
Automated Transformation of Multi-agent Protocols to Coloured Petri Nets

Ashwag Omar Maghraby
Computer Science Department

Umm Al-Qura university
Makkah, Saudi Arabia

e-mail: aomaghraby@uqu.edu.sa

Abstract— As multi-agent protocols are getting more and more
complex, analyzing the behavior of such protocols is becoming
increasingly important to ensure that they satisfy agents
objectives and terminate correctly. This paper presents a tool
for automated transformation from multi-agent protocols
written in Lightweight Coordination Calculus language to high
level Colored Petri nets models. This automation constructs a
well-defined mathematical structure model that can be
leveraged to formal analysis multi-agent protocol and used
with the Standard Functional Programming language to
automatically check whether the protocol is understandable
and advantageous to the objectives of agents. The benefits of
our approach consist in the new approach of analysing the
MAS protocol and automatically validate key behavior
properties of the MAS protocol to ensure that the protocol
satisfies agents objectives.

Keywords- Multi-agent protocol; Colored Petri net;
Automated transformation; Protocol analysis.

I. INTRODUCTION

In a Multi-Agent System (MAS), two or more agents
have to work together to find a final solution and satisfy
their individual goals by exchanging messages following
interaction protocols. An interaction protocol is a set of
rules that direct the communication between several agents
[1]. These protocols constrain the possible sequences of
messages that may occur in agent interactions and describe
how agents should react to messages received during
interactions [2]. There are a finite number of messages in
transmission and reception for each MAS protocol.

The need to understand, study and analyze MAS
protocols properties is growing, as these protocols are
becoming more complex due to the rich behavior introduced
by concurrency, communication, and uncertainty. In fact,
interactions between agents may be affected by different
unexpected factors, for example, unexpected message, loss
of messages or deviation in the message order.

Coloured Petri Nets (CPNs) [3] and CPN Tool [4] have
been widely used to address these challenges. CPNs and
CPN Tools provide a graphical representations and a
mathematical formalism for the description, construction,
execution, formal analyzing, and understanding of
distributed and complex MAS protocols. CPNs ensure that a
property is verified by all possible protocol executions [5].

In this paper, we propose an automatic transformation
from multi-agent protocols written in Lightweight

Coordination Calculus language (LCC) to high level CPNs
models. This automation constructs formal and executable
models of MAS protocols. It is used with the Standard
Functional Programming language (SML is a general-
purpose, modular, functional programming language with
compile-time type checking and type inference [6]) to
automatically validate key behavior properties of the
protocol and to ensure that the protocol satisfies agents
objectives and terminates correctly. This approach is divided
into three main steps: (1) automated transformation LCC
protocol to CPNs model; (2) construction of state space; (3)
automated comparing of the agent’s objectives properties
and the behavioral properties of the LCC protocol.

The rest of this paper is organized as follows. Section II
gives an overview of the CPNs, and how to use it to model
agent protocol. Section III gives and overview of MAS
protocol language (LCC). Section IV describes our
approaches. Section V describes the automated
transformation from the LCC protocol into an equivalent
CPNs model. Section VI highlights the construction of state
space approaches. Section VII details the verification
approach and Section VIII gives an example of our
approach.

II. CPNS AND USING CPNS TO MODEL MAS PRTOCOLS

CPNs used in a large variety of different areas such as
MAS communication protocols. It provides a framework for
the construction and analyzis of these protocols. A CPN
model of a protocol describes the states of the protocol and
the transitions between these states [3]. A brief
introduction to CPNs is presented in this section.

A. CPNs

The CPN model consists of four elements [7][8]: data,
place, transition, and arc which describe the net structure of
the CPN model. An example of a CPN modelled in the CPN
tool is depicted in Figure 1. This model has:

1) Three colour sets (Topic, Message and Role): A
colour set can be a basic colour set (integer, string, real and
Boolean) or a product of colour sets or a combination of
other colour sets (a declared colour set from already
declared colour sets). Colour sets are used to declare
variables, other colour sets, functions, operations, constants
and a place's inscription. A token is associated with a colour
set and has data values (token colours) attached to it.

