
The Greedy Approach to Dictionary-Based Static Text Compression on a
Distributed System

Sergio De Agostino
Computer Science Department

Sapienza University
Rome, Italy

Email: deagostino@di.uniroma1.it

Abstract—The greedy approach to dictionary-based static
text compression can be executed by a finite state machine.
When it is applied in parallel to different blocks of data
independently, there is no lack of robustness even on standard
large scale distributed systems with input files of arbitrary
size. Beyond standard large scale, a negative effect on the
compression effectiveness is caused by the very small size of
the data blocks. A robust approach for extreme distributed
systems is presented in this paper, where this problem is
fixed by overlapping adjacent blocks and preprocessing the
neighborhoods of the boundaries.

Keywords-lossless compression; string factorization; parallel
computing; distributed system; scalability; robustness

I. INTRODUCTION

Static data compression implies the knowledge of the in-
put type. With text, dictionary based techniques are particu-
larly efficient and employ string factorization. The dictionary
comprises typical factors plus the alphabet characters in
order to guarantee feasible factorizations for every string.
Factors in the input string are substituted by pointers to
dictionary copies and such pointers could be either variable
or fixed length codewords.

The optimal factorization is the one providing the best
compression, that is, the one minimizing the sum of the
codeword lengths. Efficient sequential algorithms for com-
puting optimal solutions were provided by means of dy-
mamic programming techniques [1] or by reducing the prob-
lem to the one of finding a shortest path in a directed acyclic
graph [2]. From the point of view of sequential computing,
such algorithms have the limitation of using an off-line
approach. However, decompression is still on-line and a very
fast and simple real time decoder outputs the original string
with no loss of information. Therefore, optimal solutions
are practically acceptable for read-only memory files where
compression is executed only once. Differently, simpler
versions of dictionary based static techniques were proposed
which achieve nearly optimal compression in practice.

An important simplification is to use a fixed length code
for the pointers, so that the optimal decodable compression
for this coding scheme is obtained by minimizing the
number of factors. Such variable to fixed length approach
is robust since the dictionary factors are typical patterns of

the input specifically considered. The problem of minimiz-
ing the number of factors gains a relevant computational
advantage by assuming that the dictionary is prefix (suffix),
that is, all the prefixes (suffixes) of a dictionary element
are dictionary elements [3]-[5]. The left to right greedy
approach is optimal only with suffix dictionaries. An optimal
factorization with prefix dictionaries can be computed on-
line by using a semi-greedy procedure [4], [5]. On the other
hand, prefix dictionaries are easier to build by standard
adaptive heuristics [6], [7]. These heuristics are based on
an ”incremental” string factorization procedure [8], [9]. The
most popular for prefix dictionaries is the one presented
in [10]. However, the prefix and suffix properties force
the dictionary to include many useless elements which
increase the pointer size and slightly reduce the compression
effectiveness. Moreover, the greedy approach to dictionary-
based static text compression is optimal, in practice, for
any kind of dictionary even if the theoretical worst case
analysis shows that the multiplicative approximation factor
with respect to optimal compression achieves the maximum
length of a dictionary element. A more natural dictionary
with no prefix and no suffix property is the one built by
the heuristic in [11] or by means of separator characters
as, for example, space, new line and punctuation characters
for strings of a natural language. Finally, given an arbitrary
dictionary, greedy static dictionary-based compression can
be executed by a finite state machine.

Theoretical work was done, mostly in the nineties, to
design efficient parallel algorithms on a random access
parallel machine (PRAM) for dictionary-based static text
compression [12]-[20]. Although the PRAM model is out of
fashion today, shared memory parallel machines offer a good
computational model for a first approach to parallelization.
When we address the practical goal of designing distributed
algorithms we have to consider two types of complexity, the
interprocessor communication and the input-output mecha-
nism. While the input/output issue is inherent to any parallel
algorithm and has standard solutions, the communication
cost of the computational phase after the distribution of
the data among the processors and before the output of
the final result is obviously algorithm-dependent. So, we
need to limit the interprocessor communication and involve

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

more local computation to design a practical algorithm. The
simplest model for this phase is, of course, a simple array
of processors with no interconnections and, therefore, no
communication cost. Parallel decompression is, obviously,
possible on this model [15]. With parallel compression, the
main issue is the one concerning scalability and robustness.
Standardly, the scale of a system is considered large when
the number of nodes has the order of magnitude of a
thousand. Modern distributed systems may nowadays consist
of hundreds of thousands of nodes, pushing scalability well
beyond traditional scenarios (extreme distributed systems).

