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Abstract—Numerical Time Domain electrical circuit simulators 
are the de facto standard in industry and education. 
Nevertheless circuits simulators based on symbolic or 
qualitative techniques have been equally studied. These latter 
techniques aim at simulating the mental models that an 
experienced engineer taps when manually designing and 
analysing a circuit. This paper describes the development of 
two software tools based on symbolic and qualitative analysis 
and their use as an electrical circuits eTutor is studied and 
discussed. As a comparison the paper also investigates the 
limitations and drawbacks of time domain electrical circuit 
simulators when used as a pedagogical tool. The field tests are 
carried out with the engagement of polytechnic teachers and 
students at the higher national diploma level. 

Keywords-Electrical; Circuits; eTutor; Symbolic; Qualitative, 
Analysis. 

I.  INTRODUCTION 
Most college, polytechnic and university electrical 

circuit theory courses include theoretical as well as practical 
sessions. The practical sessions are important for two 
reasons; (a) students learn how to link theoretical models to 
the real-life circuits, and (b) students learn how to carry out 
the appropriate measurements using the right instrument. 
These practical skills are indispensable for professional 
engineers during the installation, testing and maintenance, 
of electrical and electronics systems. However 
instrumentation is generally expensive and its use is 
restricted to labs. In this respect circuit simulators, such as 
SPICE, augmented with a graphical schematic capture front 
and back ends are very useful. With such elearning tools 
students connect virtual components together using virtual 
wires, choose and add virtual instruments to the circuit, and 
finally, carry out a computer analyses or. The software 
outputs the variables chosen or measurements as displayed 
on the virtual instruments. Such measurements include 
numerical values, like for example electrical current on a 
virtual meter, and voltage waveforms on a virtual 
oscilloscope. This type of eLearning software, widely 
distributed among colleges and polytechnics helps students 
in the acquisition of practical skills including the selection 
of instrumentation. It also speeds up the process and reduces 
the cost since there is no need for building the circuit in real 
life.  However it does not help the student in understanding 

how the circuit works or how to design the circuit. On the 
contrary, it encourages the student not to carry out a manual 
or mental analysis. 

Apart from practical skills, electrical engineering 
students learn how to analyse and design electrical circuits.  
Traditionally students have been taught how to analyse 
electrical circuits using pen and paper through teh 
application of the relevant theories, including Ohm’s Law, 
Kirchhoff’s Current Law and Kirchhoff’s Voltage Law. As 
explained above SPICE simulators were not specifically 
designed to help students learn how circuits work, 
consequently SPICE simulators have some serious 
limitations when used as a pedagogical tool. 

The electrical theories taught to students are an essential 
part of the mental models that the students must develop.  
Using these theories students can write down symbolic 
(algebraic) equations that describe how the circuit being 
analysed behaves. In contrast numerical simulators calculate 
values iteratively, and this approach limits the 
understanding and insight that the simulator can impart to 
its user about how the circuit being analysed functions. In 
the last few years symbolic simulators have been developed 
that build the symbolic equations that describe the circuit 
being analysed and display these equations explicitly.  
Examples of recently developed symbolic simulators are 
SAPWIN [1] and SNAP [2].   

Additionally, accomplished engineers apply mental 
models in what-if analysis to understand how a change in a 
parameter at a point of the circuit affects the other 
parameters of the circuit.  A change in a parameter, like for 
example the input voltage, is thought of as first influencing 
the parameters of its neighbouring components and nodes.  
In turn these varying parameters affect their own neighbours 
and hence the changes propagate throughout the circuit.  
This method of analysing a circuit was successfully 
implemented in a software program in 1977 by Sussman 
and Stallman, who termed this technique as the ‘Propagation 
of Constraints’ [3]. The algorithm implemented by Sussman 
and Stallman calculated the numerical values of voltages 
and currents. In fact the mental models used by engineers 
are usually more simplistic than this because the engineers 
only consider the direction of change, that is, an increase, a 
decrease or no change at all in the parameter’s value.   In 
other words the quality of the change is considered and not 
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the quantity of the change. This kind of reasoning has been 
studied and formally applied to electric circuits and other 
physical systems like thermodynamic systems in the field of 
study entitled “Qualitative Physics”. In 1984 Johan De 
Kleer implemented the Qualitative Analysis of electrical 
circuits in a program he called EQUAL [4].  This program is 
able to explain how a circuit works using qualitative 
arguments and even categorize the circuit as being a power-
supply, logic-gate, amplifier or multivibrator. 

