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Abstract—We present our recent advances in RBF 
metamodeling of multidimensional data. A rapid point location 
test in multidimensional data cloud distinguishing the cases of 
interpolation and extrapolation is proposed. A linear program 
detecting a containment of the probe point in a convex hull of 
the dataset is formulated, simplex and interior point solution 
methods are tested in different dimensionalities and densities 
of the data cloud, extensions of the approach to nonconvex 
datasets and various acceleration strategies are implemented. 
The resulting software module is integrated in our 
optimization tool DesParO and applied to several real life 
problems from the fields of automotive industry and chemical 
engineering.  

Keywords-complex computing in application domains, 
automotive industry, chemical engineering, energy optimization. 

I.  INTRODUCTION 
Numerical simulations define a mapping y=f(x): Rn→Rm 

from an n-dimensional space of simulation parameters to an 
m-dimensional space of simulation results. E.g. in 
automotive crash test simulation the dimensionality of 
simulation parameters x is moderate (n~10-30), while 
simulation results y are dynamical fields sampled on a large 
grid, typically containing ~106 nodes and ~100 time steps, 
resulting in values of m~108. High computational 
complexity of crash test models restricts the number of 
simulations available for analysis (typically Nexp<103), and 
this number shall be as small as possible. Metamodeling is 
an approximation technique allowing efficient 
representation of these large datasets for the purpose of data 
analysis, robust optimization and real time visualization. 
The metamodeling naturally involves in the analysis the 
uncertainties in optimization variables and other control 
parameters influencing the simulation. In practice a 
metamodeling with radial basis functions (RBF) is often 
used, i.e. representation of the form: 

 
  f(x)=∑i=1.. Nexp ci Φ(|x-xi|),  (1) 

 
where xi are the points with known function values yi =f(xi). 
A suitable choice for the RBF is the multi-quadric function 
Φ(r)=(b2+r2)1/2, which provides non-degeneracy of 
interpolation matrix Φij=Φ(|xi-xj|) for all finite datasets of 
distinct points and all dimensions [1]. The result can be 

written in a form of weighted sum f(x)=∑iwi(x)yi, with the 
weights 
 

 wi(x)=∑jΦ
-1

ijΦ(|x-xj|).   (2) 
 
RBF interpolation can be extended by adding 

polynomial terms, allowing reconstructing exactly 
polynomial (including linear) dependencies and generally 
improving precision of interpolation. Adaptive sampling 
and hierarchy of metamodels with appropriate transition 
rules are used for further precision improvement [2]. RBF 
metamodel is directly applicable for interpolation of high 
dimensional bulky data, e.g. complete simulation results can 
be interpolated at a rate linear in the size of data, and even 
faster in combination with PCA-based dimensional 
reduction techniques [3].  The precision can be controlled 
via the cross-validation procedure: the data point is 
removed, data are interpolated to this point and compared 
with the actual value at this point, which for an RBF 
metamodel leads to a direct formula [4] 

  
 erri  = finterpol(xi)-factual(xi) = -ci/(Φ-1)ii.  (3) 
 
Metamodeling performed at controlled precision can 

replace simulation results or real experimental data in 
computationally intensive procedures, such as optimization, 
parameter studies, stochastic analysis (i.e. determination of 
probability distributions by Monte Carlo techniques). In our 
previous work [2-9] we use RBF metamodeling for solution 
of various applied problems. For correct metamodeling one 
should permanently control that the interpolated point is 
located inside the boundaries of the data cloud. In 
optimization process and data analysis it is necessary to 
avoid extrapolation or at least to warn the user about it, to 
ensure correct functionality of the metamodel. While it is 
straightforward for hypercube alike designs of experiments, 
the problem becomes non-trivial for more complex shapes. 
In this case, a bounding box provides a too loose estimator 
of the cloud. 

