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Abstract—The hybrid SOM-NG algorithm was formulated to
improve the quantization precision in Self Organizing Maps by
the means of combine both SOM and Neural Gas properties using
a parameter γ to tune the topology preservation. A supervised
learning algorithm is proposed to take advantage of the balanced
hybrid algorithm. The proposed algorithm makes a linear ap-
proximation of the goal function for every Voronoi region. The
algorithm gives good estimations and well balanced prototype
positions combining the benefits of the original algorithms.

Index Terms—hybrid algorithm, supervised learning, neural
networks, self-organizing mapping, neural gas.

I. INTRODUCTION

The Self-Organizing Map (SOM) [1] is a very popular
algorithm because of its many features, specially the topo-
logical preservation between input and output spaces. Most of
the uses of SOM were related with dimensionality reduction
and unsupervised training, but SOM has been used in a
supervised way in different applications. Supervised SOM was
developed by different authors in different ways specially for
classification purposes, but in this work numeric modeling will
be studied.

Supervised modeling was approached in different ways.
Additive composition of several supervised SOM networks [2]
was developed from the theory that an additive composition of
linear functions can be estimated with an additive composition
of neural networks. Continuous Interpolation Self-Organizing
Maps (CI-SOM) [3] are created using interpolation methods
to approximate a continuous function using discrete prototype
vectors. For time-series regression, special networks were
created, Temporal Kohonen Map (TKM) [4] and Recurrent
SOM [5] are examples of the use of leaky integrators for
temporal sequence processing, they are compared in [6].

The main drawback of SOM training is the lack of quan-
tization precision, specially if compared to Neural Gas (NG)
[7] algorithm that does not take into account topological order
aiming to minimize the quantization error. In [7], a regression
method is also presented, using a reference value for the
the prototype vector’s position and a gradient vector for its
Voronoi region.

Using these algorithms has a main advantage of using local
approximations for each prototype vector, i.e., a model in every
Voronoi region, so a closer model can be obtained if compared
with using a single model for the whole data set. Using local

linear models also require less computational resources, as
they use simple mathematical techniques.

A hybrid algorithm was proposed based on both SOM
and NG in [8]. This algorithm combines their properties and
obtains a more balanced result achieving a trade-off between
topology preservation and quantization error, i.e., between
data projection and accuracy. This hybrid algorithm is briefly
explained in Section II. Using this algorithm, a new estimation
tool will be formulated in Section III and Section IV will
explain the training procedure. The algorithm is tested in
Section V and discussed in Section VI.

II. SOM-NG ALGORITHM

The SOM-NG algorithm is based on two different kernels:

hNG(v, wi) = exp

(
− k(v, wi)

γ2 · σ(t)

)
(1)

hSOM (v, wi) = exp

(
− s(ri∗, ri)

σ(t)

)
(2)

where k(v, wi) and s(ri∗, ri) are rank functions, γ is the
topology preservation constant and σ(t) is the neighborhood
radius in training epoch t.

Each kernel determines the behaviour of each algorithm,
i.e., hNG is the influence over quantization error, as in NG,
and hSOM represents the topology preservation in a SOM-like
way. For the sake of simplicity the parameters will be removed
from expressions and hNG and hSOM will be used instead of
hNG(vj , wi) and hSOM (vj , wi) in the whole paper.

The ranking function k(v, wi) is the position of prototype
vector wi in the distance ranking to data vector v in the
input space. The best matching unit, i.e., the closest one, gets
ranking 0, the next closer one gets 1 and continues until m−1,
where m is the number of prototype vectors.

Ranking function s(ri∗, ri) is a bit more complex because
it is a modified ranking in distance between the best matching
unit ri∗ and unit ri considering both of them on the output
space. The modified ranking imposes that map units at same
distance from a map unit must have same ranking value, so
ranking values in a square lattice will be like 0,1,1,1,1,5,5,
and so on. Calculating this ranking is a bit more complex
than a monotonically increasing one, but it is constant during
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the training, so it is calculated once before training starts.
This modified ranking function obtains more robust results
than a monotonous one because of the lack of random tie-
breakers. The modified ranking is similar to a sigmoid function
of distance, and it produces a slimmer Gaussian bell in the
prototypes close to the bmu with a wider base in the farther
ones.

