
Mapping Serial-Monadic Dynamic Programming onto CUDA-Enabled GPUs 
 

Chao-Chin Wu,  Kai-Cheng Wei, Jian-You Lin 
Dept. of Computer Science and Information Engineering 

National Changhua University of Education 
Changhua, Taiwan 

email: {ccwu, kcwei}@cc.ncue.edu.tw 

Wei-Shen Lai 
Department of Information Management 

Chienkuo Technology University 
Changhua, Taiwan 

email: weishenlai@gmail.com
 
 

Abstract—With the advent of high performance computational 
power, processing particularly complex scientific applications 
and voluminous data is more affordable. One of the hot 
parallel processors is general-purpose graphics processing unit 
(GPU), which has been widely adopted to accelerate various 
time-consuming algorithms. This work demonstrates how to 
apply a more condensed data structure and the interblock 
synchronization to efficiently map the serial-monadic dynamic 
programming onto GPUs.  

Keywords-dynamic programming; parallel computing; 
graphics processing unit; CUDA; data dependence. 

I.  INTRODUCTION  
Dynamic programming (DP) is a popular method used to 

solve complex problems. DP can be classified into four 
categories: (1) serial-monadic, (2) non-serial-monadic, (3) 
serial-polyadic, and (4) non-serial-polyadic. Recently, many 
efforts have studied how to map the DP problems onto 
emerging general-purpose graphics processing units (GPUs), 
where nVIDIA has introduced CUDA (Compute Unified 
Device Architecture) to ease the programming on their GPUs 
for various kinds of applications [1]. CUDA is a hardware 
and software coprocessing architecture for parallel 
computing enabling nVIDIA GPUs to execute programs 
written with C, C++, Fortran, OpenCL, and other languages.  

Previously, we have investigated how to optimize the 
mapping of non-serial-polyadic DP problems onto CUDA-
enabled GPUs, where the Optimal Matrix Parenthesization 
(OMP) problem was chosen as our study example. This work 
focused on how to optimize the mapping of serial-monadic 
DP problems onto nVIDIA GPUs and the 0/1 knapsack 
problem is adopted for this study. 

Recently, Boyer and his colleagues proposed a DP 
approach with a compression mechanism to implement the 
0/1 knapsack problem on a CUDA-enabled GPU [2]. The 
primary data structure used in their method, called the item 
selection table, is a 2-dimensional (2D) array and used to 
record if an item is selected or not for each capacity, Ci, 
where 0 < Ci < C and Ci = i, assuming the capacity of the 
knapsack is C. If there are N items in the problem, the 
dimension of the 2D array is N×C. When N and C are both 
large integers, the 2D array requires a large amount of global 
memory space. To address this problem, they used one bit to 
represent if a certain item is selected or not. Next, each 
thread compressed the outcomes of every 32 stages into one 

integer, which is called the row-compression method. 
Furthermore, after analyzing the result values stored in the 
vectors, the row-compressed data, they found a large portion 
to the right hand side on the vector is filled with 1. On the 
other hand, the left hand side is filled with 0. Each thread 
recorded the indices of the boundaries of continuous 1’s and 
0’s in the vector and then used the indices to replace the huge 
number of 1’s and 0s’ on both ends of the vector. In this way, 
the amount of the data to be transferred between the CPU 
and the GPU were reduced significantly. When the problem 
size becomes larger, the compression becomes more 
effective.  

We observed two disadvantages of Boyer’s method. First, 
although the compression method can reduce the amount of 
data transferred between CPU and GPU, if the item selection 
table is one-dimensional (1D) rather than 2D, the data can be 
minimized significantly. Second, the data in the shared 
memory cannot be reused because the Boyer’s method 
invokes the same kernel one time for each stage of the DP 
problem, which can be addressed with the interblock 
synchronization. Based on the above observation, we 
propose a new approach to improve the performance of the 
knapsack problem on CUDA-enabled GPUs. 

The remainder of the paper is organized as follows. 
Section II introduces the main idea of our proposed approach 
and details the key design issues. Section III gives the 
conclusion of our work.  

II. PARALLEL APPROACH 
The main idea of the new approach consists of two 

factors. First, the item selection table is 1D, the dimension is 
1×C. Adopting 1D structure not only can minimize the 
amount of data transferred between CPU and GPU but also 
can be stored in shared memory. Second, the interblock 
synchronization [3] is adopted to reuse the 1D item selection 
table in shared memory. 