The key contribution of this work is to provide 
metamodel with a precise and fast indicator whether a point 
belongs to a multidimensional data cloud. In general, testing 
whether a probe point belongs to a region is a classical 
(Where am I?) point location problem. We start with its 
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special type (Am I in a convex hull of data points?) and 
compare the efficiency of various algorithms. High 
dimensionality of the space (dim≥10) excludes the usage of 
standard tools (e.g. Qhull), since they perform direct 
segmentation of the region to simplices and the number of 
simplices explodes at high dimensions. For example, 
tessellation of an n-dimensional cube [10] produces the 
number of simplices ≥ (n+1)(n-1)/2 , requiring memory [bytes] 
≥ 4(n+1)(n+1)/2, which already at n=16 corresponds to 100 
GB of memory. 

Being reformulated as a linear program (LP), location 
test works also for high dimensions and can be implemented 
efficiently using state-of-the-art algorithms. Furthermore, 
restricting the test to a controlled neighbourhood of the 
probe point, the method can be extended to nonconvex 
clouds of data points. In the next sections we compare the 
performance of various algorithms for LP-based location 
test, discuss their extension to nonconvex data clouds and 
apply them to real life problems of chemical engineering 
and automotive industry. 

II. LP-BASED LOCATION TEST 
Let xi be data points in Rn, conv{xi} – their convex hull, 

conv’{xi}= conv{xi} \ ∂ conv{xi}  – the convex hull without 
its boundary, x*= ∑xi /Nexp – center of mass, x – probe 
point. We consider non-degenerate datasets: conv’{xi}≠∅. 
Let’s define containment flag as Cflag(x)=0 iff (xi-x) are 
contained in a half-space, i.e. there exists a separating 
hyperplane with a normal v≠0 satisfying (xi-x,v) ≥ 0 for all 
i, and Cflag(x)=1 otherwise, see Fig. 1a. In other words, x is 
located inside conv’{xi} when Cflag=1 and outside of 
conv’{xi} when Cflag=0. Practically, Cflag can be 
determined using the following linear program: 

 
Algorithm LP(x,{xi}):  

    find max(x*-x,v) at (xi-x,v) ≥ 0 for all i;  
    if solution is max=+∞ then Cflag=0;  

else (v=0) Cflag=1. 
 
For numerical solution of LP we compare two 

algorithms: simplex [11] and interior point [12], applying 
them to a randomly filled n-dim cube. The results of 
comparison are collected in Table 1. We see that for the 
given problem simplex method performs by factor 102-103 
better than interior point method. 

LP-algorithm can be accelerated by combining with two 
simple tests. Let’s consider a (generally nonconvex) region 
Ω uniformly filled with random points {xi}. Let 
BB=[min(xi),max(xi)] be bounding box of the dataset. Let 
r=|xi-xj| be inter-point distance and <r> - its average. One 
should better use quasi-random (low discrepancy) sequences 
with narrow r-histograms, see Fig. 2. Let B be a ball around 
the probe point x with radius c<r>, where c is an empiric 
safety factor (e.g c=3 for rnd2D, c=2 for Sobol2D). If this 
ball does not contain points from {xi}, then x is surely 
outside Ω, see Fig. 1b.  

The following algorithms can serve as simple 
conservative containment tests: 

 
Algorithm BBox(x,{xi}): 

    if x∈BB then Cflag=1; else Cflag=0. 
 

Algorithm BT(x,{xi}): 
    find {xi}∩B; 
    if empty then Cflag=0; else Cflag=1. 
 
Let’s define a local convex hull as LCH=conv’({xi}∩B). 

Differently from the global convex hull (GCH) it considers 
only a small portion of data points and is computationally 
much faster: 
 
Algorithm LCH(x,{xi}): 

      call BBox(x,{xi}); 
      if Cflag=1: 
        call BT(x,{xi}); 
        if Cflag=1: 
           call LP(x,{xi}∩B). 
 