The neighborhood radius σ(t) was chosen to decrease
exponentially to improve the algorithm’s steadiness, the rec-
ommended expression is:

σ(t) = σt0·
(σtmax

σt0

)t/tmax

(3)

where t is the training epoch, tmax is the number of training
epochs, σt0 is the initial value and σtmax is the final value.
Appropriate values for them are: σ0 = m/2 and σtmax

=
0.001, since it should tend to zero in order to minimize the
quantization error.

In the unsupervised algorithm, the energy cost function
optimizes quantization in a cooperative way. The energy cost
function according to the squared Euclidean distance is:

E =
∑
i,j

hNG · hSOM · ‖vj − wi‖2 (4)

The batch version of the algorithm is obtained using New-
ton’s method (5).

∆wi = −JE(wi) ·H−1E (wi) (5)

where JE is the Jacobian matrix of the energy cost function
E and HE is the Hessian matrix. Thus they are calculated from
(4) and the following expressions are obtained:

JE(wi) = −2 ·
∑
j

hSOM · hNG ·
−→
dji (6)

where −→dji = vj − wi is the distance vector for data point
vj and prototype vector wi.

HE(wi) = 2 ·
∑
j

hSOM · hNG (7)

The increment for each prototype vector wi in every epoch
is calculated using (6) and (7) by substitution in (5):

∆wi =

∑
j hSOM · hNG ·

−→
dji∑

j hSOM · hNG
(8)

And the updating rule is:

wi =

∑
j hSOM · hNG · vj∑

j hSOM · hNG
(9)

This updating rule is very similar to batch SOM and batch
NG [9] ones. If the hSOM term is deleted, i.e., replacing it
by the unity, the updating rule is the NG one and the opposite
is obtained canceling the hNG term, it results the batch SOM
one, with the difference of the modified ranking kernel. In

fact, values of γ over 80 usually make the hNG tend to the
unity and that is the reason why the algorithm behaves in a
SOM way for high values of γ.

This algorithm is tested and discussed in [8].

III. SUPERVISED SOM-NG ALGORITHM

Once the previously developed SOM-NG algorithm was
presented, a supervised learning rule will be added. The aim
is to approximate an unknown scalar field f(v), defined in a
multidimensional input space with the following expression:

f̃(v) = yi∗ + ai∗ · (v − wi∗) (10)

where yi∗ is a reference value in the position of wi∗ in
the input space and ai∗ is the gradient in the Voronoi region
defined by wi∗, which is the best matching unit for input vector
v.

The energy cost function for Supervised SOM-NG is:

ES =
∑
i,j

hSOM · hNG ·
(
f(vj)− f̂i(vj)

)2
(11)

where f̂i(vj) = yi − ai · (vj − wi) is the approximation for
data vector j using prototype vector i.

As it was done with wi, Newton’s method will be employed
to calculate the learning rules for the estimation parameters:

∆yi = −JE(yi) ·H−1E (yi) (12)

∆ai = −JE(ai) ·H−1E (ai) (13)

Both Jacobian and Hessian matrices are calculated with
respect of yi:

JE(yi) = −2 ·
∑
j

hSOM · hNG ·
(
f(vj)− f̂i(vj)

)
(14)

HE(yi) = 2 ·
∑
j

hSOM · hNG (15)

As the variation term for the Voronoi region ai ·(vj−wi) is
symmetrical around the region center wi, the whole term can
be despised and the increment becomes:

∆yi =

∑
j hSOM · hNG · (f(vj)− yi)∑

j hSOM · hNG
(16)

The following updating rule is obtained:

yi =

∑
j hSOM · hNG · f(vj)∑

j hSOM · hNG
(17)

The same process is carried out with ai:

JE(ai) = −2 · hSOM · hNG ·
−→
dji ·

(
f(vj)− f̂i(vj)

)
(18)

HE(ai) = −2 · hSOM · hNG ·
(−→
dji ·
−→
dji

)
(19)
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The increment for ai is:

∆ai =

∑
j hSOM · hNG ·

−→
dji ·

(
f(vj)− f̂i(vj)

)
hSOM · hNG ·

(−→
dji ·
−→
dji

) (20)

Since expression (20) cannot be simplified, an increment
rule is obtained instead of an absolute updating rule.