In this paper two programs that target smaller scopes are 
discussed.  The first program accepts input circuits that are 
made up of an arbitrary number of resistors and only one 
battery.  This program processes serial and parallel 
connections of resistors. The second program accepts input 
circuits that are made up of an arbitrary number of resistors, 
voltage sources and current sources. The software tool then 
tutors the user on how to select valid spanning trees and the 
corresponding fundamental cutsets for the input circuit. The 
symbolic Kirchhoff’s Current Law (KCL) equation for each 
fundamental cutset is then generated by the program, which 
the user or student can compare to his/her workings.  Both 
tools analyse the topology of the input circuit to accomplish 
their respective type of analysis. The first program is targeted 
to MQF level 4 students while the other program is to be 
used by MQF level 5 students.   

The rest of the paper is organised as follows: Section II 
reviews circuit analysis techniques and section III reviews 
numerical models in education. The tools developed are 
described in section IV and the section V discusses results 
and conclusions.  

II. CIRCUIT ANALYSIS PARADIGMS 
In this section five types of circuit analysis paradigms 

are discussed, the nodal and loop analysis, graph theory in 
electrical circuits, qualitative analysis, symbolic analysis 
and the propagation of constraints. 

A. Nodal and Loop Analysis 
A circuit can be described by using either the mesh or 

the nodal formulation. The mesh equations are based on 
Kirchhoff’s Voltage Law (KVL), which states that the sum 
of voltage drops along any closed loop is zero.  On the other 
hand, the nodal equations are based on KCL, which states 
that the algebraic sum of currents leaving any node is zero.  
A more general definition of KCL is that in any 
fundamental cutset that separates the network into two parts, 
the sum of the currents in the cutset edges is zero.  If the 
number of branches in the network is denoted by the letter b 
and number of ungrounded nodes is denoted by the letter n, 
then to solve a circuit; (a) the number of mesh equations 
required is equal to b – n, and (b) the number of nodal 
equations required is equal to n. 

In general nodal analysis yields less equations than mesh 
(loop) analysis and hence nodal analysis is usually easier to 
carry out [5]. 

B. Graph Theory 
Graph Theory is used in various ways to aid circuit 

analysis, for example Signal Flow Graphs. This paper 
focuses on the use of graph theory to analyze the topology 
of electrical circuits, which is the study of inter-connected 
objects represented by ‘edges’ in a graph.  The points where 
the end-points of edges touch together are formally called 
‘vertices’ or ‘nodes’.  

 
(a) (b) 

Figure 1: (a) Example Circuit1, and (b) Graph of Example Circuit. 

A graph is extracted from the schematic diagram of a 
circuit by replacing the components with edges. For 
example the graph shown in fig.1(b) is extracted from the 
circuit shown in fig.1(a). A graph of an electrical circuit 
contains more than one spanning tree, and from each 
spanning tree a set of fundamental loops and fundamental 
cutsets can be extracted. 

1) Spanning Tree 
A spanning tree of a graph is defined as any set of  

connecting branches that connects every node to every other 
node without forming any closed paths or loops [5].   

 
(a) (b) 

Figure 2: (a) Spanning Tree I, and (b) Spanning Tree II. 

Fig.2(a) and fig.2(b) show two different spanning trees 
for the graph shown in fig.1(b). Once a spanning tree has 
been defined, the edges making part of the spanning tree are 
referred to as branches. The remaining branches are referred 
to as links  or chords. 

2) Fundamental Loops 
A fundamental loop is a loop that contains one (and only 

one) link in its set of edges [5]. 
 