If x is outside LCH (Cflag=0), it is also outside Ω. If x is 

inside LCH (Cflag=1), it is either inside Ω or at a distance 
~<r> from its boundary, see Fig. 1c. LCH provides more 
tight location test then GCH and BT. Performance of LCH 
is slower than BBox/BT but much faster than GCH, since 
only a small portion of data points N/Nexp is contained in 
B. The number of data points passed to LCH can be 
additionally controlled by selecting N’>n nearest data points 
in B. Performance of BBox is O(n), BT is O(Nexp*n). LP-
algorithms have theoretical worst case complexity 
exponential for simplex method and polynomial for ipopt, 
while in practice they show much better performance, 
especially at reduced N, see Table 1. 

TABLE I.  BENCHMARK OF SIMPLEX AND INTERIOR POINT METHODS 
IN LP-BASED LOCATION TEST*.  

Nexp dim Simplex (ms) Ipopt (ms) 

100 10 0.020 18 

250 10 0.106 42 

500 10 0.470 77 

100 20 0.096 36 

250 20 0.181 67 

500 20 0.260 258 

100 30 0.070 54 

250 30 0.206 310 

500 30 0.546 266 

 
*Resulting Cflag values for both methods are always identical. 
  Timing per solution @ 3 GHz Intel i7 CPU. 
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III. APPLICATIONS 
The better performing method (simplex LCH) has been 

integrated in our software tool for design parameter 
optimization (DesParO [13]). It uses RBF metamodel to 
represent dependence between design parameters and 
optimization criteria. The graphical user interface allows to 
change interactively the parameters and to see immediately 
the variation of the criteria. Constraints can be set e.g. 
maximizing one objective and minimizing the other, in this 
way the constrained and multiobjective optimization 
problems can be investigated. A graphical representation of 
interdependencies between parameters and criteria allows to 
find most influencing parameters and most sensitive criteria. 
Also, the uncertainties of metamodeling found with cross-
validation procedure are shown (the red bars under criteria 
sliders). Fig. 3 and Fig. 5 show screenshots of interface of 
DesParO tool in application to several industrial problems. 

The first application is safety optimization in Audi B-
pillar crash test. The model of B-pillar shown on Fig. 3 
contains ten thousand nodes, 45 timesteps. Two parameters 
are varied representing thicknesses of two layers composing 
a part of a B-pillar, comprising 101 simulations. The 
purpose is to find a Pareto-optimal combination of 
parameters simultaneously minimizing the total mass of the 
part and crash intrusion in the contact area. Fig. 3 shows the 
optimization problem loaded in the DesParO Metamodel 
Explorer, where design variables (thicknesses1,2) are 
presented on the bottom image at the left and design 
objectives (intrusion and mass) at the right. First, the user 
imposes constraints on design objectives, trying to minimize 
intrusion and mass simultaneously, as indicated by red ovals. 
As a result, “islands” of available solutions become visible 
along the axes of design variables. Exploration of these 
islands by moving corresponding sliders shows an optimal 
configuration, shown on Fig. 3 (bottom). For this 
configuration both constraints on mass and intrusion are 
satisfied. For every criterion also its tolerance is shown 
corresponding to 1-sigma confidence limits, as indicated by 
horizontal bars under the corresponding slider as well as +/- 
errors in the value box. This indication allows satisfying 
constraints with 3-sigma (99.7%) confidence, as shown on 
the image. The Geometry Viewer, shown at the top of Fig. 3, 
allows to inspect the optimal design in full details. LCH 
algorithm has been used to indicate location of the probe 
point in the data cloud, interpolation (Cflag=1) and 
extrapolation (Cflag=0). 

