacker could simply scan for specific binary patterns or
so-called magic bytes to reach its target structure.

C. Attack Complexity
With respect to the metrics in [6] the following aspects

refer to the exploitability. The required entry attack vectors and
required privileges are discussed in the previous section. With
regards to the complexity of the attack, the attacker does not
need to conduct a target-specific reconnaissance. The system
configuration is considered to be static due to the fixed memory
mapping. There is no intended variation from target to target.

MMU(2nd)

PE1 PE2

Memory

Manifest
(Mem-Map)

Subject

Part1 Part2 Object

Enforce-
ment

Figure 3. Access control at intermediate level.

As a result, once an adversary is able to breach the memory
protection for one system, the concept is applicable to other
systems in the product-line or vehicle fleet.

D. Scope and Elevation of Privilege
Due to its nature, memory protection breaches allow a wide

range of impacts on security goals. In this particular case, the
adversary is able to conduct control flow integrity attacks and
elevate the privileges of certain functions of the system. This
implies a change of scope [6], meaning the attacker is not only
able to control the targeted function but also further assets from
this position.

E. Impact to General Security Goals
With the herein assumed attack vectors a potential ad-

versary is able to disclose information from the system and
to tamper with the integrity of the information contained or
used by the respective criticality domains. The availability is
not directly affected by the given attacks. However, due to
the change-of-scope (compare with Section IV-D), denial-of-
service attacks might be conducted by further exploitation as
well.

V. MEMORY-MAP SHUFFLING

In this work, we propose a concept to increase the effort
of localizing and predicting the attack target structure in the
main memory. We aim to elaborate the certain aspects with
regards to concept, implementation aspects and integration.
Furthermore, we discuss aspects of the effectiveness of our
approach. The obfuscation of address layouts is a method
to increase the difficulty of exploiting vulnerabilities. Using
this technique it is more difficult for an attacker to determine
the location of memory structures. Address space obfuscation,
which is often referred to as Address Space Layout Random-
ization (ASLR), was originally implemented for user-space
applications. It added an artificial diversity of the memory
locations of the applications Stack, Heap and linked libraries
and positions within a process’s address pace. Thus, the ex-
ploitation of buffer-overflow and format-string vulnerabilities
became harder.

The core concept aims to create a random permutation
of a translation table. However, beyond identifying a proper
permutation procedure the concept builds on certain aspects
relevant to the target environment. Architectural or technical
constraints are relevant as well as procedural prerequisites. In
Figure 4 an overview of the causal dependencies of the concept
is shown. Usually, the AMP system configuration consists of
several configurations to produce the IPA system mapping.
These configurations include a board support package (BSP)
which describes the SoC hardware element utilization, the

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

AMP System
Configuration

Create Linear
Mapping in
IPA Space

Obfuscated
Physical
Address

Translation
Mapping

Permutation
Procedure

Figure 4. Overview of the obfuscation concept.

device assignments to split the peripherals, and the main
memory partitions for the OS-layer instances. This information
will be transferred into the suitable mapping table. This pre-
initialized mapping will then be processed by a permutation
procedure which outputs a random physical address map.

A. Obfuscation Concept

The concept aims to place the physical addresses in such
a manner that without the knowledge of the mapping table an
adversary cannot reconstruct the entire memory structure of a
memory partition. That means, after the access control breach
the attacker is able to jump to and access every position in main
memory. Nevertheless, at PA level it cannot be differentiated
to which MC-domain the memory pages belong. Furthermore,
the order of pages is not sequential after the obfuscation.
According to the ToE, Figure 5 visualizes the principle. To
summarize up, the obfuscation takes effect in two dimensions.
First, the page assignment and second, the sequential order of
the pages. Our exemplary system consists only of two MC-
domains. With a decreasing number of domains, the effect of
the obfuscation rises.

B. Permutation Procedure

The core of the obfuscation concept is the algorithm
to produce the permutation of the address mappings. The
procedure of randomizing the address space can be compared
to a shuffle of a deck of cards. Therefore, in order to transport
the overall approach, we chose the shuffling algorithm by
Fisher and Yates [24]. The Fisher-Yates shuffle is simple and
fits well to produce random permutations of finite sets. In this
particular case, the finite set is the translation table which was
previously created by the initialization process. The translation
table is denoted as a finite set TT of mapping entries E.