Although the 1D item selection table requires less 
memory space and can be fit into high-speed shared memory, 
the problem about this solution is its potentially exploitable 
parallelism is much less than that in the 2D one. The reason 
is explained as follows. To use dynamic programming with a 
1D item selection table to solve the knapsack problem, items 
will be determined one by one whether one specific item is 
included in knapsacks of different capacities or not. One item 
will be considered during one stage of dynamic 
programming and one thread is assigned with one knapsack 

54Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences



with one specific capacity. If one thread determines that the 
current item is included in its assigned knapsack, it writes the 
current item ID to the corresponding field of the 1D table. 
Note that one item is processed during one stage of dynamic 
programming. To process the current item, one thread needs 
the information, produced by another thread, about how the 
previous item is included for another knapsack of one 
specific capacity that is related to the weight of the current 
item. Consequently, one thread cannot process the current 
item until the required information is written to the 
corresponding table field. There exists a read-after-write 
dependency for the above operations. Furthermore, the 
thread cannot update its assigned table field with the current 
item ID until every thread requiring the result, produced by 
the thread in the previous stage, has all finished his reading. 
There exists a write-after-read dependency. To enforce the 
correct data flow, two synchronization points should be 
inserted after each of the above two kinds of dependency. 
However, the second dependency occurs only for the 1D 
table and it can be eliminated totally if a 2D table is used 
instead because the results of two items for the same 
knapsack are placed on two different locations. To address 
the problem of the write-after-read dependency, we allocate 
multiple buffers to store several versions of the 1D table. 
With multiple buffers, one thread can write the result for the 
next item to one buffer even though the result for the current 
item on another buffer has not read by other threads. The 
maximum number of buffers is dependent on the shared 
memory space. In this way, only the read-after-write 
dependency needs a synchronization to enforce data 
consistency. 

Because the required data for one thread might be in 
shared memory on other streaming multiprocessors, all the 
threads have to write the results of the current item selection 
to the global memory and all the thread blocks should 
participate a barrier synchronization followed also. Instead of 
invoking the same kernel as many times as the number of DP 
stages, as suggested by the CUDA programming guide, we 
adopt the interblock synchronization mechanism that 
requires to invoke the kernel only one time. The advantage 
of invoking the same kernel again is that the data in shared 
memory is stale and cannot be reused. Consequently, the 
results in shared memory have to be written to the global 
memory before return from the kernel and then retrieve the 
results from the global memory to shared memory after the 
kernel is invoked again. On contrast, invoking the kernel 
only one time allows the results in shared memory can be 
reused repeatedly for all the DP stages. That is, the results 
stored in shared memory can be read by all the threads on the 
same streaming multiprocessors even though we proceed to 
next DP stage. Using the interblock synchronization is able 
to significantly reduce the amount of data transferred 
between shared memory and the global memory. Moreover, 
reusing the results in shared memory can shorten the latency 
of accessing shared memory. However, we still need to write 
the results to the global memory because the threads of other 
blocks cannot access the shared memory on different 
streaming multiprocessor. There also exists a write-after-read 
dependency on global accesses. Therefore, the 1D table also 

has multiple copies to eliminate the write-after-read 
dependency.  

We further analyze the data dependence between thread 
blocks. The blocks except the last one have to write data to 
the global memory to allow the subsequent blocks to read, as 
shown in Figure 1. On the other hand, the blocks except the 
first one have to read results from the global memory to local 
registers. Note that all threads have to write the final version 
of the 1D item selection table from shared memory to global 
memory during the last DP stage. The result 1D item 
selection table in global memory will then be transferred 
back to CPU.    

We use CUDA version 3.2 to implement different 
algorithms, including our approach and Boyer’s approach, 
for the 0/1 knapsack problem. They are run on a system 
consisting of one AMD Phenom 9850 CPU and one nVIDIA 
GEFORCE 460. Our approach, adopting a 1D table, 
outperforms the previous work, as shown in Figure 2. 

 

 
Figure 1.  The addlocation of one-dimensional table and the buffers. 

 

 
Figure 2.  The speedup comparision between 1D and 2D tables. 

In the legend of Figure 2, 1D and 2D represent our 
approach and the approach proposed by Boyer et al., 
respectively.  The number of items is 5000. The speedup is 
derived from dividing the execution time of the sequential 
CPU version by the execution time of one of the two GPU-
based approaches. When the capacity is increased, the 
speedup is increased also. It is because either the 1D or the 
2D Item Selection Table becomes larger, and the saved 
amount of global memory accesses becomes larger also. The 
size of 1D table is much smaller than that of 2D table. When 
using the 1D table, our approach can reduce the required 

55Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences



memory traffic between CPU and GPU significantly. The 
larger the capacity, the more memory traffic can be saved by 
our proposed 1D table, resulting in better performance.  

III. CONCLUSION 
This work introduced how to use 1-dimensional data 

structure and the explicit inter-block synchronization to map 
the knapsack problem, an application of serial-monadic 
dynamic programming, on to a CUDA-enabled GPU. The 
results showed the proposed approach outperforms the 
previous work reported by Boyer et al. 

ACKNOWLEDGMENT 
The authors would like to thank the National Science 

Council, Taiwan, for financially supporting this research 
under Contract No. NSC103-2221-E-018-024. 

REFERENCES 
[1] NVIDIA GPU, http://www.nvidia.com/object/what-is-gpu-

computing.html,  retrieved: June 2015. 
[2] V. Boyer, D. El Baz, and M. Elkihel, ”Solving knapsack 

problems on GPU”, Computers & Operations Research,vol. 
39, no. 1, 2012, pp.42–47. 

[3] C. C. Wu, K. C. Wei, and T. H. Lin, “Optimizing dynamic 
programming on graphics processing units via data reuse and 
data prefetch with inter-block barrier synchronization,” IEEE 
ICPADS, 2012 pp.45–52. 

56Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences


