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Abstract—This paper presents probabilistic analysis of the oc-
currence of irrigation needs. We have conducted a joint analysis
of the severity and duration of the most demanding potential
annual irrigation periods by a bivariate copula methodology.
The characteristics of these periods are derived from both tem-
perature and precipitation. The maximum annual length of the
potential irrigation periods and the corresponding rainfall deficit
were inferred from basic climatic variables such as inputs for a
two-dimensional probability analysis by a copula methodology.
The results of this work indicate the suitability of the proposed
methodology for an analysis of irrigation needs with greater
benefits than in the case of the usual one-dimensional analysis of
individual climatic variables. A case study with the aim of testing
the methodology was accomplished in southwest Slovakia, where
a frequency analysis of the need for irrigation was estimated.
The results indicate, e.g., that every second year, a period can be
expected in which temperatures above 25◦C occur and which lasts
one month with a moisture deficit of about 30 mm. Even more
significant periods of drought can be expected, for example, with
a 5 or 10-year return period. These phenomena cause significant
damage to agriculture yields in the territory investigated, so a
requirement for irrigation structures in this area is indicated by
the proposed methodology.

Keywords–drought; irrigation; copula; precipitation; tempera-
ture

I. INTRODUCTION

Water scarcity and droughts have a direct impact on the
inhabitants and various economic sectors of a region which
use and depend on water, such as agriculture, tourism, industry,
energy or transport. Quantifying the expected probability char-
acteristics of droughts assists in the planning and management
of water resources, such as the design and maintenance of ir-
rigation systems. The issue of how to characterize a drought is
often dealt with through the help of various drought identifica-
tion indices [1]. The numerous indices of drought that may be
mentioned include, for example, the decile index (DI) [2], the
percentage of normality (PN), the standardized precipitation
index (SPI) [3], the Palmer PDSI index [4], and the effective
drought index (EDI) [5]. Among the above–mentioned drought
indices, the standardized precipitation index (SPI) is most
frequently used.

Research on the probabilistic characterizations of droughts
was formerly conducted using a univariate analysis [1], [6].
However, drought is a multidimensional phenomenon charac-
terized by, for example, its severity, duration and intensity, so
it is necessary to examine the properties of dry episodes using
multidimensional methods [7]. For this reason, the traditional

drought risk assessment based on univariate frequency anal-
yses may lead to erroneous or incomplete conclusions about
the occurrence of drought events [8]. Over the last decade,
copulas have emerged as a method for addressing multivariate
problems in several disciplines. Probabilistic analysis using a
copula method has various positive features; the main one
is that it does not assume that the variables have the same
types of probability distribution functions [9]. Copulas have
been adopted for hydrological studies of multivariate flood
frequency analyses [10]–[14] and rainfall frequency analyses
[15]–[17].

In this paper, we have chosen a different approach, which
is intended for an analysis of irrigation needs and is oriented
towards the point of view of the necessity for the construction
of an irrigation system in a given area. Various drought indices
used in previous studies are designed for the identification of
drought months, not for the identification of the necessity to
irrigate, which should be analyzed on a timescale of days or
weeks, not months. We applied a novel approach and directed
our research towards an analysis of the severity and duration
of the most demanding annual potential irrigation periods.

Although previous studies have used multivariate analysis,
they usually only investigated the lack of precipitation, - e.g.,
the duration, severity or intensity of dry periods [3], [6], [13].
In the present paper, both the temperature and precipitation are
included in the analyses as will be explained in the methodol-
ogy part. To evaluate the expected occurrence of periods with
an increased need for irrigation, a two–dimensional analysis
has been applied to the distribution of two variables, which
together characterize expectations about the occurrence of
episodes which require irrigation. The first variable is the
length of the maximal potential irrigation period mentioned,
i.e., the maximum number of consecutive summer days in a
year. The second variable is the rainfall deficit during this time
interval.

In Section 2 of the paper, a description of the area and data
studied follows; then in Section 3, assessments of both one–
dimensional and bivariate probability distribution functions are
described. The results are presented in tabular and graphic
forms in Section 4, and the paper ends with the conclusions
(Section 5) from the research presented.

II. STUDY AREA AND DATA
The analysis was carried out on an agricultural area in

Slovakia with a warm and relatively dry climate–the area of
the Danubian Lowland, namely, its central part around the
municipality of Hurbanovo (Figure 1). The weather in this area
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is a transition between oceanic and terrestrial influences. The
annual average temperature of a substantial part of the lowland
ranges between 9◦C and 10◦C. In terms of precipitation, it is
the driest part of Slovakia with an average annual rainfall of
550 mm to 650 mm.