In [21], an approximation scheme of optimal compression
with static prefix dictionaries was presented for massively
parallel architectures, using no interprocessor communica-
tion during the computational phase since it is applied
in parallel to different blocks of data independently. The
scheme is algorithmically related to the semi-greedy ap-
proach previously mentioned and implementable on extreme
distributed systems because adjacent blocks overlap and the
neighborhoods of the boundaries are preprocessed. However,
with standard large scale the overlapping of the blocks, the
preprocessing of the boundaries and the prefix property of
the dictionary are not necessary to achieve nearly optimal
compression. Starting from this observation, we present in
this paper two implementations of the greedy approach to
static text compression with an arbitrary dictionary on a large
scale and an extreme distributed system, respectively.

In Section II, we describe the different approaches to
dictionary-based static text compression. The previous work
on parallel approximations of optimal compression with
prefix dictionaries is given in Section III. Section IV shows
the two implementations of the greedy approach for arbitrary
dictionaries. Conclusions and future work are given in
Section V.

II. DICTIONARY-BASED STATIC TEXT COMPRESSION

In this section, we describe the main dictionary-based
static compression techniques and make a greedy versus
optimal analysis. Then, we provide a finite state machine
implementation of the greedy approach with an arbitrary
dictionary.

A. Optimal Solutions

As mentioned in the introduction, the dictionary com-
prises typical factors (including the alphabet characters)
associated with fixed or variable length codewords. The
optimal factorization is the one minimizing the sum of the
codeword lengths and sequential algorithms for computing
optimal solutions were provided by means of dynamic
programming techniques [1] or by reducing the problem to
the one of finding a shortest path in a directed acyclic graph
[2]. With suffix dictionaries we obtain optimality by means
of a simple left to right greedy approach, that is, advancing
with the on-line reading of the input string by selecting

the longest matching factor with a dictionary element. Such
procedure can be computed in real time by storing the
dictionary in a trie data structure (a trie is a tree where the
root represents the empty string and the edges are labeled by
the alphabet characters). If the dictionary is prefix and the
codewords length is fixed, there is an optimal semi-greedy
factorization which is computed by the procedure of Fig. 1
[4], [5]. At each step, we select a factor such that the longest
match in the next position with a dictionary element ends to
the rightest. Since the dictionary is prefix, the factorization
is optimal. The algorithm can even be implemented in real
time. The real time implementation employs an augmented
trie data structure, obtained by modifying the original one
[5].

j:=0; i:=0
repeat forever

for k = j + 1 to i + 1 compute

h(k): xk...xh(k) is the longest match in the kth position
let k′ be such that h(k′) is maximum

xj ...xk′−1 is a factor of the parsing; j := k′; i := h(k′)

Figure 1. The semi-greedy factorization procedure.

The semi-greedy factorization can be generalized to any
dictionary by considering only those positions, among the
ones covered by the current factor, next to a prefix that is
a dictionary element [4]. We will see in the next subsection
that the generalized semi-greedy factorization procedure is
not optimal while the greedy one is not optimal even when
the dictionary is prefix.

B. Greedy versus Optimal Factorizations

The maximum length of a dictionary element is an obvi-
ous upper bound to the multiplicative approximation factor
of any string factorization procedure with respect to the
optimal solution. We show that this upper bound is tight for
the greedy and semi-greedy procedures when the dictionary
is arbitrary. Such tightness is kept by the greedy procedure
even if the dictionary is prefix. Let baban be the input
string and let {a, b, bab, ban} be the dictionary. Then, the
optimal factorization is b, a, ban while bab, a, a, ..., a, ...a is
the factorization obtained whether the greedy or the semi-
greedy procedure is applied. On the other hand, with the
prefix dictionary {a, b, ba, bab, bak : 2 ≤ k ≤ n}, the
optimal factorization ba, ban is computed by the semi-
greedy approach while the greedy factorization remains the
same. These examples, obviously, prove our statement on
the tightness of the upper bound.

C. The Finite State Machine Implementation

We show the finite state machine implementation pro-
ducing the on-line greedy factorization of a string with
an arbitrary dictionary. The most general formulation for

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

a finite state machine M is to define it as a sixtuple
(A,B,Q, δ, q0, F) with an input alphabet A, an output
alphabet B, a set of states Q, a transition function δ :
QxA− > QxB∗, an initial state q0 and a set of accepting
states F ⊆ Q. The trie storing the dictionary is a subgraph of
the finite state machine diagram. It is well-known that each
dictionary element is represented as a path from the root to
a node of the trie where edges are labeled with an alphabet
character (the root representing the empty string). The edges
are directed from the parent to the child and the set of
nodes represent the set of states of the machine. The output
alphabet is binary and the factorization is represented by a
binary string having the same length of the input string. The
bits of the output string equal to 1 are those corresponding to
the positions where the factors start. Since every string can
be factorized, every state is accepting. The root represents
the initial state. We need only to complete the function δ,
by adding the the missing edges of the diagram. The empty
string is associated as output to the edges in the trie. For
each node, the outcoming edges represent a subset of the
input alphabet. Let f be the string (or dictionary element)
corresponding to the node v in the trie and a an alphabet
character not represented by an edge outcoming from v. Let
fa = f1 · · · fk be the on-line greedy factorization of fa and
i the smallest index such that fi+1 · · · fk is represented by a
node w in the trie. Then, we add to the trie a directed edge
from v to w with label a. The output associated with the
edge is the binary string representing the sequence of factors
f1 · · · fi. By adding such edges, the machine is entirely
defined. Redefining the machine to produce the compressed
form of the string is straightforward.

III. PREVIOUS WORK

Given an arbitrary dictionary, for every integer k greater
than 1 there is an O(km) time, O(n/km) processors dis-
tributed algorithm factorizing an input string S with a cost
which approximates the cost of the optimal factorization
within the multiplicative factor (k+m−1)/k, where n and
m are the lengths of the input string and the longest factor
respectively [12]. However, with prefix dictionaries a better
approximation scheme was presented in [21], producing a
factorization of S with a cost approximating the cost of
the optimal factorization within the multiplicative factor
(k + 1)/k in O(km) time with O(n/km) processors. This
second approach was designed for massively parallel archi-
tecture and is suitable for extreme distributed systems, when
the scale is beyond standard large values. On the other hand,
the first approach applies to standard small, medium and
large scale systems. Both approaches provide approximation
schemes for the corresponding factorization problems since
the multiplictive approximation factors converge to 1 when
km converge to n. Indeed, in both cases compression is
applied in parallel to different blocks of data independently.

Beyond standard large scale, adjacent blocks overlap and the
neighborhoods of the boundaries are preprocessed.

To decode the compressed files on a distributed system,
it is enough to use a special mark occurring in the sequence
of pointers each time the coding of a block ends. The input
phase distributes the subsequences of pointers coding each
block among the processors. Since a copy of the dictionary
is stored in every processor, the decoding of the blocks is
straightforward.

In the following two subsections, we describe the two
approaches. Then, how to speed up the preprocessing phase
of the second approach is described in the last subsection.
In the next section, we present new results by arguing that
we can relax on the requirement of computing a theoretical
approximation of optimal compression since, in practice, the
greedy approach is optimal on data blocks sufficiently long.
On the other hand, when the blocks are too short since the
scale of the distributed system is beyond standard values, the
overlapping of the adjacent blocks and the preprocessing
of the neighborhoods of the boundaries are sufficient to
garantee the robustness of the greedy approach.

