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Abstract—The paper proposes a cell-centered Lagrangian 
method for numerically simulating two-dimensional detonation 
flows in condensed explosives. The main feature of this method is 
that the velocity and pressure at the mesh vertex are computed 
using the characteristics theory in terms of the linearized partial 
differential equations about the detonation flows, and then the 
velocity and pressure are used to update the grid coordinates and 
evaluate the numerical flux across the cell interface. This vertex 
solver gives the instantaneous evolution solutions for velocity and 
pressure, which is regarded as a generalization of Riemann solver 
for one-dimensional Godunov scheme in multidimensional flows. 

Keywords-cell-centered Lagrangian method; characteristics 
theory; condensed explosive; detonation. 

I.  INTRODUCTION 

The staggered-grid Lagrangian (SGL) method, where the 
kinematic variables are defined at the vertex of the mesh and 
the state variables are defined at the center of the mesh cell, 
is currently the most extensive way to numerically 
simulating explosive detonation flows [1]. However, SGL 
method has the following main disadvantages: 1) unable to 
preserve the conservation of the total energy; 2) always 
smooth the discontinuity of detonation with artificial 
viscosity; 3) difficult to adopt high precision for temporal 
and spatial discretization; 4) easy to produce the spurious 
motion of the mesh; 5) nonsynchronous time advance 
between the momentum equation and the mass and internal 
energy equations. 

To eliminate these deficiencies, a highly promising 
alternative to SGL method is to use cell-centered Lagrangian 
(CCL) method [2][3], where all physical variables are 
defined at the center of the mesh cell, and the numerical 
scheme is constructed by integrating directly the 
conservation system of detonation flows on each moving cell 
with finite volume discretization. So, the key technique of 
CCL method lies in the determination of the velocity at the 
mesh vertex from the physical variables at the center of mesh 
cell, especially in multidimensional cases. An important 
contribution of this paper is to give a new idea to determine 
the physical variables at the mesh vertex in 2D detonation 
flows using the characteristics theory of partial differential 
equation. 

The paper is organized as follows. In Section 2, we give 
the cell-centered finite volume method for detonation flows 
equations in the Lagrangian formulation. In Section 3, the 
vertex solver to compute velocity and pressure at vertex of 

the cell by local evolution Galerkin operator is derived. In 
Section 4 some numerical tests are shown to demonstrate the 
excellent performance of this new scheme. Some main 
conclusions are presented in Section 5. 

II. THE GOVERNING EQUATIONS OF DETONATION AND 

THE FINITE VOLUME SCHEME 

The governing equations of detonation flows in 
Lagrangian formulation are as follows: 
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where   is the density, u  and v  are component velocities, 

p  is pressure, E  is specific total energy, 
2 2( ) / 2E e u v   , e  is specific internal energy, and ( )t  

is a control volume with the boundary ( )t , dl  is the 

differential length of the surface for the control volume, r is 
the chemical reaction rate of explosives detonation, in which 
Ignition-Growth model is adopted [4]. 

On Lagrangian hydrodynamics, a control volume moves 
along with the fluid particle with the trajectory equations: 

dx
u

dt
 , dy

v
dt

                                       (2) 

For a given control volume   with the mass m d

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f fd
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  . Thus, for 2D flows, (1.2) 

becomes an algebraic equation constA m    , and Eqs. 

(1.1) and (1.3)-(1.5) can be written as the following semi-
discrete expression: 
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For any non-overlapping structured quadrilateral mesh 
with sides denoted by kI (k=1,2,3,4), the semi-discrete finite 

volume discretization of Eq.(3) can be written as: 

   
4

1

1

kI
kc

d
dl

dt m





   
q

H n r                                   (4) 

Due to the fact that a semi-discrete model describes the 
instantaneous behavior of the dynamical system at its initial 
time, the full discretization of Eq.(4) can be turned into the 
following form by means of the trapezia rule to evaluate the 

numerical integration of the interface flux in structured grids: 
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where 0E  is the vertex solver to compute the instantaneous 

solutions at the mesh vertex at time 0n nt t   , namely there is 

0( ) ( )n nt t q E q , and subscript i is the numbering of the vertices 

counterclockwise for a quadrilateral grid. 
From Eq.(2) and Eq.(5), the velocity and pressure of a 

vertex of a mesh cell must be obtained. Here, the velocity 
and pressure of a vertex are solved by the characteristics 
theory of partial differential equation. 