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 1. CPNs Model Elements Example

2) Four places (Open, P, claim1 and ChangeRole1): A
place is a location (drawn as ellipse). It is used to hold data
items (tokens). Tokens must match the place type (colour
set). A place is associated with a marking, which indicates
the number of stored tokens and the value (token colours) of
these tokens. The state of the CPN model, at a particular
moment, is represented by the set of markings of all the
places.

3) One transition called SendClaimP: A transition is an
activity, which represents an event and is drawn as a
rectangle. It is used to transform data between places. In
practice, transition receives data from one or more places,
checks its guard condition, executes its associated code
segment, and sends the result to other places. A guard
condition is a Boolean expression enclosed in square
brackets that appears above the transition rectangle. A code
segment is a computer program written in the CPN SML
language (in the CPN Tool) or in the other kinds of
notations, which has a well-defined syntax and semantic.

4) Four arcs: An arc is used to connect a place and a
transition and to specify the data flow (the pre- and post-
condition relation between transitions). An arc is associated
with inscription, which is used to describe how the state of
the modelled system changes. In the CPN Tool, an arc
inscription is an expression that consists of CPN SML
variables, constants and functions.

One of the key features of the CPN is its ability to
construct large models in a hierarchical manner [8] by using
subpages to build superpages. The subpages interact with
each other and with the superpages through a set of
transitions and a set of places. In practice, subpages used to
model individual agent where superpages used to model
communication protocol, which enables the message

exchange among the agents of the protocol and produces a
change of the protocol state.

B. Using CPNs to model MAS prtocols

There are a number of works using CPNs to model MAS
protocols. In some related work, Calderon [9] developed a
tool to transform UML–based systems of two large–scale
UML systems [10] to CPN models (Design/CPN XML file)
[3][8]. But the CPN models generated by the tool are not
ready for analysis. The user needs to perform some manual
work to get an executable CPN model and to be able to
verify the correctness of the generated CPN. Another
difference between our verification tool and Calderon's tool
is that in the Calderons' approach, the dynamic behavior of
the system is analyzing by running the Design/CPN tool
simulator, while in our approach, the dynamic behavior of
the system is analyzing by using state space techniques and
the CPN SML language.

Suriadi's et al. [5] used the CPN Tool to model one case
study of the Privacy Enhancing Protocols (PEPs) called the
Private Information Escrow Bound to Multiple Conditions
Protocol (PIEMCP) manually. Then, this work used the
state space techniques, CPN SML language and session-data
files to model validation and verification of the PIEMCP.
The similarity between our verification approach and
Suriadi's et al. approach [5] is that both use the state space
techniques, CPN SML language and files (the session-data
file in Suriadi's et al. approach and the properties file in our
work). However, the main difference between our
verification approach and this approach is that Suriadi's et
al. approach generates a CPN model from a PIEMCP
system model manually, while our approach generates a
hierarchical CPN model from an LCC protocol by using a
set of transformational rules automatically.

III. AGENT PROTOCOL DEVELOPMENT LANGUAGE

The Lightweight Coordination Calculus (LCC) [11] is a
declarative, process calculus-based, executable specification
language for choreography [12], which is based on logic
programming and is used for specifying the message-
passing behavior of MAS interaction protocols.

A. LCC Syntax

The abstract syntax of an LCC clause [11] is shown in
Table 1. In an LCC framework, each of the N ≥ 2 agents is
defined with a unique identifier Id and plays a Role. Each
agent, depending on its Role, is assigned an LCC protocol.

An LCC protocol can be recursively defined as a
sequential composition (denoted as then) or choice (denoted
as or) of LCC protocols. In an LCC protocol, agents can
change roles, exchange (receive or send) messages and exit
the dialogue under certain constraints C (null  C). Null
represents an event (a do-nothing event) that does not
involve role changing or message exchanging. A constraint
is defined as a propositional formula specified over terms
connected by or and and operators.