The analyses were accomplished using climatic data from
the period 1930–2013. In the analyses, daily temperature and
precipitation data were used.

Figure 1. Study area location

Basic climatic variables (temperature and precipitation)
were used to determine the two derived and actually used
variables which, in this paper, characterize dry and hot periods
requiring irrigation. As already mentioned, such a period is
defined by its duration and the rainfall deficit with respect
to the normal period (1960–1990). For each year, the hot
and dry periods that lasted the longest were identified. The
duration was derived from the number of consecutive days
with temperatures above 25◦C. The hot period identified was
extended by precipitation-free days before and after it. In the
following, this variable is referred to as the maximum annual
length of the potential irrigation period. Although plants have,
to a certain extent, the ability to adapt to periods with a lack
of moisture, a long duration of this period usually requires
irrigation if a reduction in yields is to be prevented, especially
if these periods occur in the important growth stages of plants.

III. METHODOLOGY
The procedure used to achieve the objective of this paper,

e.g., a joint analysis of the two variables introduced in the
previous text, was the following: 1) the preparation of the
datasets of the variables investigated; 2) a verification of the
dependence and relationships between the variables; 3) the
identification of one-dimensional distributions of the selected
variables; 4) identification of the expected class of the copulas
forming a two-dimensional probabilistic dependence; 5) the
determination of the copula parameters, e.g., the fitting and
evaluation of the best suitable copula; and 6) the specification
of the return periods with critical temperature and rainfall-
deficit characteristics.

A. Specification of the one-dimensional probability distribu-
tion functions

One-dimensional distributions are required to determine the
probabilistic characteristics of the individual variables that are

used to describe the properties of dry and hot periods with
potential irrigation requirements. In the context of this paper,
they serve as the means to determine the so-called marginal
functions needed in defining a two-dimensional probability.

The fitting process can be divided into three steps: 1)
selecting an appropriate probability distribution function; 2)
determining its parameters; 3) verifying the quality of the
fitting by the appropriate statistical characteristics.

A preliminary selection of the candidate probability dis-
tribution functions was performed based on a data analysis
employing descriptive statistics and graphic techniques as well
as on the existing literature on the probability distribution
fittings of the variables describing a drought [1], [18]–[20].

The parameters of the probability functions were deter-
mined using the maximum likelihood method (MLE) [21].

The quality of the selection of the type of distribution
functions and its fitting could be evaluated by the Akaike infor-
mation criterion (AIC) or the Bayesian information criterion
(BIC) [21]. The quality of the fitting is also verified in the
paper using the Kolmogorov-Smirnov test and the Anderson-
Darling test [21].

B. Joint probability distribution specification using copulas
When modelling with copula operators, it is first necessary

to conduct certain tests of the relationship between the vari-
ables under study. The application part of this paper uses the
Kendall correlation test and a multivariate test of independence
based on an empirical copula process which was proposed by
[22] and is often used to test independence in copula modelling
(for example, [23] or [24]).

The advantages of copulas for constructing multivariate
distributions lie in the fact that the multidimensional mod-
elling of a distribution can be decomposed into a separate
determination of the one-dimensional marginal functions of
the variables examined and a separately conducted search of
the dependencies between them using copulas [25].

The essence of modelling a two-dimensional relationship
between two variables by means of copulas is based on Sklar’s
theorem (1959), which mathematically justifies the intuitive
principle specified in the previous paragraph.

For two variables, Sklar’s theorem [25] states that if
FX,Y (x, y) is a joint distribution function of bivariate random
variables (X,Y ) with marginal distributions FXx and FY y
respectively, then there exists a copula function C(.) such that:

FX,Y (x, y) = C(Fx(x), FY (y)) (1)

If both FX(x) and FY (y) are continuous distributions, then
this copula is unique for the particular joint distribution.

To perform probabilistic analyses of a drought, it is nec-
essary to select an appropriate copula function on the basis
of certain principles. There are many varieties of copulas
which, based on common features, belong to several classes.
Among the most widely used are included, for example,
elliptical copulas, the Ali-Mikhail-Haq (AMH) copula, the
Clayton, Frank, Galambos, Gaussian, Gumbel-Hougaard, Joe
and Plackett copulas [25].