  
(a) (b) 

Figure 3. (a) Fundamental Loop for R1, (b) Fundamental Cutset for V1 

22Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences



Fig.3(a) shows the fundamental loop for link R1 when 
considering the Spanning Tree shown in fig.2(b). To 
construct a loop that includes only the link R1 (which is 
shown as a thick black line) and no other links, the tree 
branches shown in red must be used. Therefore the 
fundamental loop of R1 is made up of the edges:  R1, R3, 
and V1. 

3) Fundamental Cut Sets 
A cut set is a minimal set of edges that when cut, divides 

the graph into two groups of nodes.  A fundamental cutset is 
a cutset that contains one (and only one) tree branch in its 
set of edges [5]. Fig.3(b) shows the fundamental cutset for 
tree branch V1 when considering the Spanning Tree shown 
in fig.2(b). By cutting V1 node 1, shown in green becomes 
isolated from the group of remaining nodes, that is nodes 2, 
3 and 4, which are shown in red. Together with branch V1, 
the link R1 has to be cut to keep the two groups of nodes 
separated, hence the complete fundamental cutset is: V1, 
and R1. 

C. Qualitative Electrical Circuits Analysis 
De Kleer [4] divides qualitative analysis of electrical 

circuits into two independent types of analysis, which are; 
(a) causal analysis, and (b) teleological analysis. 

The way that the components are connected together in a 
circuit gives a specific structure to the circuit. The 
schematic diagram of a circuit describes this structure. Each 
component in the circuit causes some effects on the other 
components that are connected to it, and these in turn affect 
the components that are connected to them, and so on.  The 
aim of causal analysis is to combine the behaviour of the 
individual components to explain the behaviour of the 
overall composite system. That said, a composite system is 
built so that it serves a purpose.  The purpose of a circuit is 
also referred to as the function of the circuit. Teleological 
analysis describes how by knowing the behaviour of a 
circuit one can deduce its function.   

Causal analysis relates structure to behaviour and 
teleological analysis relates behaviour to function. These 
two types of analysis were also investigated by Marc 
Fosséprez in 1988 [6]. Marc Fosséprez states that it is 
relatively easy to deduce how a circuit behaves once its 
function is known, but it is much harder to deduce how a 
circuit behaves if only the circuit’s structure (its schematic 
diagram) is given. His work focuses on this latter task and 
he gives definitions about the different structures that 
circuits can possibly have and mathematical proofs that 
employ topology and graph theory. 

D. Symbolic Simulators 
Symbolic simulators are able to generate the transfer 

function of circuits input to them. The transfer function is a 
commonly used symbolic expression that describes how a 
circuit behaves.  Using the transfer function the output 
signal that the circuit generates for a given input signal can 
be calculated. The advantage of using a symbolic transfer 

function is that the circuit is analysed symbolically only 
once to obtain the transfer function and then as many 
numerical answers as needed can be obtained from the 
transfer function by substituting the symbols with the 
numerical values being considered. 

Considerable research has been carried out on the 
symbolic analysis of electrical circuits in the late 1960’s and 
a number of software Symbolic Simulators were developed 
in the 1980’s,[7]. For example De Kleer developed a 
symbolic simulator called SYN together with Sussman in 
1979 [8]. De Kleer states that SYN has several limitations 
that are were overcome in EQUAL, the Qualitative Analysis 
Simulator that he developed [4]. These limitations include 
the lack of the ability to use approximations that drastically 
simplify the algebra without sacrificing accuracy. Some of 
these problems have been addressed in modern symbolic 
simulators [9]. 

Good examples of modern symbolic simulators that are 
equipped with a Graphical User Interface (GUI), including a 
schematic capture front end are SAPWIN [1] and SNAP [2].   

E. Propagation of Constraints 
The propagation of Constraints has proved to be a 

powerful algorithm in circuit analysis. Fosséprez 
recommends its use when searching for a pair of compatible 
current and voltage (i, v) orientations, while analysing 
circuits qualitatively [6]. In 2006 Peter Robinson et al 
developed a type of software authoring tool for an 
‘Intelligent Book’ [10] in which this algorithm is used to 
find the currents, voltages and component values inside 
different circuits.  The values generated by the Propagation 
of Constraint algorithm are used to verify the values input 
by the students that make use of the ‘Intelligent Book’. 