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE I. THE ABSTRACT SYNTAX OF LCC

Meaning

Framework := {Clause,….}

Clause := Agent ::= Dn
Agent := a(Role, Id)

Dn := Agent | Message | null Constraint | Dn then Dn | Dn or Dn
Message := M => Agent | M => Agent Constraint | M <= Agent |

ConstraintM <= Agent
Constraint := Term | Constraint and Constraint | Constraint or Constraint

Role := Term

M := Term
Term:= Constant (Argument,........)

Id Constant | Variable
Constant Character sequence made up of letters or numbers beginning with

a lower case letter
Variable Character sequence made up of letters or numbers beginning with

an upper case character
Argument Term | Constant | Variable

Messages M are the only way to exchange information
between agents. An agent can send a message M to another
agent (M => Agent), and receive a message from another
agent (M <= Agent). There are two types of constraints over
the messages exchanged: pre-condition and post-condition.
Pre-conditions (M => Agent  C) specify the required
conditions for an agent to send a message. Post-conditions
(C M <= Agent) explain the states of the receiver after
receiving a message.

B. LCC Examples

This is the simplest example of a persuasion protocol
between two agents P and O. P and O have arguments for
and against Topic. Agent P sends a claim message Topic
and agent O receives this claim message Topic. A fragment
of LCC protocol for the interchange in this argument is:

a(R1,P)::=
claim(Topic) => a(R2, O)
then a(R3,P).

a(R2,O)::=
claim(Topic) <= a(R1, P)
then a(R4,O).

This is read as: role R1 of agent P sends a claim message
to the role R2 of agent O and role R2 of agent O receives the
claim message from role R1 of agent P. Then P changes its
role to R3 and O changes its role to R4.

IV. AUTOMATED TRANSFORMATION APPROCH

Our automated transformation approach can answer the
following question: Does the LCC MAS interaction
protocol satisfy the agent’s objectives (behavior properties)
and terminates correctly? Three steps are needed to answer
this question:

1) Transforming the LCC prtocol into an equivalent
CPNs model. This step is processed in a fully automatic
way;

2) Constructing the state space from the generated CPNs
model.

3) Comparing the agent’s objectives properties and the
behavioral properties of the LCC protocol using CPN SML

functions. A positive (negative) result indicates that a
specific property is satisfied (unsatisfied).

The following sections discuss the details of each of
these three steps.

V. STEP ONE: AUTOMATED TRANSFORMATION FROM

LCC TO CPNS MODEL

Given the LCC interaction protocol as an input, the
automated tool transforms the LCC protocol into an
equivalent CPNs model using a set of transformational
rules. In our approach, CPN model is described as
CPNXML file. A CPNXML file [13] is an extended markup
language (XML) document that describes the modelling
elements of the CPN model.

We have developed a step-by-step technique that allows
the user to automatically transform an LCC protocol into the
CPNXML file by:

1) Declaring colour sets and functions.
2) Generating a CPN subpage for each LCC role. Each

subpage represents a role behavior .
3) Connecting all the CPN subpages for each indivual

agent by generating one CPN superpage. CPN superpage
describes the interaction between roles, where the messages
that are passed between two roles determine the interaction
between the subpages of the two roles.

In practice, to automate the transformation process from
an LCC protocol into CPNXML file we use 12 LCC-
CPNXML tables (9 tables to generating CPN subpage and 3
tables to generate CPN superpage), where transitions and
places are connected according to a set of transformation
rules. The use of LCC-CPNXML tables makes the
transformation faster and the resulting CPN model can be
executed with data and analyzed, not only by our tool, but
also by other users (using CPN Tool) since CPN has a
comprehensible graphical representation. The following
subsections give more details of the transformation process
from an LCC protocol into CPNXML file.

A. Declaration of Colour Sets and Functions

Many communication between agents will be dialogues,
and will specify more than two roles. In this approach, we
use three different primary types of colour sets: TOPIC,
which is used to model the main dialogue topic; Message,
which is used to model messages arguments and Role,
which is used to model role arguments.

Each agent has a knowledge base KB (private
knowledge) and a commitment store CS (common
knowledge). During the agent interactions, the agents take
turns to send messages. Each agent makes his choice
between possible messages depending on its CS and KB. In
practice, the CS is continuously updated after sending or
receiving each message by either adding to or subtracting
from its argument. For that reason, we defined thirteen
different basic functions, which are used to find, get, add or
subtract an argument from either a CS or KB list. These
functions are written in the CPN SML language [7].

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

The CPNXML format of the three types of colour sets
and thirteen functions are saved in the Global Declaration
file called "CPNmainCode". The user does not need to
know about these colour set types or functions unless he/she
needs to define new types or functions. For more
information about how to define new CPN SML colour set
types or functions, please read [4][8].

B. Generation of a CPN Subpage

Nine tables are used to automate the transformation
process from LCC roles into CPN subpages. Space
limitations prevent us from presenting each and every one of
those tables instead we will discuss LCC Message Sending
Statement table, which gives more details of the
transformation process from an LCC message sending
statement into CPNs model. The LCC message sending
code is transformed into a high level CPN model by creating
(as shown in Table II):

1) One new transition where the transition ID = unique
identifier, the transition name= "Send" + Message name,
and guard condition = LCC message Boolean conditions
(line 1 to 7 of Table II);

2) One new place where the place ID = unique
identifier, the place name = message name, place colour set
type = Message and place (port) type= Out (line 8 to 19 of
Table II);

3) One arc (output arc), which is used to connect the
new transition to the new place, where the arc ID = unique
identifier, the arc type= TtoP (output arc), the transition ID
reference = the new transition ID, the place ID reference =
the new place ID, the arc inscription = (Message arguments)
(line 20 to 28 of Table II).

TABLE II. LCC-CPNC+XML TRANSFORMATION TABLE (SEND A

MEESAGE)

TABLE III. LCC-CPNC+XML TRANSFORMATION TABLE (ROLE IN

THE CPN SUPERPAGE)

TABLE IV. LCC-CPNC+XML TRANSFORMATION TABLE (DIAGLOUE

TOIC)

C. Generation of a CPN Superpage

Three tables are used to automate the generation of one
CPN superpage. Each LCC role is transformed into a high-
level Petri net by creating (as shown in Table III):

1) One new substitution transition. (line 1 to 9 of Table
III);

2) One or more arcs (line 10 to 20 of Table III);
3) If this role is the primary role (the first role in the

LCC code, which is responsible for opening the dialogue),
then:

a) Create one new place (line 1 to 12 of Table IV);

b) Create one arc (input arc) (line 13 to 22 of Table
IV).

4) If this role is the agent's primary role, then:

a) Create one new place (line 1 to 12 of Table V);

b) Create one arc (input arc) (line 13 to 23 of Table
Table V).

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE V. LCC-CPNC+XML TRANSFORMATION TABLE (AGENT’S

STARTER ROLE ARGUMENTS)

VI. STEP TWO: CONSTRUCTION OF STATE SPACE

The second step of our approach is to construct from the
CPN model its state space (directed graph, which represents
all possible executions of the CPN model). In the CPN Tool,
state spaces can be constructed by:

1) Using the following CPN SML functions:
CalculateOccGraph() and CalculateSccGraph();

2) Or, using the CPN State Space (SS) tool palette: For
more information about using the state space tools see [14].
In our approach, the user needs to open the CPNXML file
using the CPN Tool and construct the state space in a
manual way using the CPN state space tool palette.

VII. STEP THREE: APPLYING VERIFICATION MODEL

The third step of our approach concerns:
1) The use of CPN Tool to observe and dynamic

simulation and execution of the CPN model of MAS protocl
(this will be done by the user);

2) The full state space analysis by applying a semi-
automated verification model.

The verification model is carried out by checking four
basic properties, which are independent of any dialogue
(protocol) types:

1) Dialogue opening property: to check that the LCC
protocol begins with a proper Starting messge;

2) Termination of a dialogue property: to determine if
the LCC protocol terminates with a proper Termination
message;

3) Turn taking between agents property: to guarantee
that in the LCC protocol the turn-taking switches to the next
agent after the current agent sends a message;

4) Message sequencing property: to check that the LCC
protocol message exchange respects the gent messages
expectation sequence.