The choice of the proper copula is based on various factors,
such as the scope of the dependence to be described by
the copula. In this paper, we selected one parametric copula,
specified by parameter Θ.

For each choice it is necessary to optimally determine the Θ
copula parameter. In this paper, we used the values of the em-
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pirical marginal one-dimensional distribution functions so that
the choice of the family of the parametric marginal distribution
does not affect the search for the Θ copula parameter. This
includes finding the ranks of the individual values of the data
and scaling them to the interval (0, 1). The actual calculations
were performed using the copula and acopula packages for the
R language [26], [27]. There are several methods of copula
fitting such as the maximum likelihood method, the inversion
of Kendall’s τ , and the inversion of Spearman’s ρ. This work
uses the maximum likelihood method.

Figure 2. Histogram and kernel-estimated nonparametric probability
distribution functions

The best fitting of a copula model to describe the relation-
ship between both characteristics of a drought was verified
using multiple criteria, namely by application of the AIC
and the BIC. There are several alternatives for testing the
goodness of fit, and active research is being done in this field.
We used the test referenced in [28], which also provides an
overview of the other tests for this purpose. In this procedure a
nonparametric empirical copula was computed and compared
with the values of the parametric copulas. The parametric
copula that was closest to the empirical copula was defined
as the most appropriate choice [29].

IV. RESULTS
The analyzed data, which are the two time series derived

from the temperatures and precipitation at the Hurbanovo
climatological measuring station, have been described in the
“Study area and data” section. Figure 2 contains a histogram
with kernel–estimated nonparametric probability distributions
of both variables. On that basis, it could be expected that,
due to the different shapes of the kernel distribution function,
these two variables will be described by different parametric
probability distribution functions. This means that the joint
probability of these variables should be determined by a
copula methodology (as opposed to standard multivariate
probability distributions, which assume the same distribution
for all jointly evaluated variables).

TABLE I. THE COEFFICIENTS OF THE CORRELATION BETWEEN THE
VARIABLES STUDIED

Correlation coefficient
Pearson 0.392
Kendall 0.287
Spearman 0.399

The two data series examined were successfully tested
for independence using a nonparametric test based on an
empirical copula according to [22], in which the output
statistics of Harald Cramér are used [30]. The Mann-Kendall

Figure 3. Data compared by a nonparametric Loess regression line

test for correlation was also carried out with the alternative
hypothesis that the true τ is greater than zero, which was
accepted (for the null hypothesis of the equality of the
correlation to zero) on the basis of the p-value = 6.37810−05.

TABLE II. EVALUATION OF THE DISTRIBUTION FUNCTION FOR THE
RAINFALL DEFICIT IN THE MAXIMUM POTENTIAL ANNUAL IRRIGATION

PERIOD

Evaluation of the rainfall deficit fitting
Statistical indicator p-value

Distribution: KS Test AD Test AIC BIC AD Test KS Test
GEV 0.10 1.34 799 804 0.22 0.30
Normal 0.06 0.23 784 789 0.98 0.92
Log-Logistic 0.07 0.32 786 791 0.92 0.79
Cauchy 0.09 1.51 817 822 0.17 0.52
Gumbel 0.10 1.34 799 804 0.22 0.30

The values of the correlation are shown in Table 1; in
Figure 3, the two variables are plotted with a graphic rep-
resentation of the non-linear dependence using a Loess curve
with a confidence level of 0.95. Both the table and the picture
show that the relationship between the variables is not very
strong but can be detected.

The results of this testing could be summarized as follows:
the simultaneous probability of these two variables will not
be equal to their product, but should be modelled using joint
bivariate probability distributions (copulas).

The next step in the analysis is to determine the one-
dimensional probability distribution functions of both variables
studied. Based on the above reasons, the probability distri-
bution functions according to Table 2 were selected as the
candidate probability distributions for the rainfall deficit. Table
2 also includes an evaluation using the methods described in
the methodological section of this article. Table 3 serves the
same purpose, except it is for the “maximum annual length of
the potential irrigation period” variable. In both tables, the bold
typeface indicates the selected distribution based on the values
of the statistical indicators and p-values; a normal distribution
was chosen for the rainfall deficit, and the logarithmic Pearson
type III distribution was chosen for the length of the maximum
potential annual irrigation period.