III. NUMERICAL MODELS IN EDUCATION 
The main author has carried out a study based on a 

questionnaire regarding the effectiveness of using SPICE 
simulators as a pedagogical tool and using handouts which 
explain step by step the symbolic calculations involved in 
electric circuit analysis. The questionnaire involved both 
open ended questions and Likert scale questions. The 
questionnaire was handed out to the students of the two first 
year classes of the National Diploma in Electrical and 
Electronics Engineering (MQF level 4) at MCAST, Malta 
and a total of thirty one filled in questionnaires were 
collected. The full report on this study is published in [11]. 
The report outlines two conclusions that are relevant in this 
paper; (a) in general although students find the SPICE 
simulator as motivating very few agree that it helps in 
understanding how circuits work, and (b) The larger 
proportion of students acknowledge that it would be much 
more useful if the simulator explains how the results are 
obtained. These results confirms what the other researchers 
that advocate the use of symbolic and qualitative have stated 
in their papers, which is that software that give explanations, 
and not just results, aids the students better. 
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IV. SOFTWARE TOOLS DEVELOPED 
Two separate software tools were developed, the first 

one using MS C++ and the second one using MS C#. The 
first tool is text based while the second one is provided with 
a GUI, which makes it more adequate to be used as an 
eTutor. 

A. Input Text  Files   
Both software tools require the user to input the circuit 

to be analysed as a text file, but the format is different in the 
two cases.  The first tool requires the circuit to be specified 
in a matrix in which the rows represent nodes and columns 
represent components. The first row of this matrix is 
reserved for the components’ values, that is the voltage of 
the battery and the resistance of each resistor. In the cells of 
the other rows a ‘1’ means that terminal one of the 
corresponding  component is connected to the node 
corresponding to the cell’s row, ‘2’ means that terminal two 
of the corresponding  component is connected to the node 
corresponding to the cell’s row and ‘0’ means that the 
corresponding component is not connected to the particular 
node considered. The format of the input text file for the 
second program is more compact since in it a text line is 
dedicated to each component and the numbers of the two 
nodes to which the component is connected are stated in the 
corresponding line.  This does away with the ‘0s’ that were 
used for the first program.  The other information included 
in each line of this text file is the X and Y coordinates of 
where the component is to be drawn in the GUI, the name of 
the component and its value. 

B. Series and Parallel Reductions Program  
The first software tool accepts input circuits that are 

made up of an arbitrary number of resistors and only one 
battery.  This program then analyses the connections of all 
the resistors and identifies resistors that are connected in 
parallel.  Each group of resistors connected in parallel is 
replaced by one equivalent resistor.  The program then 
identifies serially connected resistors and replaces each 
group by one equivalent resistor.  This process is depicted in 
fig.4.  At each step the program outputs a matrix in text 
format which specifies the connections in the resultant 
simplified circuit.   

If the resultant circuit contains other groups of resistors 
that are connected in parallel or in series further reductions 
are done.  This process is repeated until no further 
reductions are possible. 

C. Graphical Circuits Analysis Program  
The aim of the program is to eTutor students that are 

learning how to identify a fundamental tree and the 
corresponding fundamental cutsets in a given circuit and 
how to generate the KCL current equations for each 
fundamental cutset.  This topic is covered in a unit called 
‘Further Electrical Principles’ that higher national diploma 
(MQF level 5) students follow in the second year of their 
course at MCAST. 

 

 

 

 

         

Figure 4.  Example of the parallel and series resistors reduction processes 
carried out by the first program. 

