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Abstract—This work in progress targets the identification of
bilinear forms using fast converging adaptive algorithms. In
this framework, the bilinear term is defined with respect to
the impulse responses of a spatiotemporal model. Recently, the
recursive least-squares algorithm tailored for bilinear forms
(RLS-BF) was introduced in this context, together with its low-
complexity version based on dichotomous coordinate descent
(DCD) iterations, namely RLS-DCD-BF. Aiming to improve the
robustness of the RLS-DCD-BF algorithm in noisy conditions, a
variable-regularized version is presented in this paper. Simulation
results indicate the appealing performance of this solution and
motivate our future works on multilinear forms.

Index Terms—adaptive filter; bilinear forms; recursive least-
squares; variable regularization; dichotomous coordinate descent

I. INTRODUCTION

The recursive least-squares (RLS) is the algorithm of choice
in many system identification scenarios [1]. The main reason
behind this popularity is its fast converging feature, while
the drawback consists of a high computational complexity.
However, there are several efficient solutions to reduce the
computational amount of the RLS algorithm, like the dichoto-
mous coordinate descent (DCD) method [2].

Nevertheless, the system identification problems become
challenging in case of a larger parameter space [3]. Such
approaches can be formulated in terms of the identification
of multilinear forms, while the solutions are based on multi-
dimensional adaptive algorithms. Currently, we focus on the
identification of bilinear forms, where the bilinear term is
defined with respect to the impulse responses of a spatiotem-
poral model [4]. Recently, the RLS algorithm tailored for
the identification of bilinear forms (RLS-BF) was developed,
together with its DCD-based version (RLS-DCD-BF) [5].

This work in progress is focused on two main directions.
First, in order to improve the robustness in noisy environments,
we present a variable-regularized (VR) version of the RLS-BF
algorithm (namely VR-RLS-BF), where the time-dependent
regularization parameters are adjusted so that the algorithm
can perform well in noisy environments. Second, we develop
low-complexity versions of the VR-RLS-BF algorithm based
on the DCD method. Simulation results show the good behav-
ior of the VR-based algorithms and open the path toward the
generalization of these solutions for multilinear forms.

The paper is organized as follows. Section II introduces
the system model and briefly presents the RLS-DCD-BF al-
gorithm [5]. Section III is dedicated to the variable regularized

versions of this algorithm. Simulation results are provided in
Section IV, while Section V concludes the paper.

II. RLS-DCD-BF ALGORITHM

In the framework of a real-valued bilinear model [4], the
reference signal (at discrete-time index n) is defined as

d(n) = hTX(n)g + w(n) = y(n) + w(n), (1)

where h and g are the two impulse responses of
the system (of lengths L and M , respectively),
X(n) =

[
x1(n) x2(n) · · · xM (n)

]
is the zero-

mean multiple-input signal matrix of size L × M ,
xm(n) =

[
xm(n) xm(n− 1) · · · xm(n− L+ 1)

]T
is a vector containing the L most recent time samples of the
mth (m = 1, 2, . . . ,M ) input signal, w(n) is the zero-mean
additive noise [which is uncorrelated with X(n)], and the
superscript T denotes the transpose operator. From (1), we
can define the signal-to-noise ratio (SNR) as SNR = σ2

y/σ
2
w,

where σ2
y = E

[
y2(n)

]
and σ2

w = E
[
w2(n)

]
are the

variances of y(n) and w(n), respectively, with E[·] denoting
mathematical expectation. The goal is to identify the two
impulse responses of the bilinear system (i.e., h and g) with
two adaptive filters, denoted by ĥ(n) and ĝ(n).

Following this approach, the estimated signal results in
ŷ(n) = ĥT (n− 1)X(n)ĝ(n− 1), while the error signal is

e(n) = d(n)− ŷ(n) = d(n)− ĥT (n− 1)X(n)ĝ(n− 1)

= d(n)− ĥT (n− 1)x̃ĝ(n) = d(n)− ĝT (n− 1)x̃ĥ(n), (2)

with the notation x̃ĝ(n) = [ĝ(n− 1)⊗ IL]
T
x̃(n) and

x̃ĥ(n) =
[
IM ⊗ ĥ(n− 1)

]T
x̃(n), where ⊗ is the Kro-

necker product, IL and IM are the identity matrices of
sizes L × L and M × M , respectively, and x̃(n) =[
xT
1 (n) xT

2 (n) · · · xT
M (n)

]T
. Following the least-

squares (LS) error criterion, the normal equations are [4]