To construct an associated probability distribution function,
several one-parameter copulas were evaluated (Gumbel, Clay-
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ton, Frank, Ali-Mikhail-Haq, Joe, Normal, t-copula, Plackett
and Hussler-Reiss). The results and evaluation of the copula
function fitting calculations are shown in Table 4.

The main criterion for the selection of a suitable copula
operator from Table 4 was the p-value obtained from the
goodness-of-fit test according to [28], which uses a parametric
bootstrap and is mentioned in the methodological part about
fitting the copula function. The copula parameter was deter-
mined in the test using the inverse Kendall’s τ method. The
values of the AIC and BIC served as the auxiliary criteria. The
table shows that the Gumbel, Joe, and Husler-Reiss copulas are
the admissible copula functions. On the basis of the highest p-
value, the Joe copula was selected to describe the dependence.

TABLE III. EVALUATION OF THE DISTRIBUTION FUNCTION FOR THE
LENGTH OF THE MAXIMUM POTENTIAL ANNUAL IRRIGATION PERIOD

Evaluation of the rainfall deficit fitting
Statistical indicator p-value

Distribution: KS Test AD Test AIC BIC AD Test KS Test
Gumbel 0.08 0.39 700 705 0.86 0.72
Pearson III 0.08 0.55 701 706 0.70 0.59
Gamma 0.08 0.55 701 706 0.70 0.59
Logn w.3p 0.06 0.28 700 705 0.95 0.95
Log-P.III 0.06 0.28 705 705 0.95 0.88

TABLE IV. EVALUATION OF FITTING THE COPULA OPERATOR

Copula class AIC BIC θ parameter p-value

Gumbel -12.88 -10.45 1.400 0.120
Clayton -4.10 -1.67 0.800 0.001
Frank -12.08 -9.65 2.757 0.049
AMH -8.13 -5.70 0.915 0.013
Joe -12.59 -10.16 1.719 0.229
Normal -11.88 -9.46 0.434 0.027
t-copula 7.36 -4.94 0.434 0.041
Plackett -11.58 -9.15 3.723 0.041
Husler-Reiss -13.11 -10.69 1.074 0.137

In water resources management, the results of a proba-
bilistic analysis are usually expressed using the concept of
return periods. These correspond to the long-term average time
between two successive occurrences of a certain event. For the
problem considered in this paper, the return values of the two
variables which are useful in assessing the need for irrigation
and for dimensioning the components of an irrigation project
were evaluated.

A multivariate analysis of a phenomenon in comparison
with a one-dimensional analysis has a distinctive feature in
that a combination of variables with different values can lead
to the same joint probability and, consequently, to the same
return period. In Figure 4, this feature is expressed by means of
a contour plot. The chart in this figure shows the return periods
of the two variables studied simultaneously in this paper, using
the contour lines of the return periods. Some selected results
of the joint analysis are also shown in Table 5. The probability
of variable values occurring simultaneously can be expressed
by the following relationship [15]:

Tx,y =
1

1− F(x) − F(y) + C
(
F(x).F(y)

) (2)

where F(x) and F(y) are one-dimensional probability distribu-
tion functions, and C(F(x), F(y)) represents a joint distribution
function based on the Joe copula.

TABLE V. JOINT RETURN PERIODS OF SOME SELECTED VALUES OF THE
VARIABLES INVESTIGATED

Probability One-dimensional
return period

Length of the
potential
irrigation period

Rainfall
deficit

Joint return
period

years days mm years
0.5 2 39 35 4
0.8 5 55 56 9
0.9 10 66 67 20
0.95 20 78 76 39
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Figure 4. Joint return period of the variables studied for the simultaneous attainment of the corresponding values expressed by the return period contours (in
years)
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V. CONCLUSION
The results of this work (Table 5, Figure 4) indicate that

in the context of the case study accomplished in south-west
Slovakia, the need for irrigation occurs very often. Every
second year, for example, a period can be expected in which
temperatures above 25◦C occur, and a dry period usually lasts
one month with a moisture deficit of about 30 mm. Months of
the growing season with rainfall totals smaller than 50 mm are
considered to be those with irrigation needs. A precipitation of
80 mm in such a period (which would be needed to maintain
this limit) occurs with a probability in the upper quartile, i.e.,
it is very rare. Even more significant periods of drought can be
expected, for example, with a 5 or 10-year return period. These
phenomena result in significant damage to agriculture yields,
which, as is often declared in the domestic water management
community, are greater than the investment needed for the
reliable maintenance or reconstruction of irrigation systems.
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