
An Electrical Circuits e-Tutor based on Symbolic and Qualitative Analysis

Jason Debono
Institute for Electronics

Malta College for Science and Technology
Corradino, Malta

jason.debono@mcast.edu.mt

Adrian Muscat
Dept of Communications and Computer Eng.

University of Malta
Msida, Malta

adrian.muscat@um.edu.mt

Abstract—Numerical Time Domain electrical circuit simulators
are the de facto standard in industry and education.
Nevertheless circuits simulators based on symbolic or
qualitative techniques have been equally studied. These latter
techniques aim at simulating the mental models that an
experienced engineer taps when manually designing and
analysing a circuit. This paper describes the development of
two software tools based on symbolic and qualitative analysis
and their use as an electrical circuits eTutor is studied and
discussed. As a comparison the paper also investigates the
limitations and drawbacks of time domain electrical circuit
simulators when used as a pedagogical tool. The field tests are
carried out with the engagement of polytechnic teachers and
students at the higher national diploma level.

Keywords-Electrical; Circuits; eTutor; Symbolic; Qualitative,
Analysis.

I. INTRODUCTION
Most college, polytechnic and university electrical

circuit theory courses include theoretical as well as practical
sessions. The practical sessions are important for two
reasons; (a) students learn how to link theoretical models to
the real-life circuits, and (b) students learn how to carry out
the appropriate measurements using the right instrument.
These practical skills are indispensable for professional
engineers during the installation, testing and maintenance,
of electrical and electronics systems. However
instrumentation is generally expensive and its use is
restricted to labs. In this respect circuit simulators, such as
SPICE, augmented with a graphical schematic capture front
and back ends are very useful. With such elearning tools
students connect virtual components together using virtual
wires, choose and add virtual instruments to the circuit, and
finally, carry out a computer analyses or. The software
outputs the variables chosen or measurements as displayed
on the virtual instruments. Such measurements include
numerical values, like for example electrical current on a
virtual meter, and voltage waveforms on a virtual
oscilloscope. This type of eLearning software, widely
distributed among colleges and polytechnics helps students
in the acquisition of practical skills including the selection
of instrumentation. It also speeds up the process and reduces
the cost since there is no need for building the circuit in real
life. However it does not help the student in understanding

how the circuit works or how to design the circuit. On the
contrary, it encourages the student not to carry out a manual
or mental analysis.

Apart from practical skills, electrical engineering
students learn how to analyse and design electrical circuits.
Traditionally students have been taught how to analyse
electrical circuits using pen and paper through teh
application of the relevant theories, including Ohm’s Law,
Kirchhoff’s Current Law and Kirchhoff’s Voltage Law. As
explained above SPICE simulators were not specifically
designed to help students learn how circuits work,
consequently SPICE simulators have some serious
limitations when used as a pedagogical tool.

The electrical theories taught to students are an essential
part of the mental models that the students must develop.
Using these theories students can write down symbolic
(algebraic) equations that describe how the circuit being
analysed behaves. In contrast numerical simulators calculate
values iteratively, and this approach limits the
understanding and insight that the simulator can impart to
its user about how the circuit being analysed functions. In
the last few years symbolic simulators have been developed
that build the symbolic equations that describe the circuit
being analysed and display these equations explicitly.
Examples of recently developed symbolic simulators are
SAPWIN [1] and SNAP [2].

Additionally, accomplished engineers apply mental
models in what-if analysis to understand how a change in a
parameter at a point of the circuit affects the other
parameters of the circuit. A change in a parameter, like for
example the input voltage, is thought of as first influencing
the parameters of its neighbouring components and nodes.
In turn these varying parameters affect their own neighbours
and hence the changes propagate throughout the circuit.
This method of analysing a circuit was successfully
implemented in a software program in 1977 by Sussman
and Stallman, who termed this technique as the ‘Propagation
of Constraints’ [3]. The algorithm implemented by Sussman
and Stallman calculated the numerical values of voltages
and currents. In fact the mental models used by engineers
are usually more simplistic than this because the engineers
only consider the direction of change, that is, an increase, a
decrease or no change at all in the parameter’s value. In
other words the quality of the change is considered and not

21Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

the quantity of the change. This kind of reasoning has been
studied and formally applied to electric circuits and other
physical systems like thermodynamic systems in the field of
study entitled “Qualitative Physics”. In 1984 Johan De
Kleer implemented the Qualitative Analysis of electrical
circuits in a program he called EQUAL [4]. This program is
able to explain how a circuit works using qualitative
arguments and even categorize the circuit as being a power-
supply, logic-gate, amplifier or multivibrator.