Rĝ(n)ĥ(n) = pĝ(n), (3)
Rĥ(n)ĝ(n) = pĥ(n), (4)

where the terms from (3)–(4) can be recursively updated as

Rĝ(n) = λĥRĝ(n− 1) + x̃ĝ(n)x̃
T
ĝ (n), (5)

pĝ(n) = λĥpĝ(n− 1) + x̃ĝ(n)d(n), (6)

Rĥ(n) = λĝRĥ(n− 1) + x̃ĥ(n)x̃
T
ĥ
(n), (7)

pĥ(n) = λĝpĥ(n− 1) + x̃ĥ(n)d(n), (8)
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Table I. RLS-DCD-BF algorithm.

Initialization:

ĥ(0) =
[

1 0 · · · 0
]T

, ĝ(0) =
1

M

[
1 1 · · · 1

]T
Rĝ(0) = δIL, R

ĥ
(0) = δIM , r

ĥ
(0) = 0L×1, rĝ(0) = 0M×1

For n = 1, 2, . . .

Step 1: Rĝ(n) = λ
ĥ
Rĝ(n− 1) + x̃ĝ(n)x̃

T
ĝ (n)

R
ĥ
(n) = λĝRĥ

(n− 1) + x̃
ĥ
(n)x̃T

ĥ
(n)

Step 2: e(n) = d(n)− x̃T
ĝ (n)ĥ(n− 1) = d(n)− x̃T

ĥ
(n)ĝ(n− 1)

Step 3: p̃ĝ(n) = λ
ĥ
r
ĥ
(n− 1) + x̃ĝ(n)e(n)

p̃
ĥ
(n) = λĝrĝ(n− 1) + x̃

ĥ
(n)e(n)

Step 4: Rĝ(n)△ĥ(n) = p̃ĝ(n)
DCD
==⇒ △ĥ(n), r

ĥ
(n)

R
ĥ
(n)△ĝ(n) = p̃

ĥ
(n)

DCD
==⇒ △ĝ(n), rĝ(n)

Step 5: ĥ(n) = ĥ(n− 1) +△ĥ(n)

ĝ(n) = ĝ(n− 1) +△ĝ(n)

with λĥ (0 ≪ λĥ < 1) and λĝ (0 ≪ λĝ < 1) denoting the
forgetting factors. Using the matrix inversion lemma [1] to
update R−1

ĝ (n) and R−1

ĥ
(n), the RLS algorithm for bilinear

forms (RLS-BF) was developed in [5]. This algorithm has a
computational complexity proportional to O(L2 +M2).

In order to reduce the computational amount of the RLS-BF
algorithm, an efficient approach is based on transforming the
sequences of the normal equations (3)–(4) into a sequence of
auxiliary normal equations. These auxiliary normal equations
can be solved by using an efficient iterative technique, like
the DCD algorithm [2]. The resulting RLS-DCD algorithm
for bilinear forms (RLS-DCD-BF) is resumed in Table I.

The evaluation of the correlation matrices [i.e., Rĝ(n) and
Rĥ(n) in step 1] represents a computationally expensive step
of the RLS-DCD-BF algorithm. Exploiting the structure of
these matrices, two approximate versions of the RLS-DCD-BF
algorithm were proposed in [5]. The first one, namely RLS-
DCD-BF-v1, takes into account that x̃ĝ(n) owns (to some
extent) the time-shift property, especially in the steady-state,
when ĝ(n) ≈ ĝ(n−1). Consequently, since the matrix Rĝ(n)
is symmetric, only its first column could be computed, i.e.,

R
(1)
ĝ (n) = λĥR

(1)
ĝ (n− 1) + x̃ĝ(n)x̃

(1)
ĝ (n), (9)

where x̃
(1)
ĝ (n) denotes the first element of the vector x̃ĝ(n).

Moreover, the lower-right (L−1)×(L−1) block of Rĝ(n) can
be approximated by the (L− 1)× (L− 1) upper-left block of
the matrix Rĝ(n− 1). Thus, the computational complexity of
the RLS-DCD-BF-v1 algorithm is proportional to O(L+M2).

Similarly, under some strong assumptions [i.e., i) the co-
variance matrices of the inputs are close to a diagonal one
and ii) the input signals are independent and have the same
power], we can also assume that Rĥ(n) tends to a diagonal
matrix, so that it could be efficiently updated similar to (9).
Hence, a second version of RLS-DCD-BF algorithm results

(namely RLS-DCD-BF-v2), with a computational complexity
proportional to O(L+M).