In general, to verify each property, we use the following
approach:

1) Create a new text file for each property and use the
property name as the file name;

2) Extract the needed information from the state space
graph and write this information in the property text file;

Figure 2. Property 1 as an SML Function

3) Get the information of a the gent messages
expectation from the protocol expectation property file (this
could be done in a fully automatic way or in a manual way);

4) Call the CPN SML property function, where the
function inputs are the protocol expectation property file
and the LCC protocol state space information (property text
file);

5) Create a new text file (property result file) and write
the CPN SML property function result in the property result
file;

6) Repeat steps 1 to 5 for each property;
7) Present a report to the user indicating which

properties are satisfied and which are unsatisfied.
Space limitations prevent us from presenting each and

every one of those properties instead we will discuss
Property-1 Dialogue Opening.

This property should guarantee that the LCC protocol will
start if, and only if, a proposal agent sends a Starting
message. Figure 2 shows the CPN SML specification of this
property:

1) Line 1: Read the state space graph information from
the Property1 text file and save this information in the state
space informaiton (SS) variable.

2) Line 2: Read the Starting message information of a
prtocol from protocol expectation property file and save this
information in the OpenDialogueMessages variable.

3) Line 3: Call CheckProperty1 function.
4) Line 4: CheckProperty1 function inputs are SS and

OpenDialogueMessages.
5) Line 5: Extract the first message from the SS

(message1)
6) Lines 6 and 7: Compare the first exchanged message

in the state space graph with the Starting message where:

a) compare function is used to compare the first
message;

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

b) checkODM variable represents the compare function
result. It is considered true if the first message in the state
space graph is the same as the Starting message.

7) Lines 8 to 11: Check the result of the comparison. A
positive (negative) result indicates that Property 1 is
satisfied (unsatisfied).

8) Line 13: Create a Property1 result file and write the
result of CheckProperty1 in this file.

Our verification method identifies only four basic
properties, which are general properties that may be applied
to several dialogues (protocols). However, if the user needs
to verify different properties, the user needs to specify these
properties and feed them to the generated CPNXML file
manually.

VIII. EXAMPLE

An example of a MAS protocol is a persuasion dialogue
(adapted from [15]), where a dialogue is presented as a
game in which one participant (proponent 'P') attempts to
persuade another participant (opponent 'O') to change their
point of view about a particular topic 'T'. Our
LCC/CPNProtocol Tool gets as input the LCC protocol of a
persuasion dialogue (see Figure 3) and returns the
corresponding CPN models (Space limitations prevent us
from presenting each and every one of CPN models instead
we will illustrate only two CPN models: ClaimSender in
Figure 4 and ClaimReceiver CPN models in Figure 5) by
using LCC-CPNXML tables. In practice, by using this tool,
no additional programming is required.

User then can manually construct the state space of the
generated CPN models using the SS tool palette in CPN
Tools (see Figure 6). Then LCC/CPNProtocol Tool:

1) Gets agent’s objectives properties expectation from
user (Figure 7 is an example of this properties where
Starting Locutions file contains one message name claim,
which is used to begin the persuasion dialogue);

2) Automatically comparing the agent’s objectives
properties and the behavioral properties of the LCC protocol
using CPN SML functions. To verify properties the
following actions were performed:

a) Open the CPN model by using the CPN Tool;

b) Select the Evaluates a Text as ML Code(ML!) icon
in the simulation tool palette and apply it to property page
(Figures 8 show the Dialogue opening property page after
applying the ML! to it);

3) Shows the verification result (see Figure 9).

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a methodology to
support formal validation of MAS protocol. The main idea
is to automatically transform the LCC protocol into an
equivalent CPN model using a set of transformational rules

and then extracts four behavioral properties (Dialogue
opening property, Termination of a dialogue property, Turn
taking between agents property and Message sequencing
property) of the LCC protocol from the CPN model state
space. These properties can be used to check whether the
protocol satisfies agents objectives and terminates correctly.

Our further work is targeted at investigating three
questions: Can the user modify the available properties to
suit their specific MAS protocol using our tool? Can our
tool specify new properties in an automated manner? Can
our tool take the new properties information from the user
using a constrained form of natural language?