A. Standard Scale Distributed Systems

Given an input string of length n, we simply apply in
parallel optimal compression to blocks of length km, with
k integer greater than one and m maximum length of a
factor as stated at the beginning of this section. Every
processor stores a copy of the dictionary. For arbitrary
dictionary, we execute the dynamic programming procedure
computing the optimal factorization of a string in linear
time [1] (the procedure in [2] is pseudo-linear for fixed-
length coding and, even, super linear for variable length).
Obviously, this works for prefix and suffix dictionaries as
well and, in any case, we know the semi-greedy and greedy
approach are implementable in linear time. It follows that
the algorithm requires O(km) time with n/km processors
and the multiplicative approximation factor is (k+m−1))/k
with respect to any factorization. Indeed, when the boundary
cuts a factor the suffix starting the block and its substrings
might not be in the dictionary. Therefore, the multiplicative
approximation factor follows from the fact that m − 1 is
the maximum length for a proper suffix as shown in Fig. 2
(sequence of plus signs in parentheses). If the dictionary is
suffix, the multiplicative approximation factor is (k+1))/k
since each suffix of a factor is a factor.

+(+++++++)
———————/——————————–

Figure 2. The making of the surplus factors.

The approximation scheme is suitable only for standard

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

scale systems unless the file size is very large. In effect,
the block size must be the order of kilobytes to guarantee
robustness. Beyond standard large scale, overlapping of
adjacent blocks and a preprocessing of the boundaries is
required as we will see in the next subsection.

B. Beyond Standard Large Scale

With prefix dictionaries a better approximation scheme
was presented in [21]. During the input phase blocks of
length m(k + 2), except for the first one and the last one
which are m(k+1) long, are broadcasted to the processors.
Each block overlaps on m characters with the adjacent block
to the left and to the right, respectively (obviously, the first
one overlaps only to the right and the last one only to the
left).

We call a boundary match a factor covering positions in
the first and second half of the 2m characters shared by
two adjacent blocks. The processors execute the following
algorithm to compress each block:

• For each block, every corresponding processor but
the one associated with the last block computes the
boundary match between its block and the next one
ending furthest to the right, if any;

• each processor computes the optimal factorization from
the beginning of its block to the beginning of the
boundary match on the right boundary of its block (or
the end of its block if there is no boundary match).

++(++++++)
———————/——————————–

xxxxxxxxxxx
..................

Figure 3. The making of a surplus factor.

Stopping the factorization of each block at the beginning
of the right boundary match might cause the making of
a surplus factor, which determines the multiplicative ap-
proximation factor (k + 1)/k with respect to any other
factorization. Indeed, as it is shown in Fig. 3, the factor in
front of the right boundary match (sequence of x’s) might
be extended to be a boundary match itself (sequence of
plus signs) and to cover the first position of the factor after
the boundary (dotted line). Then, the approximation scheme
produces a factorization of S with a cost approximating the
cost of the optimal factorization within the multiplicative
factor (k+1)/k in O(km) time with O(n/km) processors.

In [21], it is shown experimentally that for k = 10 the
compression ratio achieved by such factorizarion is about the
same as the sequential one and, consequently, the approach

is suitable for extreme distributed systems, as we will explain
in the next section.

C. Speeding up the Preprocessing

The parallel running time of the preprocessing phase
computing the boundary matches is O(m2) by brute force.
To lower the complexity to O(m), an augmented trie data
structure is needed. For each node v of the trie, let f
be the dictionary element corresponding to v and a an
alphabet character not represented by an edge outcoming
from v. Then, we add an edge from v to w with label a,
where w represents the longest proper suffix of fa in the
dictionary. Each processor has a copy of this augmented
trie data structure and first preprocess the 2m characters
overlapped by the adjacent block on the left boundary and,
secondly, the ones on the right boundary. In each of these
two sub-phases, the processors advance with the reading of
the 2m characters from left to right, starting from the first
one while visiting the trie starting from the root and using
the corresponding edges. A temporary variable t2 stores the
position of the current character during the preprocessing
while another temporary variable t1 is, initially, equal to t2.
When an added edge of the augmented structure is visited,
the value t = t2−d+1 is computed where d is the depth of
the node reached by such edge. If t is a position in the first
half of the 2m characters, then t1 is updated by changing its
value to t. Else, the procedure stops and t2 is decreased by
1. If t2 is a position in the second half of the 2m characters
then t1 and t2 are the first and last position of a boundary
match, else there is no boundary match.