III. VARIABLE REGULARIZED RLS-BF ALGORITHMS

The regularization process is essential in practice, taking
into account the presence of additive noise [6]. Here, we
consider the regularized RLS-BF algorithm, with the updates:

ĥ(n) = ĥ(n− 1) +
[
Rĝ(n) + δĥIL

]−1
x̃ĝ(n)e(n), (10)

ĝ(n) = ĝ(n− 1) +
[
Rĥ(n) + δĝIM

]−1
x̃ĥ(n)e(n), (11)

where δĥ and δĝ are the regularization terms. Alternatively,

ĥ(n) = Pĝ(n)ĥ(n− 1) + h̃(n), (12)
ĝ(n) = Pĥ(n)ĝ(n− 1) + g̃(n), (13)

where Pĝ(n) = IL −
[
Rĝ(n) + δĥIL

]−1
x̃ĝ(n)x̃

T
ĝ (n),

Pĥ(n) = IM −
[
Rĥ(n) + δĝIM

]−1
x̃ĥ(n)x̃

T
ĥ
(n), and

h̃(n) =
[
Rĝ(n) + δĥIL

]−1
x̃ĝ(n)d(n), (14)

g̃(n) =
[
Rĥ(n) + δĝIM

]−1
x̃ĥ(n)d(n). (15)

The vectors h̃(n) and g̃(n) are the correction components of
the algorithm, due to the dependency on d(n). Let us define

ẽĝ(n) = d(n)− h̃T (n)x̃ĝ(n), (16)

ẽĥ(n) = d(n)− g̃T (n)x̃ĥ(n), (17)

the error signals between the desired signal and the estimated
signals obtained from the filters optimized in (14)–(15). In
the context of system identification, the purpose is to recover
the noise signal from the error of the adaptive filter [6]. As a
consequence, we could find δĥ and δĝ in such a way that

E
[
ẽ2ĝ(n)

]
= E

[
ẽ2
ĥ
(n)

]
= σ2

w. (18)

At this point, let us assume that the covariance matrices of the
inputs are close to a diagonal one, i.e., E

[
xm(n)xT

m(n)
]
≈

σ2
xm

IL, m = 1, 2, . . . ,M ; also, let us consider that the input
signals are independent and have the same power, i.e., σ2

xm
≈

σ2
x, m = 1, 2, . . . ,M . In this context, we can show that

x̃T
ĥ
(n)x̃ĥ(n) ≈ Mσ2

x

∥∥∥ĥ(n− 1)
∥∥∥2, where ∥·∥ denotes the Eu-

clidean norm. Also, E
[
x̃ĥ(n)x̃

T
ĥ
(n)

]
≈ σ2

x

∥∥∥ĥ(n− 1)
∥∥∥2 IM .

Similarly, we obtain x̃T
ĝ (n)x̃ĝ(n) ≈ Lσ2

x ∥ĝ(n− 1)∥2 and

E
[
x̃ĝ(n)x̃

T
ĝ (n)

]
≈ σ2

x ∥ĝ(n− 1)∥2 IL. Therefore, for λĥ ≈
1− 1/L and λĝ ≈ 1− 1/M , we obtain (for n large enough):

Rĝ(n) + δĥIL ≈
[
Lσ2

x ∥ĝ(n− 1)∥2 + δĥ

]
IL, (19)

Rĥ(n) + δĝIM ≈
[
Mσ2

x

∥∥∥ĥ(n− 1)
∥∥∥2 + δĝ

]
IM . (20)
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Next, squaring and taking the expectations on both sides of
(16)–(17), then developing (18) based on (19)–(20), we obtain
two quadratic equations with the following solutions:

δĥ =
LE

[
∥ĝ(n− 1)∥2

] (
1 +

√
1 + SNR

)
SNR

σ2
x, (21)

δĝ =

ME

[∥∥∥ĥ(n− 1)
∥∥∥2] (1 +√

1 + SNR
)

SNR
σ2
x. (22)

The most problematic term in (21)–(22) is the SNR, taking
into account that the additive noise could be nonstationary
in real-world applications. However, in (1), the output signal
y(n) can be considered uncorrelated with the noise w(n).
Therefore, (1) can be expressed in terms of power estimates
as σ2

d = σ2
y + σ2

w, where σ2
d = E

[
d2(n)

]
is the variance

of the reference signal. Consequently, σ2
w = σ2

d − σ2
y . At this

point, let us assume that the adaptive filters have converged to a
certain degree, so that we can use the approximation σ2

y ≈ σ2
ŷ ,

where σ2
ŷ = E

[
ŷ2(n)

]
is the variance of the estimated signal

ŷ(n). Using this approximation, it results that σ2
w ≈ σ2

d − σ2
ŷ .