REFERENCES

[1] G. Chicoisne, "Dialogue between natural agents and artificial agents:
An application to virtual communities", PhD thesis, National Institut
of Polytechnique of Grenoble, pp. 71-74, 2004.

[2] M. Koji, S. Jin-Hua, and Q. Yasuhiro, "Study on Common
Coordinate System by using Relative Position of Other Autonomous
Robot", SICE Annual Conference, Japan, pp. 795-797, August 20-23,
2012.

[3] K. Jensen, "Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use", Berlin, Springer Verlag, 1997.

[4] M. Westergaard and H. Verbeek, "CPN Tools" Eindhoven University
of Technology, 2002, [retrieved 3, 2015], http://cpntools.org/.

[5] S. Suriadi, C. Yang, J. Smith, and E. Foo, "Modeling and Verification
of Privacy Enhancing Security Protocols", 11th International
Conference on Formal Engineering Methods ICFEM, Janeiro, Brazi,
ICFEM, pp. 127-146, 2009.

[6] R. Milner, M. Tofte, R. Harper, and D. Macqueen, "The Definition of
Standard ML" Cambridge, MA, USA, The MIT Press, revised
edition, 1997.

[7] K. Jensen and L. Kristensen, "Coloured Petri Nets Modelling and
Validation of Concurrent Systems" Berlin, Springer Verlag, 2009.

[8] K. Jensen, L. Kristensen, and L. Wells, "Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems"
International Journal on Software Tools for Technology Transfer
(STTT), 3rd ed., vol. 9, pp. 213–254, 2007.

[9] M. Eunice, "Model transformation support for the analysis of large-
scale systems" Texas Tech University Electronic Theses and
Dissertations, Master Thesis in Software Engineering, 2005.

[10] B. Bauer, J. Müller, and J. Odell, "Agent UML: A Formalism for
Specifying Multiagent Interaction" Software Engineering and
Knowledge Engineering, vol. 9, pp. 91-103, 2001.

[11] D. Robertson, "Multi-agent coordination as distributed logic
programming" In DEMOEN, BART and LIFSCHITZ, VLADIMIR,
Logic programming. Saint-Malo, France, 20th International
Conference, pp. 416-430, 2004.

[12] R. Dijkman and M. Dumas, "Service-oriented Design: A Multi-
viewpoint Approach" International Journal of Cooperative
Information Systems, 4th ed., vol. 13, pp. 337-378, 2004.

[13] J. Billington et al. "The Petri Net Markup Language: Concepts,
Technology, and Tools" The Netherlands, 24th International
Conference, ICATPN 2003 Eindhoven, 2003.

[14] K. Jensen, S. Christensen, and L. Kristensen, "CPN Tools State Space
Manual" University of Aarhus, Department of computer science,
2002, [retrieved 3, 2015].

[15] H. Prakken, "Coherence and flexibility in dialogue games for
argumentation" Journal of logic and computation, 6th ed., vol. 15, pp.
1009-1040, 2005.

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

http://cpntools.org/

Agent P Agent O

a(claimSenderP(KBP,CSP,CSO,T,IDO),IDP) ::=

claim(T) =>
a(claimReceiverO(KBO,CSO, CSP,IDP),IDO)

 addTopicToCS(T,CSP)

then

a(replyToClaimReceiverP(KBP,CSP,CSO,T,IDO), IDP).

a(claimReceiverO(KBO,CSO,CSP,IDP),IDO) ::=

claim(T) <=
a(claimSenderP(KBP,CSP,CSO,T,IDO),IDP)

then

a(replyToClaimSenderO(KBO,CSO,CSP,T,IDP),IDO).

Figure 3. Two rols of LCC Protocol for Persuasion Dialogue

Figure 4. The claimSenderP CPN Subpage

Figure 5. The claimReceiverO CPN Subpage

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 6. The State Space Graph Figure 7. Starting Locutions file

Figure 8. Dialogue Opening Property Page

Figure 9. The Verification Result of the Five Basic Properties

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