Once a circuit is specified correctly in the input text file 
it can be loaded in the program.  Fig 5. shows an example of 
a loaded circuit.  The user is asked to chose a spanning tree, 
by clicking on the components in the circuit.  Once the user 
selects a group of components that s/he think makes up a 
valid spanning tree, s/he must press the ‘Check Spanning 
Tree’ button so that the program verifies if the selected 
group of components makes up a valid spanning tree.  If it 
does not the program informs the user and gives relevant 
feedback to the user of why the selection does not make up 
a valid spanning tree.  The program informs the user 
whether s/he selected the right amount of components and 
whether s/he captured all the nodes in the circuit with the 
group of components selected. The program also informs 
the user if there are loops present in the selection made. 

 

Figure 5.  Example of a loaded circuit in the program’s GUI 

On the other hand, if the selection makes up a valid tree 
the program informs the user and allows the user to select 
this spanning tree to continue with the circuit analysis.  To 
do this the user has to press the ‘Use this Spanning Tree for 
Circuit Analysis’ button.  Once this button is pressed the 
program goes into Step 2, in which the user has to select the 
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correct fundamental cutset for each of the tree branches 
inside the selected spanning tree.  The tree branch for which 
the user has to select the links that make up the fundamental 
cutset is highlighted in red, as shown in fig.6. 

 

Figure 6.  Example of a fundamental cutset KCL equation generated when 
the correct fundamental cutset is selected and the appropriate button is 
pressed 

The fundamental cutset must separate one of the group 
of nodes from the remaining group of nodes.To help the 
user the program highlights all the nodes in one of these 
groups in orange and the nodes in the other group in green. 
After that the user selects the components that s/he thinks 
make up the fundamental cutset, s/he must press the ‘Check 
Fundamental Cutset’ button. Once this button is pressed the 
program checks if the selected components make up a valid 
fundamental cutset.  If this is not the case the program gives 
relevant feedback to the user.  The program states whether 
one or more components that should be included in the 
selection are not selected and it also states if one or more 
components that should not be included in the selection are 
in fact selected. In the case when the selected components 
make up a valid fundamental cutset, then the user is 
informed accordingly and is allowed to press the button 
labelled “Create Current Equation for the Cutset”.  When 
this button is pressed the KCL equation for the fundamental 
cutset is generated by the program and displayed at the 
bottom of the screen as shown in fig.6. The user can then 
press the ‘Go to next Cutset’ button to find the fundamental 
Cutset of the next branch in the spanning tree. This process 
has to be repeated until the fundamental cutsets of all the 
branches in the spanning tree are found. 

At this point it is desirable that the program tutors the 
user on how to find the fundamental loop for each link 
present in the graph, but this feature has not been 
implemented yet.  The author plans to have this feature 
functional in the future so that it can be used by the higher 
national diploma students. 

D. Algorithms in the Graphical Circuits Analysis Program 
In the computer program developed, the nodes are 

implemented in a list. The branches or components at a 
given node are defined in another list. The algorithms then 
operate on these lists. From graph theory it is known that a 
valid spanning tree must be made up of n-1 edges, where n 
is the number of nodes. Hence the first check made to verify 
the input tentative spanning tree is to count the number of 
selected components and check if it equal to n-1. If this is 
not the case it means that the selected components do not 
make up a valid spanning tree. 

The next step to carry out is to check that the selected 
components capture all the nodes inside the circuit (graph). 
The algorithm just has to go through all the selected 
components and mark the two nodes to which each 
component is connected as captured. After that the 
algorithm has to go through the nodes and check that none 
of them is non-captured.  If one or more nodes are non-
captured then the selected components do not make up a 
valid spanning tree. There exist cases in which the two 
checks explained above are satisfied but the selected 
components still do not make up a valid spanning tree.  In 
this case the selected branches will not be continuously 
connected and at least one loop will be present in the 
selection.  To check for such cases the spanning tree 
algorithm starts off with one of the selected tree branches. It 
checks to which nodes this branch is connected and 
proceeds to discover which other branches one of these 
nodes is connected to. If there are more than one branch 
connected to this node the algorithm starts considering the 
first branch and it takes note of which branch this is so that 
once it finishes checking it and returns to the last node 
considered, it continues looking for the correct branch. This 
process is repeated for each node.  When at least one branch 
is found connected to a node the algorithm jumps to the 
other node to which this branch is connected and hence 
travels further away from the first node that it considered at 
the start. Naturally the larger the selected tentative spanning 
tree is, the more searching the algorithm has to do. But in 
the case of invalid spanning tree selections there are two 
possible ways in which the algorithm completes.  One way 
is that the algorithm steps forward (not backwards) into a 
node that it already checked, and hence a loop is discovered. 
The other way in which the algorithm can complete in the 
case of an invalid spanning tree selection is that it finds out 
that it exhausted all the branches and nodes that are 
connected to the first branch considered, but it did not find 
all the nodes present inside the graph.  In this case it means 
that the algorithm has found one continuous length of 
connected branches, which is not connected to the 
remaining branches of the selected tentative spanning trees.  
Since spanning trees should not contain any discontinuities 
in their branches’ connection, this means that the selected 
components do not make up a valid spanning tree. 