The power estimates can be recursively estimated as σ̂2
d(n) =

γσ̂2
d(n − 1) + (1 − γ)d2(n) and σ̂2

ŷ(n) = γσ̂2
ŷ(n − 1) +

(1 − γ)ŷ2(n), where 0 ≪ γ < 1. Therefore, an estimate of
the SNR results in ŜNR(n) = σ̂2

ŷ(n)/|σ̂2
d(n)− σ̂2

ŷ(n)|. Next,
since ĥ(n − 1) and ĝ(n − 1) are available at time index n,
the expectation operator can be omitted in (21)–(22). Thus,

using the notation s(n) =

[
1 +

√
1 + ŜNR(n)

]
/ŜNR(n),

the regularization terms from (21)–(22) result in

δĥ(n) = L ∥ĝ(n− 1)∥2 s(n)σ2
x, (23)

δĝ(n) = M
∥∥∥ĥ(n− 1)

∥∥∥2 s(n)σ2
x. (24)

Consequently, we obtain a variable-regularized RLS-BF (VR-
RLS-BF) algorithm, with the updates similar to (10)–(11), but
using the variable regularization parameters from (23)–(24).

Furthermore, the problem can be interpreted in terms of
solving the normal equations [1]:

Rĝ(n)ĥ(n) = pĝ(n), (25)

Rĥ(n)ĝ(n) = pĥ(n), (26)

where Rĝ(n) = R̂ĝ(n) + δĥ(n)IL, Rĥ(n) = R̂ĥ(n) +
δĝ(n)IM , and pĝ(n) and pĥ(n) are given in (6) and (8),
respectively. The normal equations (25)–(26) can also be recur-
sively solved using the DCD method [2]. Therefore, following
a similar approach (as presented in Section II), it results a low-
complexity version of the VR-RLS-BF algorithm based on the
DCD iterations, namely VR-RLS-DCD-BF; this algorithm is
summarized in Table II. Also, the computational complexity
in step 1 of the VR-RLS-DCD-BF algorithm can be reduced
based on (9). Similarly, two versions of the VR-RLS-DCD-BF
algorithm can be obtained, which are also indexed as v1 and
v2. The first one uses (7) and (9) in step 1 [i.e., an amount of
O(L+M2) operations], while the second one further reduces
the computational amount up to O(L + M), similar to the
RLS-DCD-BF-v2 algorithm.

Table II. VR-RLS-DCD-BF algorithm.

Initialization:

ĥ(0) =
[

1 0 · · · 0
]T

, ĝ(0) =
1

M

[
1 1 · · · 1

]T
Rĝ(0) = 0L×L, R

ĥ
(0) = 0M×M

r
ĥ
(0) = 0L×1, rĝ(0) = 0M×1

For n = 1, 2, . . .

Step 1: Rĝ(n) = λ
ĥ
Rĝ(n− 1) + x̃ĝ(n)x̃

T
ĝ (n)

R
ĥ
(n) = λĝRĥ

(n− 1) + x̃
ĥ
(n)x̃T

ĥ
(n)

Step 2: Compute δ
ĥ
(n) and δĝ(n) using (23)–(24)

Step 3: Rĝ(n) = Rĝ(n) + δ
ĥ
(n)IL

R
ĥ
(n) = R

ĥ
(n) + δĝ(n)IM

Step 4: e(n) = d(n)− x̃T
ĝ (n)ĥ(n− 1) = d(n)− x̃T

ĥ
(n)ĝ(n− 1)

Step 5: p̃
ĝ
(n) = λ

ĥ
r
ĥ
(n− 1) + x̃ĝ(n)e(n)

p̃
ĥ
(n) = λĝrĝ(n− 1) + x̃

ĥ
(n)e(n)

Step 6: Rĝ(n)△ĥ(n) = p̃
ĝ
(n)

DCD
==⇒ △ĥ(n), r

ĥ
(n)

R
ĥ
(n)△ĝ(n) = p̃

ĥ
(n)

DCD
==⇒ △ĝ(n), rĝ(n)

Step 7: ĥ(n) = ĥ(n− 1) +△ĥ(n)

ĝ(n) = ĝ(n− 1) +△ĝ(n)