The second application is scatter analysis in Ford Taurus 
crash test simulation. As shown in our previous work [3], 
crash test simulations possess a random component, related 
to physical and numerical instabilities of the underlying 
simulation model. It can be triggered by microscopic 
variations of design variables (e.g. thicknesses of various 
parts in car body) and by the numerical process itself (e.g. 
propagation of round-off errors or by random scheduling in 
multiprocessing simulation). These microscopic sources are 
then amplified by inherent physical instabilities of the 

model related e.g. to buckling, contact phenomena or 
material failure. Stochastic analysis is used to track the 
sources of scatter, to reconstruct causal chains and to 
identify hidden parameters describing chaotic behavior of 
the model. The crash model shown on Fig. 4 contains 1 
million nodes, 32 timesteps, 25 simulations. The simulation 
results have been processed by a method of temporal 
clustering [3], which decomposes the whole scatter in the 
model over a system of basis functions: s=∑iΨici. Every 
basis function Ψi is associated with elementary random 
process (bifurcation) and possesses a typical conic profile, 
originating from the corresponding bifurcation point and 
propagating forward in time. Fig. 4 right shows one of the 
major bifurcations, corresponding to a fold on the floor of 
the vehicle. In total, 15 bifurcation points have been 
identified, representing statistically independent sources of 
scatter. In this way the dimensionality of the problem is 
reduced to 15 variables (c-coefficients) completely 
describing stochastic behaviour of the model. One should 
only take care that reconstruction of scatter does not go 
beyond the boundary of simulated data cloud. The point 
location test by LCH algorithm at these values of 
dimensions (Nexp=25, dim=15) has typical performance 27 
mks per query (inside BBox). 

The third application is energy optimization for 
Polycarbonate production at Bayer MaterialScience AG. 
The purpose was to minimize consumption of various 
energy media, including electric power, gas, steam, water, 
etc. The optimization has been performed on the base of 
experimental measurements, collecting data from sensors on 
several production lines and comprising 1-year detailed 
records of plant performance. Optimization is performed in 
10-dimensional parameter space sampled with ~8000 data 
points, using our software tool for design parameter 
optimization (DesParO). RBF interpolation has been used 
for continuous optimization, see Fig. 5. Optimization 
parameters (par1, par2, …) are displayed on the left, 
optimization objectives on the right: partial energy 
consumptions (E01, E02,…), total energy cost and 
production range used as a constraint. LCH algorithm has 
controlled location of point in the data cloud, ensuring 
applicability of the metamodel. Fig. 5 shows on the top an 
optimal point inside the data cloud (Cflag=1, interpolation), 
while the bottom image shows the middle point of bounding 
box located outside of the given data cloud (Cflag=0, 
extrapolation). Typical performance was 0.3 ms per query 
inside BBox, where complete LCH algorithm was involved; 
while outside BBox only O(n) part of the algorithm was 
active, showing an extremely fast performance of 20 ns per 
query. 

Point location tests in all applications have been 
performed on 3 GHz Intel i7 CPU with 8 GB RAM. 

IV. CONCLUSION 
RBF metamodeling of multidimensional data 

supplemented by a rapid point location test for 
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distinguishing the cases of interpolation and extrapolation is 
presented. A linear program detecting a containment of the 
probe point in a convex hull of the dataset is formulated. 
Comparing simplex and interior point methods for solution 
of this particular linear program, we see that simplex 
method performs by factor 102-103 better than interior point 
one. A concept of local convex hull allows to extend the 
approach to nonconvex datasets, while simple geometrical 
containment tests are used to accelerate the algorithm. The 
resulting software module is integrated in our optimization 
tool DesParO and applied to real life problems from the 
fields of automotive industry and chemical engineering. In a 
typical problem with dimension 10 and number of data 
points ~8000 the performance of location test was 0.3 ms 
per query (inside BBox) and 20 ns per query (outside 
BBox).  

REFERENCES 
 

[1] M.D.Buhmann, Radial Basis Functions: theory and 
implementations, Cambridge University Press, 2003. 

[2] G. van Bühren, T.Clees, N.Hornung, L.Nikitina, Aspects of 
adaptive hierarchical RBF metamodels for optimization, 
Journal of computational methods in sciences and engineering 
JCMSE 12 (2012), Nr.1-2, pp.5-23. 

[3] T.Clees, I.Nikitin, L.Nikitina, C.-A.Thole, Analysis of bulky 
crash simulation results: deterministic and stochastic aspects, 
in N.Pina et al (Eds.): Simulation and Modeling 
Methodologies, Technologies and Applications, AISC 197, 
Springer 2012, pp.225-237.  