Another algorithm used in the graphical analysis 
program is the one that highlights in different colours the 

25Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences



two groups of nodes that are to be separated by a 
fundamental cutset.  The searching that this algorithm does 
is very similar to that done by the algorithm that verifies 
spanning trees. However in this case, the fundamental 
cutsets algorithm does not check for loops because it is used 
after that a valid spanning tree is already selected, so it is 
already guaranteed that no loops are present.  The important 
feature that this algorithm possesses, similarly to the 
previous algorithm, is that it always remembers which 
branch it checked last when jumping from one node to 
another, so that when it returns back to the node from where 
it jumped, it continues checking from the correct branch. 

V. CONCLUSIONS 
An important conclusion from the questionnaire 

delivered to the national diploma (MQF level 4) students is 
that they are keen to experience software tools that help 
them understand how to analyse electrical circuits, by 
explaining the results that these programs generate. This 
type of software simulates the full-time availability of a 
tutor.  

Two software tools that give explanations of the analysis 
carried out computationally on circuits were developed.  
Both these programs contain elements of Symbolic and 
Qualitative analysis. 

One of these programs is aimed at first year national 
diploma (MQF level 4) students. It identifies resistors that 
are connected in parallel and in series and replaces them by 
equivalent resistors. This program was tested and verified to 
function correctly, but since it was developed as a text based 
program it is not easy for the students to use it.  Hence an 
improvement that is needed for this program to become 
useful is the provision of a GUI. 

The other tool is aimed at second year higher national 
diploma (MQF level 5) students.  Its aim is to tutor these 
students on how to find correct spanning trees and 
fundamental cutsets in graphs of electrical circuits. This 
program was tested and verified to function correctly. It 
interacts with its users through a GUI.  It lets the user input 
the circuit of interest and try to select a valid spanning tree. 
When a valid spanning tree is selected the program lets the 
user work out all the valid fundamental cutsets 
corresponding to this spanning tree and then generates the 
corresponding KCL equations. Whenever the user does an 
incorrect choice during the selection process, the tool 
explains why the choice is incorrect, and hence acts like a 
Tutor.  

There are many possible improvements that can be done 
to this tool, the most important of which is the inclusion of 
fundamental loops selections. The feedback that this 
program gives to its user can also be more informative, or 
even better, be in increasing steps of information, according 
to how much help the user desires to get. In any case, even 
at the current stage of development this program can aid 
significantly the students that are learning this topic.  
Besides being used by the author, this program was 

demonstrated to two lecturers that teach this topic and both 
confirmed that this program will help them deliver the 
concerned topic more efficiently, leading to higher success 
rates among students. 

The tool was first tested by fifteen students that 
undertook courses that included the topic under 
consideration in the previous academic year and all these 
students stated that this tool would have been of great help 
to them. The program was then tested with a class of 18 
novel HND students during the academic year (2010-2011).  
These students were able to choose their own personal set of 
branches that make up valid spanning trees and fundamental 
cutsets in class. This reduced the amount of time that the 
students needed to learn and understand these two concepts, 
as well as the success rate among students. 
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