IV. THE GREEDY APPROACH

In practice, greedy factorization is nearly optimal. As
a first approach, we simply apply in parallel left to right
greedy compression to blocks of length km. With standard
scale systems, the block size must be the order of kilobytes
to guarantee robustness. Each of the O(n/km) processors
could apply the finite state machine implementation of
subsection II.C to its block.

Beyond standard large scale, overlapping of adjacent
blocks and a preprocessing of the boundaries are required
as for the optimal case. Again, during the input phase
overlapping blocks of length m(k+2) are broadcasted to the
processors as in the previous section. On the other hand, the
definition of boundary match is extended to those factors,
which are suffixes of the first half of the 2m characters
shared by two adjacent blocks. The following procedure,
even if it is not an approximation scheme from a theoretical
point of view, performs similarly (observe that, in this case,
we compute the longest boundary match rather than the one
ending furthest to the right):

• For each block, every corresponding processor but
the one associated with the last block computes the
longest boundary match between its block and the next

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

one;

• each processor computes the greedy factorization from
the end of the boundary match on the left boundary of
its block to the beginning of the boundary match on
the right boundary.

To lower the parallel running time of the preprocessing
phase to O(m), the same augmented trie data structure, de-
scribed in the previous section, is needed but, in this case, the
boundary matches are the longest ones rather than the ones
ending furthest to the right. Then, besides the temporary
variables t1 and t2, employed by the preprocessing phase
described in the previous section, two more variables τ1 and
τ2 are required and, initially, equal to t1 and t2. Each time
t1 must be updated by such preprocessing phase, before it
the value t2−t1+1 is compared with τ2−τ1. If it is greater
or τ2 is smaller than the last position of the first half of the
2m characters, τ1 and τ2 are set equal to t1 and t2−1. Then,
t1 is updated. At the end of the procedure, τ1 and τ2 are the
first and last positions of the longest boundary match. We
wish to point out that there is always a boundary match that
is computed, since the final value of τ2 always corresponds
to a position equal either to one in the second half of the
2m characters or to the last position of the first half. Again,
after preprocessing each of the O(n/km) processors could
apply the finite state machine implementation of subsection
II.C to its block.

The approach is nearly optimal for k = 10, as the ap-
proximation scheme of previous section. The compression
ratio achieved by such factorizarion is about the same as
the sequential one. Considering that typically the average
match length is 10, one processor can compress down to 100
bytes independently. This is why the approximation scheme
was presented for massively parallel architecture and the
approach, presented in this section, is suitable for extreme
distributed systems, when the scale is beyond standard large
values. Indeed, with a file size of several megabytes or more,
the system scale has a greater order of magnitude than the
standard large scale parameter. We wish to point out that the
computation of the boundary matches is very relevant for
the compression effectiveness when an extreme distributed
system is employed since the sub-block length becomes
much less than 1K. With standard large scale systems the
block length is several kilobytes with just a few megabytes
to compress and the approach using boundary matches is
too conservative.

V. CONCLUSION

We presented parallel implementations of the greedy
approach to dictionary-based static text compression suit-
able for standard and non-standard large scale distributed
systems. In order to push scalability beyond what is tradi-
tionally considered a large scale system, a more involved

approach distributes overlapping blocks to compute bound-
ary matches. These boundary matches are relevant to main-
tain the compression effectiveness on a so-called extreme
distributed system. If we have a standard small, medium or
large scale system available, the approach with no boundary
matches can be used. The absence of a communication
cost during the computation guarantees a linear speed-up.
Moreover, the finite state machine implementation speeds
up the execution of the distributed algorithm in a relevant
way when the data blocks are large, that is, when the size of
the input file is large and the size of the distributed system
is relatively small. As future work, experiments on parallel
running times should be done to see how the preprocessing
phase effects on the linear speed-up when the system is
scaled up beyond the standard size and how relevant the
employment of the finite state machine implementation is
when the data blocks are very small.