[4] T.Clees, I.Nikitin, L.Nikitina, Nonlinear metamodeling of 
bulky data and applications in automotive design, in M. 
Günther et al (eds), Progress in industrial mathematics at 

ECMI 2010, Mathematics in Industry (17), Springer, 2012, 
pp. 295-301. 

[5] T.Clees, I.Nikitin, L.Nikitina, S.Pott, Efficient Quantile 
Estimators for River Bed Morphodynamics, in Tören et al, 
Eds, Proc. of SIMULTECH 2013, 3rd International 
Conference on Simulation and Modeling Methodologies, 
Technologies and Applications, Reykjavik, Iceland 29 - 31 
July, 2013, pp.737-743, SCITEPRESS, 2013.  

[6] T. Clees, N. Hornung, I. Nikitin, L. Nikitina and D. Steffes-
lai, Multi-objective Optimization and Stochastic Analysis in 
Focused Ultrasonic Therapy Simulation, in Tören et al, Eds, 
Proc. of SIMULTECH 2013, 3rd International Conference on 
Simulation and Modeling Methodologies, Technologies and 
Applications, Reykjavik, Iceland 29 - 31 July, 2013, pp.43-48, 
SCITEPRESS, 2013.  

[7] Clees, T., Nikitin, I., Nikitina, L., Kopmann, R., Reliability 
analysis of river bed simulation models, in J.Herskovits, Ed., 
CDROM Proc. EngOpt 2012, 3rd Int. Conf. on Engineering 
Optimization, Rio de Janeiro, Brazil, no. 267. 

[8] T. Clees, N. Hornung, I. Nikitin, L. Nikitina, D. Steffes-lai, S. 
Klimenko, Focused ultrasonic therapy planning: 
Metamodeling, optimization, visualization, J. Comp. Sci. 5 
(6), Elsevier 2014, pp 891-897. 

[9] T. Clees, I. Nikitin, L. Nikitina, S. Pott, Quasi-Monte Carlo 
and RBF Metamodeling for Quantile Estimation in River Bed 
Morphodynamics, in Obaidat, M.S. et al (Eds.), Simulation 
and Modeling Methodologies, Technologies and 
Applications, Advances in Intelligent Systems and Computing 
319, Springer 2014, pp 211-222. 

[10] A.Glazyrin, Lower bounds for the simplexity of the n-cube. 
Discrete Math. 312 (2012), no. 24, 3656-3662. 

[11] G.Dantzig, Linear programming and extensions. Princeton 
University Press and the RAND Corporation, 1963. 

[12] A.Wächter, Short Tutorial: Getting Started With Ipopt in 90 
Minutes, IBM Research Report, 2009. 

[13] DesParO: the tool for design parameter optimization, 
www.scai.fraunhofer.de/en/business-research-areas/high-
performance-analytics/products/desparo.htm

 

(a)           (b)               (c)   

Figure 1.  (a) to algorithm LP: data cloud, probe point and separating hyperplane; (b) to algorithm BT: data cloud and test ball; (c) to algorithm LCH: 
definition of local convex hull. 

 

Figure 2.  Pseudo-random (rnd2D) and quasi-random (Sobol2D) filling of a square and the corresponding r-histograms. 
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Figure 3.  Metamodeling of B-pillar crash test simulation results. Point location test is used to distinguish cases of interpolation (point inside data cloud, in 

the image on the left) and extrapolation (point outside the data cloud, on the right). At the bottom: optimal design in DesParO Metamodel Explorer. 
Simulation model: courtesy of Audi. 

 

 

Figure 4.  Scatter analysis in automotive crash test simulation. On the left: original scatter in mm. On the right: closeup to the main bifurcation, the source 
of scatter. Data courtesy of Ford. 
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Figure 5.  Energy optimization for Polycarbonate production. Data courtesy of Bayer MaterialScience AG. 
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