In this paper two programs that target smaller scopes are
discussed. The first program accepts input circuits that are
made up of an arbitrary number of resistors and only one
battery. This program processes serial and parallel
connections of resistors. The second program accepts input
circuits that are made up of an arbitrary number of resistors,
voltage sources and current sources. The software tool then
tutors the user on how to select valid spanning trees and the
corresponding fundamental cutsets for the input circuit. The
symbolic Kirchhoff’s Current Law (KCL) equation for each
fundamental cutset is then generated by the program, which
the user or student can compare to his/her workings. Both
tools analyse the topology of the input circuit to accomplish
their respective type of analysis. The first program is targeted
to MQF level 4 students while the other program is to be
used by MQF level 5 students.

The rest of the paper is organised as follows: Section II
reviews circuit analysis techniques and section III reviews
numerical models in education. The tools developed are
described in section IV and the section V discusses results
and conclusions.

II. CIRCUIT ANALYSIS PARADIGMS
In this section five types of circuit analysis paradigms

are discussed, the nodal and loop analysis, graph theory in
electrical circuits, qualitative analysis, symbolic analysis
and the propagation of constraints.

A. Nodal and Loop Analysis
A circuit can be described by using either the mesh or

the nodal formulation. The mesh equations are based on
Kirchhoff’s Voltage Law (KVL), which states that the sum
of voltage drops along any closed loop is zero. On the other
hand, the nodal equations are based on KCL, which states
that the algebraic sum of currents leaving any node is zero.
A more general definition of KCL is that in any
fundamental cutset that separates the network into two parts,
the sum of the currents in the cutset edges is zero. If the
number of branches in the network is denoted by the letter b
and number of ungrounded nodes is denoted by the letter n,
then to solve a circuit; (a) the number of mesh equations
required is equal to b – n, and (b) the number of nodal
equations required is equal to n.

In general nodal analysis yields less equations than mesh
(loop) analysis and hence nodal analysis is usually easier to
carry out [5].

B. Graph Theory
Graph Theory is used in various ways to aid circuit

analysis, for example Signal Flow Graphs. This paper
focuses on the use of graph theory to analyze the topology
of electrical circuits, which is the study of inter-connected
objects represented by ‘edges’ in a graph. The points where
the end-points of edges touch together are formally called
‘vertices’ or ‘nodes’.

(a) (b)

Figure 1: (a) Example Circuit1, and (b) Graph of Example Circuit.

A graph is extracted from the schematic diagram of a
circuit by replacing the components with edges. For
example the graph shown in fig.1(b) is extracted from the
circuit shown in fig.1(a). A graph of an electrical circuit
contains more than one spanning tree, and from each
spanning tree a set of fundamental loops and fundamental
cutsets can be extracted.

1) Spanning Tree
A spanning tree of a graph is defined as any set of

connecting branches that connects every node to every other
node without forming any closed paths or loops [5].

(a) (b)

Figure 2: (a) Spanning Tree I, and (b) Spanning Tree II.

Fig.2(a) and fig.2(b) show two different spanning trees
for the graph shown in fig.1(b). Once a spanning tree has
been defined, the edges making part of the spanning tree are
referred to as branches. The remaining branches are referred
to as links or chords.

2) Fundamental Loops
A fundamental loop is a loop that contains one (and only

one) link in its set of edges [5].

(a) (b)

Figure 3. (a) Fundamental Loop for R1, (b) Fundamental Cutset for V1

22Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

Fig.3(a) shows the fundamental loop for link R1 when
considering the Spanning Tree shown in fig.2(b). To
construct a loop that includes only the link R1 (which is
shown as a thick black line) and no other links, the tree
branches shown in red must be used. Therefore the
fundamental loop of R1 is made up of the edges: R1, R3,
and V1.

3) Fundamental Cut Sets
A cut set is a minimal set of edges that when cut, divides

the graph into two groups of nodes. A fundamental cutset is
a cutset that contains one (and only one) tree branch in its
set of edges [5]. Fig.3(b) shows the fundamental cutset for
tree branch V1 when considering the Spanning Tree shown
in fig.2(b). By cutting V1 node 1, shown in green becomes
isolated from the group of remaining nodes, that is nodes 2,
3 and 4, which are shown in red. Together with branch V1,
the link R1 has to be cut to keep the two groups of nodes
separated, hence the complete fundamental cutset is: V1,
and R1.

C. Qualitative Electrical Circuits Analysis
De Kleer [4] divides qualitative analysis of electrical

circuits into two independent types of analysis, which are;
(a) causal analysis, and (b) teleological analysis.

The way that the components are connected together in a
circuit gives a specific structure to the circuit. The
schematic diagram of a circuit describes this structure. Each
component in the circuit causes some effects on the other
components that are connected to it, and these in turn affect
the components that are connected to them, and so on. The
aim of causal analysis is to combine the behaviour of the
individual components to explain the behaviour of the
overall composite system. That said, a composite system is
built so that it serves a purpose. The purpose of a circuit is
also referred to as the function of the circuit. Teleological
analysis describes how by knowing the behaviour of a
circuit one can deduce its function.

Causal analysis relates structure to behaviour and
teleological analysis relates behaviour to function. These
two types of analysis were also investigated by Marc
Fosséprez in 1988 [6]. Marc Fosséprez states that it is
relatively easy to deduce how a circuit behaves once its
function is known, but it is much harder to deduce how a
circuit behaves if only the circuit’s structure (its schematic
diagram) is given. His work focuses on this latter task and
he gives definitions about the different structures that
circuits can possibly have and mathematical proofs that
employ topology and graph theory.

D. Symbolic Simulators
Symbolic simulators are able to generate the transfer

function of circuits input to them. The transfer function is a
commonly used symbolic expression that describes how a
circuit behaves. Using the transfer function the output
signal that the circuit generates for a given input signal can
be calculated. The advantage of using a symbolic transfer

function is that the circuit is analysed symbolically only
once to obtain the transfer function and then as many
numerical answers as needed can be obtained from the
transfer function by substituting the symbols with the
numerical values being considered.

Considerable research has been carried out on the
symbolic analysis of electrical circuits in the late 1960’s and
a number of software Symbolic Simulators were developed
in the 1980’s,[7]. For example De Kleer developed a
symbolic simulator called SYN together with Sussman in
1979 [8]. De Kleer states that SYN has several limitations
that are were overcome in EQUAL, the Qualitative Analysis
Simulator that he developed [4]. These limitations include
the lack of the ability to use approximations that drastically
simplify the algebra without sacrificing accuracy. Some of
these problems have been addressed in modern symbolic
simulators [9].

Good examples of modern symbolic simulators that are
equipped with a Graphical User Interface (GUI), including a
schematic capture front end are SAPWIN [1] and SNAP [2].

E. Propagation of Constraints
The propagation of Constraints has proved to be a

powerful algorithm in circuit analysis. Fosséprez
recommends its use when searching for a pair of compatible
current and voltage (i, v) orientations, while analysing
circuits qualitatively [6]. In 2006 Peter Robinson et al
developed a type of software authoring tool for an
‘Intelligent Book’ [10] in which this algorithm is used to
find the currents, voltages and component values inside
different circuits. The values generated by the Propagation
of Constraint algorithm are used to verify the values input
by the students that make use of the ‘Intelligent Book’.

III. NUMERICAL MODELS IN EDUCATION
The main author has carried out a study based on a

questionnaire regarding the effectiveness of using SPICE
simulators as a pedagogical tool and using handouts which
explain step by step the symbolic calculations involved in
electric circuit analysis. The questionnaire involved both
open ended questions and Likert scale questions. The
questionnaire was handed out to the students of the two first
year classes of the National Diploma in Electrical and
Electronics Engineering (MQF level 4) at MCAST, Malta
and a total of thirty one filled in questionnaires were
collected. The full report on this study is published in [11].
The report outlines two conclusions that are relevant in this
paper; (a) in general although students find the SPICE
simulator as motivating very few agree that it helps in
understanding how circuits work, and (b) The larger
proportion of students acknowledge that it would be much
more useful if the simulator explains how the results are
obtained. These results confirms what the other researchers
that advocate the use of symbolic and qualitative have stated
in their papers, which is that software that give explanations,
and not just results, aids the students better.

23Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

IV. SOFTWARE TOOLS DEVELOPED
Two separate software tools were developed, the first

one using MS C++ and the second one using MS C#. The
first tool is text based while the second one is provided with
a GUI, which makes it more adequate to be used as an
eTutor.

A. Input Text Files
Both software tools require the user to input the circuit

to be analysed as a text file, but the format is different in the
two cases. The first tool requires the circuit to be specified
in a matrix in which the rows represent nodes and columns
represent components. The first row of this matrix is
reserved for the components’ values, that is the voltage of
the battery and the resistance of each resistor. In the cells of
the other rows a ‘1’ means that terminal one of the
corresponding component is connected to the node
corresponding to the cell’s row, ‘2’ means that terminal two
of the corresponding component is connected to the node
corresponding to the cell’s row and ‘0’ means that the
corresponding component is not connected to the particular
node considered. The format of the input text file for the
second program is more compact since in it a text line is
dedicated to each component and the numbers of the two
nodes to which the component is connected are stated in the
corresponding line. This does away with the ‘0s’ that were
used for the first program. The other information included
in each line of this text file is the X and Y coordinates of
where the component is to be drawn in the GUI, the name of
the component and its value.

B. Series and Parallel Reductions Program
The first software tool accepts input circuits that are

made up of an arbitrary number of resistors and only one
battery. This program then analyses the connections of all
the resistors and identifies resistors that are connected in
parallel. Each group of resistors connected in parallel is
replaced by one equivalent resistor. The program then
identifies serially connected resistors and replaces each
group by one equivalent resistor. This process is depicted in
fig.4. At each step the program outputs a matrix in text
format which specifies the connections in the resultant
simplified circuit.

If the resultant circuit contains other groups of resistors
that are connected in parallel or in series further reductions
are done. This process is repeated until no further
reductions are possible.

C. Graphical Circuits Analysis Program
The aim of the program is to eTutor students that are

learning how to identify a fundamental tree and the
corresponding fundamental cutsets in a given circuit and
how to generate the KCL current equations for each
fundamental cutset. This topic is covered in a unit called
‘Further Electrical Principles’ that higher national diploma
(MQF level 5) students follow in the second year of their
course at MCAST.

Figure 4. Example of the parallel and series resistors reduction processes
carried out by the first program.

Once a circuit is specified correctly in the input text file
it can be loaded in the program. Fig 5. shows an example of
a loaded circuit. The user is asked to chose a spanning tree,
by clicking on the components in the circuit. Once the user
selects a group of components that s/he think makes up a
valid spanning tree, s/he must press the ‘Check Spanning
Tree’ button so that the program verifies if the selected
group of components makes up a valid spanning tree. If it
does not the program informs the user and gives relevant
feedback to the user of why the selection does not make up
a valid spanning tree. The program informs the user
whether s/he selected the right amount of components and
whether s/he captured all the nodes in the circuit with the
group of components selected. The program also informs
the user if there are loops present in the selection made.

Figure 5. Example of a loaded circuit in the program’s GUI

On the other hand, if the selection makes up a valid tree
the program informs the user and allows the user to select
this spanning tree to continue with the circuit analysis. To
do this the user has to press the ‘Use this Spanning Tree for
Circuit Analysis’ button. Once this button is pressed the
program goes into Step 2, in which the user has to select the

24Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

correct fundamental cutset for each of the tree branches
inside the selected spanning tree. The tree branch for which
the user has to select the links that make up the fundamental
cutset is highlighted in red, as shown in fig.6.

Figure 6. Example of a fundamental cutset KCL equation generated when
the correct fundamental cutset is selected and the appropriate button is
pressed

The fundamental cutset must separate one of the group
of nodes from the remaining group of nodes.To help the
user the program highlights all the nodes in one of these
groups in orange and the nodes in the other group in green.
After that the user selects the components that s/he thinks
make up the fundamental cutset, s/he must press the ‘Check
Fundamental Cutset’ button. Once this button is pressed the
program checks if the selected components make up a valid
fundamental cutset. If this is not the case the program gives
relevant feedback to the user. The program states whether
one or more components that should be included in the
selection are not selected and it also states if one or more
components that should not be included in the selection are
in fact selected. In the case when the selected components
make up a valid fundamental cutset, then the user is
informed accordingly and is allowed to press the button
labelled “Create Current Equation for the Cutset”. When
this button is pressed the KCL equation for the fundamental
cutset is generated by the program and displayed at the
bottom of the screen as shown in fig.6. The user can then
press the ‘Go to next Cutset’ button to find the fundamental
Cutset of the next branch in the spanning tree. This process
has to be repeated until the fundamental cutsets of all the
branches in the spanning tree are found.

At this point it is desirable that the program tutors the
user on how to find the fundamental loop for each link
present in the graph, but this feature has not been
implemented yet. The author plans to have this feature
functional in the future so that it can be used by the higher
national diploma students.

D. Algorithms in the Graphical Circuits Analysis Program
In the computer program developed, the nodes are

implemented in a list. The branches or components at a
given node are defined in another list. The algorithms then
operate on these lists. From graph theory it is known that a
valid spanning tree must be made up of n-1 edges, where n
is the number of nodes. Hence the first check made to verify
the input tentative spanning tree is to count the number of
selected components and check if it equal to n-1. If this is
not the case it means that the selected components do not
make up a valid spanning tree.

The next step to carry out is to check that the selected
components capture all the nodes inside the circuit (graph).
The algorithm just has to go through all the selected
components and mark the two nodes to which each
component is connected as captured. After that the
algorithm has to go through the nodes and check that none
of them is non-captured. If one or more nodes are non-
captured then the selected components do not make up a
valid spanning tree. There exist cases in which the two
checks explained above are satisfied but the selected
components still do not make up a valid spanning tree. In
this case the selected branches will not be continuously
connected and at least one loop will be present in the
selection. To check for such cases the spanning tree
algorithm starts off with one of the selected tree branches. It
checks to which nodes this branch is connected and
proceeds to discover which other branches one of these
nodes is connected to. If there are more than one branch
connected to this node the algorithm starts considering the
first branch and it takes note of which branch this is so that
once it finishes checking it and returns to the last node
considered, it continues looking for the correct branch. This
process is repeated for each node. When at least one branch
is found connected to a node the algorithm jumps to the
other node to which this branch is connected and hence
travels further away from the first node that it considered at
the start. Naturally the larger the selected tentative spanning
tree is, the more searching the algorithm has to do. But in
the case of invalid spanning tree selections there are two
possible ways in which the algorithm completes. One way
is that the algorithm steps forward (not backwards) into a
node that it already checked, and hence a loop is discovered.
The other way in which the algorithm can complete in the
case of an invalid spanning tree selection is that it finds out
that it exhausted all the branches and nodes that are
connected to the first branch considered, but it did not find
all the nodes present inside the graph. In this case it means
that the algorithm has found one continuous length of
connected branches, which is not connected to the
remaining branches of the selected tentative spanning trees.
Since spanning trees should not contain any discontinuities
in their branches’ connection, this means that the selected
components do not make up a valid spanning tree.

Another algorithm used in the graphical analysis
program is the one that highlights in different colours the

25Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

two groups of nodes that are to be separated by a
fundamental cutset. The searching that this algorithm does
is very similar to that done by the algorithm that verifies
spanning trees. However in this case, the fundamental
cutsets algorithm does not check for loops because it is used
after that a valid spanning tree is already selected, so it is
already guaranteed that no loops are present. The important
feature that this algorithm possesses, similarly to the
previous algorithm, is that it always remembers which
branch it checked last when jumping from one node to
another, so that when it returns back to the node from where
it jumped, it continues checking from the correct branch.

V. CONCLUSIONS
An important conclusion from the questionnaire

delivered to the national diploma (MQF level 4) students is
that they are keen to experience software tools that help
them understand how to analyse electrical circuits, by
explaining the results that these programs generate. This
type of software simulates the full-time availability of a
tutor.

Two software tools that give explanations of the analysis
carried out computationally on circuits were developed.
Both these programs contain elements of Symbolic and
Qualitative analysis.