IV. PROCEDURE OF THE ALGORITHM

The prototype vectors and the estimation parameters are
randomly initialized with small random values within the
interval (0, 0.1).

begin initialize randomly prototype vectors wi and
estimation parameters yi and ai
determine the ranks of the map units s(ri∗, ri)
calculate the neighborhood radius σ(t) for every epoch
according to (3)
do for each epoch

determine the ranks of the prototypes k(vj , wi)
calculate both kernels using (1) and (2)
update the prototypes wi using (9)
update the estimation values yi by means of (17)

until the maximum number of epochs
determine the ranks of the prototypes k(vj , wi)
do for each epoch

calculate both kernels using (1) and (2)
modify the estimation vectors ai as in (20)

until the maximum number of epochs
end

During the first loop, prototype vectors wi and estimation
values yi are distributed along the input space to make the best
possible fit to the data. In the second loop, gradient vectors
ai are estimated keeping constant the previously calculated
parameters wi and yi.

The first loop includes an inner loop that calculates the
distance from every prototype to each data vector and sorts
them into the distance ranking k(vj , wi), and after it the
distance ranking is calculated again. This result is constant as
the prototype vectors wi are not modified in the second loop.
In the second loop the gradient vectors ai are approximated
using the corresponding neighborhood radius for each epoch,
starting with σt0 again.

The computational cost of the algorithm itself is approxi-
mately linear with the number of data vectors and the map
size, but it also has to be taken in care the complexity of the
operations, specially the matrix multiplication.

V. EXPERIMENTAL TESTING

The quality of the proposed algorithm was compared with
the well known SOM and NG [10] algorithms in their batch
versions. The comparison was done using different values of
the topology preservation constant γ, each one of them with a
representative range of square output maps. Experiments were

repeated 20 times with a previously generated set of values as
initialization to ensure that all the differences are produced by
the algorithms and not by external causes.

The first measure is the quantization error qe defined as the
mean distance from a data vector to its best matching unit
according to

qe =

∑N
j=1 ‖vj − wj∗‖

N
(21)

where N is the number of data vectors.
Topographic preservation is measured using the topographic

error proposed in [11]. The topographic error is defined as
the proportion of data whose two best matching units are not
adjacent in the output map, mathematically defined as:

te =
1

N

N∑
j=1

u(vj) (22)

where u(v) is equal to 1 when the best and second best
matching units are non-adjacent. Otherwise it is equal to zero.
In this work 2-neighborhood measure is used, for rectangular
maps it means each unit considers neighbors all the adjacent
units, including the diagonal ones.

Finally, and most important, the estimation ability is mea-
sured by its root mean square error according to (23).

RMSE =

√√√√ 1

N

N∑
j=1

(
f(vj)− f̂(vj)

)2
(23)

All the non-numerical attributes and the missing values were
removed before training. Data was normalized to zero mean
and unitary standard deviation for every variable. For each
data set a training data collection was created and the full
collection was used to calculate the quality measures qe, te
and RMSE.

Estimation error for SOM was calculated using a normal
training including all input and output variables together. The
final value for the output variable is considered to be the
estimation for any input vector in the Voronoi region.

For comparison purposes, new values will be calculated for
errors. Quantization and estimation errors will be normalized
with the expressions:

q′e =
qe|SOM−NG

qe|NG

(24)

RMSE′ =
RMSE|SOM−NG

RMSE|NG

(25)

where q′e and RMSE′ are the relative quantization error
and the relative root mean square error respectively and
error|algorithm specifies which error is calculated and the
algorithm that produces it. A value of 1 for any of them
represents that the error is the same for the hybrid algorithm,
i.e., the tested one, and NG, i.e., the reference algorithm.

Topographic comparative error is calculated using:

t′e = te|SOM−NG − te|SOM (26)
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where t′e is the comparative topographic error, that repre-
sents how worse the topographic preservation is in the hybrid
algorithm compared to SOM results. Values of t′e are withing
the range [−1, 1], where t′e > 0 means the hybrid algorithm
is not as ordered as SOM and t′e < 0 means the opposite.

A. Concrete Passive Strength data set

This data set contains lab measurements of compressive
strength for different concrete types used in [12] and it was
obtained from UCI Machine Learning Repository [13]. This
data set is used to measure the quality of the trained maps
in non-projected data. In this experiment the dimensionality
reduction and the map projection is not taken in care, but the
influence of parameter γ over the quality measures is studied.
Training data was created using a representative fraction of
data vectors uniformly distributed along the whole data set.

Both qe and te are represented in Figure 1 for three different
map sizes. Values of γ lower than the unity have similar beha-
viour, with low quantization error and very high topographic
error. On the opposite side, high values of γ have higher
quantization errors and lower topographic ones. Intermediate
values, like γ = 10, offer good equilibrium between both
errors, being close as good in quantization as low values and
also close to high values in topographic preservation.