TT = {E1, E2, ..., En} (1)

Each entry redirects an intermediate input address to its
corresponding output address range. We assume TT is initial-
ized with an identity mapping, which means each intermediate
address is equal to the physical address IPA = PA. The entries
of the set would then be arranged as follows:

TT = {PA0x000000001, PA0x0000000040, ..., PAn} (2)

The Fisher-Yates algorithm is shown in Algorithm 1. It
iterates through TT and swaps the entry in the current position
with a random position. The random position is determined by
a randomization function which draws values out of a specified
range.

Algorithm 1 Memory-Map Table Shuffle

for all TT[] do
random ⇐ random number such that 0 ≤ random ≤
range
swap TT[random] and TT[current]

end for

C. Assumptions and Requirements
One of the key elements of the shuffling algorithm or the

permutation algorithm is a suitable random number generator.
As shown in Listing 1 a discrete random number from a
specified range (0 ≤ randomNumber ≤ Range) is drawn.
As a prerequisite, we assume a cryptographic secure random
number generation providing sufficient entropy. The required
entropy depends on the granularity of page mappings of
the system. In other words, the total number of entries in
TT . Furthermore, we require that the generated numbers are
still non-biased after truncating them to the specified range.
Performance plays an important role since this approach will
be integrated into a timing critical environment. Every time
the system is reset the memory mapping will be randomized.
Therefore, the algorithmic complexity must be kept to a
minimum so the start-up phase of the device is not significantly
delayed.

VI. DISCUSSION

With respect to the characteristics given in the threat and
attack analysis, this section discusses the effectiveness of the
given approach.

A. Effect on the Attack Complexity
By applying the random permutation at the intermediate

physical address mappings, the physical memory structure is
obfuscated. Exploits like those referenced in the threat scenario
would fail. However, adversaries would adapt to the newly
introduced circumstances and try to de-obfuscate the memory
map. In reference to crypto analysis, nevertheless, a reasonable
way to evaluate the effectiveness of this kind of statistical
security control is to estimate the effort to break it. In general,
we assume two approaches to compromise a permuted address
mapping. Either the attacker scans the whole main memory
for a page he is looking for or applies statistical analysis
to the permutation procedure. The former approach makes it
necessary to assume that the attacker is able to scan the whole
main memory. Furthermore, he needs an evaluation function
that determines whether or not the current scanned page is the
one he was looking for. This is what we also described in our
threat scenario, however, the adversary now has to deal with
the fragmentation of binary patterns. By applying this brute-
force attack, the attacker needs to scan half of all left pages on
average to find the next designated page. In other security fields
such as cryptography, the strength of a certain function, such
as encryption, is hard to define using discrete methods. Statis-
tical analysis or complexity estimations on the randomization
output forms the second approach to de-obfuscate the mapping
table. This mathematical problem is comparable to the crypto-
analysis of ciphertext. Concepts like known-chiphertext and
chosen-plaintext attacks can reveal algebraic weaknesses of
the implemented algorithms. Hence, the cryptographic secure
implementation of those procedures is the key to preventing

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

IPA

PA

MC-domain1
page

MC-domain2
page

Figure 5. Principle of randomized memory assignment.

such information leakage. The proposed concept implies an in-
depth target-specific reconnaissance in order to de-obfuscate
the system mappings. Since the mappings are randomized on
each system individually and change over time, given exploits
are not directly applicable to a range of systems.

B. Change of Scope
The proposed approach does not influence the ability to

change the scope (such as elevation of privileges) of the target.
Once the adversary succeeds in overcoming the complexity of
the obfuscation, the scope change is still possible.

C. Protection of Confidential Information
Protecting the integrity or even the control flow integrity

in breached environments is the major target of the given
approach. Nevertheless, the disclosure of information is also
possible. Although, the adversary has increased effort to find
the targeted information. Reading the data then does not further
impact the system. In other words, the de-obfuscation could be
done offline with increased resources and without interfering
with the system. As a result, the rearrangement of data is not
sufficient to protect from information disclosure.

VII. CONCLUSION

The evolving nature of automotive origination processes
such as product-lines and product life-cycles imply special
needs of the created products. This is particularly true for the
analysis and definition of security mitigations. In this article,
we proposed a concept to mitigate the effects of breaching the
hardware memory protections of automotive mixed-criticality
systems. The particular technique to implement the multiple
compartments for the distinct criticality domains is asymmetric
multiprocessing. This technique implies a static system con-
figuration on runtime. In the threat and attack analysis, we
identified that this can be misused to mount direct-memory-
access-based attack vectors. The proposed mitigation approach
aims to obfuscate the intermediate address mapping based
on the introduction of random permutations of a normal,
continuous memory-map arrangement. This adds complexity
and raises the exploitation effort for adversaries. This approach
is applicable to hardware architectures utilizing memory-maps
and two-staged memory management. As such, it contributes
to a through defense-in-depth security architecture applied to
the automotive landscape.