One of these programs is aimed at first year national
diploma (MQF level 4) students. It identifies resistors that
are connected in parallel and in series and replaces them by
equivalent resistors. This program was tested and verified to
function correctly, but since it was developed as a text based
program it is not easy for the students to use it. Hence an
improvement that is needed for this program to become
useful is the provision of a GUI.

The other tool is aimed at second year higher national
diploma (MQF level 5) students. Its aim is to tutor these
students on how to find correct spanning trees and
fundamental cutsets in graphs of electrical circuits. This
program was tested and verified to function correctly. It
interacts with its users through a GUI. It lets the user input
the circuit of interest and try to select a valid spanning tree.
When a valid spanning tree is selected the program lets the
user work out all the valid fundamental cutsets
corresponding to this spanning tree and then generates the
corresponding KCL equations. Whenever the user does an
incorrect choice during the selection process, the tool
explains why the choice is incorrect, and hence acts like a
Tutor.

There are many possible improvements that can be done
to this tool, the most important of which is the inclusion of
fundamental loops selections. The feedback that this
program gives to its user can also be more informative, or
even better, be in increasing steps of information, according
to how much help the user desires to get. In any case, even
at the current stage of development this program can aid
significantly the students that are learning this topic.
Besides being used by the author, this program was

demonstrated to two lecturers that teach this topic and both
confirmed that this program will help them deliver the
concerned topic more efficiently, leading to higher success
rates among students.

The tool was first tested by fifteen students that
undertook courses that included the topic under
consideration in the previous academic year and all these
students stated that this tool would have been of great help
to them. The program was then tested with a class of 18
novel HND students during the academic year (2010-2011).
These students were able to choose their own personal set of
branches that make up valid spanning trees and fundamental
cutsets in class. This reduced the amount of time that the
students needed to learn and understand these two concepts,
as well as the success rate among students.

REFERENCES
[1] A. Luchetta, S. Manetti and A. Reatti, “SAPWIN - A

Symbolic Simulator as a Support in Electrical Engineering
Education”, IEEE Transactions on Education, Vol. 44, pp. 9,
May 2001.

[2] D. BIOLEK, “SNAP – program with symbolic core for
educational purposes”, Proceedings of 4th World Multi-
Conference on: Circuits, Systems, Communications and
Computers, ISBN 960-8052-19-X, pp. 1711-1714, July
2000.

[3] G. Sussman and R. Stallman “Forward Reasoning and
Dependency-Directed Backtracking in a System for
Computer-Aided Circuit Analysis”, Artificial Intelligence,
Vol. 9, pp. 135-196, October 1977.

[4] J. de Kleer, “How circuits work”, Artificial Intelligence,
Special volume on qualitative reasoning about physical
systems, Vol. 24, pp. 205-280, December 1984.

[5] J. W. Nilsson and S. A. Riedel, Electric Circuits 5th Edition,
Addison Wesley, 1996.

[6] M. Fosséprez, Qualitative Analysis of Non-linear, Non-
reciprocal Circuits, John Wiley & sons, 1992.

[7] G. Gielen, P. Wambacq and W.M. Sansen, “Symbolic
Analysis Methods and Applications for Analog Circuits: A
Tutorial Overview”, Proceedings of the IEEE, vol. 82,
pp.287-304, 1994.

[8] J. de Kleer and G. Sussman, “Propagation of constraints
applied to circuit synthesis”, International Journal of Circuit
Theory and Applications, Vol. 8, pp. 127–144, April 1980.

[9] H. Floberg, Symbolic Analysis in Analog Integrated Circuit
Design, Kluwer Academic Publishers, 1997.

[10] K. Rehman, W. Billingsley, and P. Robinson, “Writing
Questions for an Intelligent Book Using External AI”,
Proceedings of the Sixth IEEE International Conference on
Advanced Learning Technologies, ISBN 0-7695-2632-2, pp.
1089 - 1091, 2006.

[11] J. Debono, “Effectiveness of using Circuit Analysis Software
in Vocational Electronics Engineering Courses”, Malta
College of Arts, Science and Technology (MCAST) library,
September 2010. Also available at: https://sites.google.com/
site/jasondebonoeportfolio/o

26Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