REFERENCES

[1] R. A. Wagner, ”Common Phrases and Minimum Text Stor-
age,” Communications of the ACM, vol. 16, 1973, pp. 148-
152.

[2] E. J. Shoegraf and H. S. Heaps, ”A Comparison of Algorithms
for Data Base Compression by Use of Fragments as Language
Elements,” Information Storage and Retrieval, vol. 10, 1974,
pp. 309-319.

[3] M. Cohn and R. Khazan, ”Parsing with Suffix and Prefix Dic-
tionaries,” Proceedings IEEE Data Compression Conference,
1996, pp. 180-189.

[4] M. Crochemore and W. Rytter, Jewels of Stringology, World
Scientific, 2003.

[5] A Hartman and M. Rodeh, ”Optimal Parsing of Strings,”
Combinatorial Algorithms on Words (eds. Apostolico, A.,
Galil, Z.), Springer, 1985, pp. 155-167.

[6] T. C. Bell, J. G. Cleary and I. H. Witten, Text Compression,
Prentice Hall, 1990.

[7] J. A. Storer, Data Compression: Methods and Theory, Com-
puter Science Press, 1988.

[8] A. Lempel and J. Ziv, ”On the Complexity of Finite Se-
quences,” IEEE Transactions on Information Theory, vol. 22,
1976, pp. 75-81.

[9] J. Ziv and A. Lempel, ”Compression of Individual Sequences
via Variable-Rate Coding,” IEEE Transactions on Information
Theory, vol. 24, 1978, pp. 530-536.

[10] T. A. Welch, ”A Technique for High-Performance Data Com-
pression,” IEEE Computer, vol. 17, 1984, pp. 8-19.

[11] V. S. Miller and M. N. Wegman, ”Variations on Theme by
Ziv - Lempel,” Combinatorial Algorithms on Words (eds.
Apostolico, A., Galil, Z.), Springer, 1985, pp. 131-140

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

[12] L. Cinque, S. De Agostino and L. Lombardi, ”Scalability
and Communication in Parallel Low-Complexity Lossless
Compression,” Mathematics in Computer Science, vol. 3,
2010, pp. 391-406.

[13] S. De Agostino, Sub-Linear Algorithms and Complexity
Issues for Lossless Data Compression, Master’s Thesis, Bran-
deis University, 1994.

[14] S. De Agostino, Parallelism and Data Compression via Tex-
tual Substitution, Ph. D. Dissertation, Sapienza University of
Rome, 1995.

[15] S. De Agostino, ”Parallelism and Dictionary-Based Data
Compression,” Information Sciences, vol. 135, 2001, pp. 43-
56.

[16] S. De Agostino S. and J. A. Storer, ”Parallel Algorithms
for Optimal Compression Using Dictionaries with the Prefix
Property,” Proceedings IEEE Data Compression Conference,
1992, pp. 52-61.

[17] D. S. Hirschberg and L. M. Stauffer, ”Parsing Algorithms for
Dictionary Compression on the PRAM,” Proceedings IEEE
Data Compression Conference, 1994, pp. 136-145.

[18] D. S. Hirschberg and L. M. Stauffer, ”Dictionary Compres-
sion on the PRAM,” Parallel Processing Letters, vol. 7, 1997,
pp. 297-308.

[19] H. Nagumo, M. Lu and K. Watson, ”Parallel Algorithms for
the Static Dictionary Compression,” Proceedings IEEE Data
Compression Conference, 1995, pp. 162-171.

[20] L. M. Stauffer and D. S. Hirschberg, ”PRAM Algorithms
for Static Dictionary Compression,” Proceedings International
Symposium on Parallel Processing, 1994, pp. 344-348.

[21] D. Belinskaya, S. De Agostino and J. A. Storer, ”Near
Optimal Compression with respect to a Static Dictionary on a
Practical Massively Parallel Architecture,” Proceedings IEEE
Data Compression Conference, 1995, pp. 172-181.

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