IV. SIMULATION RESULTS

Simulations are performed in the framework of the bilinear
model described in Section II, in the context of a system
identification scenario. The two impulse responses of the
spatiotemporal system (h and g) are randomly generated, with
Gaussian distribution; the lengths are set to L = 64 and
M = 8. An abrupt change of the system is simulated in the
first two experiments, by generating two new random impulse
responses in the middle of simulations, in order to evaluate the
tracking capabilities of the algorithms. In the experiments, we
compare the performance of the RLS-DCD-BF, VR-RLS-BF,
and VR-RLS-DCD-BF algorithms. The same values of the
forgetting factors are used for all the algorithms, by setting
λĥ = λĝ = 1 − 1/(2ML). As a performance measure,
the normalized projection misalignment (NPM) [7] is used to
evaluate the identification of the individual impulse responses.

In the first experiment (Figure 1), we compare the perfor-
mance of the VR-based algorithms in moderate SNR con-
ditions, using SNR = 10 dB. The input signals are AR(1)
processes, where each one of them is generated by filtering
a white Gaussian noise through a first-order system with
the transfer function 1/

(
1− 0.8z−1

)
. All the DCD-based

algorithms use only one “successful” DCD iteration [2], which
is a significant gain in terms of computational complexity. As
we can notice in Figure 1(a), both VR-RLS-DCD versions (v1
and v2) perform very similar to the VR-RLS-BF algorithm.
However, it can be noticed a slower tracking reaction of the
VR-RLS-DCD-v2 [Figure 1(b)], due to the approximation
related to the matrix Rĥ(n), which is related to the spatial
filter ĝ(n). On the other hand, since the temporal filter ĥ(n)
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Figure 1. Comparison of the VR-based algorithms in terms of (a)
NPM

[
h, ĥ(n)

]
and (b) NPM [g, ĝ(n)]. The system changes after 5 sec-

onds. The input signals are AR(1) processes and SNR = 10 dB.
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Figure 2. Comparison of the VR-based algorithms in terms of (a)
NPM

[
h, ĥ(n)

]
and (b) NPM [g, ĝ(n)]. The system changes after 15

seconds. The input signals are speech sequences and SNR = 0 dB.

is not directly influence by this approximation, it behaves well
in case of the VR-RLS-DCD-BF-v2 algorithm [Figure 1(a)].

In the following, we focus on the performance of the VR-
RLS-DCD-BF algorithm, which is compared to the RLS-
DCD-BF algorithm (i.e., the “non-regularized” version). The
input signals are speech sequences. Thus, we do not include
in comparisons the v2 versions, since the assumption related
to the matrix Rĥ(n) is biased for nonstationary inputs.

In Figure 2, we consider low SNR conditions, by setting
SNR = 0 dB. It can be noticed that the VR-based algo-
rithms perform very similar. Nevertheless, the RLS-DCD-BF-
v1 algorithm achieves a slightly better tracking reaction, while
reaching a higher misalignment level.

Finally, in Figure 3, we assess the performance of the
algorithms in case of SNR variations. In the first 12 seconds,
we set SNR = 0 dB; then, the SNR drops to −25 dB for
the next 6 seconds. Nevertheless, the VR-based algorithms
are very robust in this case. Also, the VR-RLS-BF and VR-
RLS-DCD-BF-v1 perform very similar. As expected, the RLS-
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Figure 3. Comparison of the VR-RLS-BF, VR-RLS-DCD-BF-v1, and RLS-
DCD-v1 algorithms in terms of (a) NPM

[
h, ĥ(n)

]
and (b) NPM [g, ĝ(n)].

The SNR decreases from 0 dB to −25 dB between times 12 and 18 seconds.

DCD-BF-v1 algorithm is affected by the noise variation.

V. CONCLUSIONS AND FUTURE WORKS

In this work in progress, we have focused on the regular-
ization terms of the RLS algorithm for bilinear forms. First,
a method for finding the optimal regularization parameters
(depending on the SNR) was presented. Second, using a proper
evaluation of the SNR, a variable-regularized algorithm was
developed, together with two low-complexity versions based
on the DCD method. Simulations have shown that the VR-
based algorithms outperform their non-regularized counterpart,
mainly in terms of robustness against SNR variations.

Future works will focus on the extension of these solutions
in case of multilinear forms, by exploiting tensor-based adap-
tive algorithms. In this context, the decomposition methods
can be combined with low-rank approximations, aiming the
identification of more general forms of impulse responses.
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