REFERENCES

[1] D. Spaar. (2015, Feb.) Beemer, open thyself! - security
vulnerabilities in bmw’s connecteddrive. [Online]. Avail-
able: http://www.heise.de/ct/artikel/Beemer-Open-Thyself-Security-
vulnerabilities-in-BMW-s-ConnectedDrive-2540957.html

[2] A. Greenberg. (2015, Jul.) Hackers remotely kill a jeep on the
highway—with me in it. [Online]. Available: https://www.wired.com/
2015/07/hackers-remotely-kill-jeep-highway

[3] S. International, “Sae j3061, cybersecurity guidebook for cyber-physical
vehicle systems,” SAE International, 2016.

[4] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and
B. Weyl, “Security requirements for automotive on-board networks,” in
9th International Conference on ITS Telecommunications (ITST). IEEE,
2009, pp. 641–646.

[5] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE, April 2010, pp. 13–
22.

[6] S. Hanford, “Common Vulnerability Scoring System v3.0: Specification
Document,” pp. 1–21, Jul. 2015.

[7] J. Freund and J. Jones, Measuring and Managing Information Risk: A
FAIR Approach. Butterworth-Heinemann, 2014.

[8] J. Edge, “Kernel address space layout randomization,” Linux Security
Summit, Oct. 2013. [Online]. Available: http://lwn.net/Articles/569635/

[9] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error
Exploits.” USENIX Security, 2003.

[10] C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning, “Address Space Layout
Permutation (ASLP): Towards Fine-Grained Randomization of Com-
modity Software,” 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06), pp. 339–348, Dec. 2006.

[11] H. Y. Tian Shuo and D. Baozeng, “Prevent Kernel Return-Oriented
Programming Attacks Using Hardware Virtualization,” LNCS 7232, pp.
1–12, Mar. 2012.

[12] M. Rushanan and S. Checkoway, “Run-DMA.” 9th USENIX - Workshop
on offensive technologies (WOOT), 2015.

[13] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Sys-
tems and software Quality Requirements and Evaluation (SQuaRE) -
System and software quality models,” Tech. Rep., 2010.

[14] Y. Kinebuchi, T. Morita, K. Makijima, M. Sugaya, and T. Nakajima,
“Constructing a Multi-OS Platform with Minimal Engineering Cost.”
IESS, vol. 3, no. Chapter 18, pp. 195–, 2009.

[15] J. Porquet, C. Schwarz, and A. Greiner, “Multi-compartment: a new
architecture for secure co-hosting on SoC,” System-on-Chip, pp. 124–
127, 2009.

[16] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack,
“Uncover security design flaws using the STRIDE approach,”
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx, 2010.

[17] A. Shostack, Threat modeling: Designing for security. John Wiley and
Sons, 2014.

[18] S. Checkoway, D. McCoy, B. Kantor, D. Anderson et al., “Comprehen-
sive experimental analyses of automotive attack surfaces.” in USENIX
Security Symposium. San Francisco, 2011.

[19] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, “Linux kernel vulnerabilities: State-of-the-art defenses and
open problems,” in Proceedings of the Second Asia-Pacific Workshop
on Systems. ACM, 2011, p. 5.

[20] P. Schnarz, J. Wietzke, and I. Stengel, “Towards attacks on restricted
memory areas through co-processors in embedded multi-os environ-
ments via malicious firmware injection,” in Proceedings of the First
Workshop on Cryptography and Security in Computing Systems. ACM,
2014, pp. 25–30.

[21] P. Schnarz, J. Wietzke, and I. Stengel, “Co-processor aided attack on
embedded multi-os environments,” in International Conference on IT
Convergence and Security (ICITCS). IEEE, 2013, pp. 1–4.

[22] J. Danisevskis, M. Piekarska, and J.-P. Seifert, “Dark side of the
shader: Mobile gpu-aided malware delivery,” in Information Security
and Cryptology–ICISC 2013. Springer, 2014, pp. 483–495.

[23] A. Case, L. Marziale, and G. G. Richard, “Dynamic recreation of kernel
data structures for live forensics,” Digital Investigation, vol. 7, pp. S32–
S40, 2010.

[24] R. A. Fisher, F. Yates et al., “Statistical tables for biological, agricultural
and medical research.” Statistical tables for biological, agricultural and
medical research., no. Ed. 3., p. 90pp, 1949.

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