The most interesting value is γ = 10 so it is going to be
expanded to different map sizes. Results are shown in Figure
2.

This data set has a high dependence on initialization values
because data points are one single cluster in the input space.
This means that all the algorithms have a high deviation from
their average value for such a big number of experiments. In
Figure 2, both quantization and topographic errors have an
acceptable balance as it was expected from that value of γ.
It also can be seen that in average terms the estimation has a
similar accuracy in comparison to the NG approach. Standard
deviations were slightly lower in the proposed algorithm than
in SOM for most of the calculated map sizes with γ = 10, so
it can be considered robust enough.

In Figure 3, the estimation error is shown for three examples
of map size and several values of γ. Low values of γ offer
less accurate estimations and intermediate values reach good
estimation capabilities while keeping a good trade-off with the
other two quality measures.

B. Trigonometric function

To study the estimation capability of the proposed algorithm
in topologically ordered data, a trigonometric function is
going to be estimated with SOM, NG and hybrid SOM-NG
algorithms. The selected function is:

z = f(x, y) = sin (x+ y) · cos (x · y) (27)

The training data set was created in (x, y) ∈ [−4, 4] ×
[−4, 4] ⊂ R2 using a coarse mesh in the center of the region
and a fine one close to the limits. The function is represented
in Figure 4, just for illustrative purposes. The test data was
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Figure 4. Trigonometric function to be estimated

uniformly arranged within the whole function domain, using
a mesh with a step of 0.01 in both x and y.

Quantization error for this data set is different, as data is
a discretized plane and SOM algorithms have better perfor-
mance. If qe is calculated for the training data NG still has the
lowest quantization error, but for the test data set more ordered
algorithms have better values, so SOM and high values of γ
in the hybrid algorithm offer better quantization than NG.

Even in this circumstance, the hybrid algorithm has a good
result, between the NG and SOM algorithms, as it can be seen
in Figure 6. This special situation is good for the purpose
of checking the algorithm, as it tends to get a good results
because of the mixture of behaviours between SOM and NG.

In this data set, topographic preservation is similar to SOM,
having values close to 0 in most of cases and bunch of outliers
due to some different initializations that cause zonal disorders
in one of the algorithms.

Estimation quality is good as it can be seen in the estimation
error box-plot, looking for the quality of the best algorithm in
estimation as it did in quantization. Estimation absolute results
for three map sizes and different values of γ are shown in
Fig 7. Best estimations are obtained for γ = 0.2, at the cost
of having a very high topographic error, estimations obtained
with values of γ greater than 5 are slightly worse, but keeping
an acceptable topographic order.

VI. CONCLUSION

The hybrid SOM-NG algorithm has been tested with ad-
ditional data sets to the previous work [8] and the results
regarding data approximation and topographic preservation are
confirmed.

The algorithm was improved with supervised learning using
linear approximation for every Voronoi region. The value of
γ has great influence over the final training.

Small values of γ, i.e., lower than 1, have a tendency
towards NG behaviour, topographic preservation is very low
and quantization is close to reach optimal results. The main
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Figure 1. qe and te versus γ for three different map sizes using Concrete data set
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Figure 2. Concrete Passive Strength relative errors versus map size for γ = 10
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Figure 3. RMSE versus γ for three different map sizes for Concrete data set

drawback of using this learning condition is the lack of
robustness. Low values of γ reduce the cooperation between
neurons, as if the neighborhood radius had a smaller value,
and initialization has a greater influence on the final results.
If topographic preservation is not necessary, NG is a simpler
and better choice.

The result is similar to a SOM training for high values of
γ, having very small differences for any value over 80. Topo-
graphic preservation is very good, with some differences with
SOM because of the ranking based kernel. The estimation done
using the network as function approximator is satisfactory in
comparison with the NG approach.

During the experiments the neighborhood function based
on the modified ranking s(ri∗, ri) has different influence over
the rest of the units than the usual squared distance. It is

important to realize that the neighborhood radius for the
squared euclidean distance measures how far does the bmu
affect other units in the cooperative phase, while in the ranking
it means how many units does it affect.

The most interesting feature of this algorithm is the use
of intermediate γ values where a good trade-off solution is
obtained. Relative measures, like the ones presented in Section
V, demonstrate that close to optimum results can be achieved
with a single algorithm.
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