III. VERTEX SOLVER E0  BY CHARACTERISTICS THOERY 

To obtain the analytical expressions of the vertex solver 

0E  by means of the characteristics theory of hyperbolic 

partial differential equations, the quasilinear and 
heterogeneous detonation equations (6.1) can be transformed 
into a locally linearized and homogeneous system (6.2) in 
terms of the primitive variables: 
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( )B w  is similar to ( )A w ,  and c  is the sonic speed. 

We can prove the equality ˆ( ) ( )n nt t w w  as follows. 
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From the Taylor expansion, it holds: 
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A limit operation is carried out for the Eq.(7), and we 

have: 
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End. 
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can be carried out secondly. 
For convenience, Eq.(6.2) can be transformed into the 

following quasi-diagonalized system by means of left 
multiplication of the eigen-matrix: 
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Obviously, it can be found from the characteristics theory 
of two-dimensional first-order hyperbolic partial differential 
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By left multiplying Eq.(9) through ˆ w R v  and then 

integrating with respect to   from 0 to 2 , it leads to: 
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For discretized structured grids, ( , , )
nt tP x y t   is assumed 

to be time-space position of any vertex. Obviously, the 
vertex is shared by four grid cells, and ka  and kb  are 

respectively assumed to be the starting and ending angles of 
the thk ( 4)k   grid cell of the shared vertex, thus Eq.(10) can 
be rewritten into: 
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Equtions.(11)-(13) are the exact evolution solutions of 

the locally linearized and homogeneous system (6.2). The 
instantaneous evolution solutions of Eqs.(11)-(13) at time 

0n nt t    can be obtained by means of the limit operations in 

terms of 0  , and then the analytical expressions of the 
vertex solver 0E  are as follows: 
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IV. NUMERICAL EXAMPLES 

The steady structure of 1D planar detonation wave, 
unsteady propagation of 1D spherically divergent detonation 
wave and 2D rectangular diffraction of planar detonation 
wave in high explosive PBX9502 [1] are investigated. Here,  
only the results of 1D planar detonation wave are given. The 
calculating length of explosive takes 5.0cm, and the 
explosive is initiated by the Chapman-Jougeut condition [1] 
at its left hand side. The distributions of pressure and 
velocity in chemical reaction zone are obtained, and 
comparisons are made with the exact solutions. Figure 1 
gives the results where the mesh sizes are 1 100x /  , 1 200/ , 
1 500/ , 1 1000/  cm respectively. From Figure 1, the shock 
front of detonation wave is well resolved and the spurious 
oscillation does not appear in the vicinity of the shock 
discontinuity. Meanwhile, when the mesh size is less than 
1 500/ cm (about 50 meshes in the reaction zone), the 
calculating solutions agree well with the exact solutions. It 
means that this method has good resolution and convergence. 
Figure 2 shows the change of pressure and velocity at several 
typical times on the course of unsteady propagation of the 
detonation, in which the discretized mesh is 1 500x /  cm 
and the corresponding time are: t=0.06, 0.12, 0.24, 0.48, 0.96, 
1.44, 1.92, 2.40, 2.88, 3.36, 3.84, 4.32, 4.80, 5.28s. From 

the results, the pressure grows much faster and the steady 
state reaches about 3.84s after initiating by Chapman-
Jougeut conditions, and the propagation velocity is about 
0.7670 cm/s after the steady state. The change course is 
almost identical with the experimental results  [7]. 

These numerical examples demonstrate the excellent 
performance of the presented cell-centered Lagrangian 
method. 

V. CONCLUSIONS 

This paper proposes a cell-centered Lagrangian method 
for 2D detonation flows in condensed explosives. Its main 
feature is that the vertex solver is based on the characteristics 
theory in terms of the linearized partial differential equations 
of the detonation flows, which is essentially a 
multidimensional Riemann solver taking “multidimensional 
effect” into account in a natural way. From the calculated 
course, the CCL method is able to preserve the conservation 
of the total energy by solving the total energy equation, to 
preserve the good resolution of the discontinuity of 
detonation without artificial viscosity, to eliminate the 
unphysical motion of mesh, and keep the synchronous time 
advance between the momentum equation and the mass and 
internal energy equations. Our future most important works 
will be on the generalization of high-order precision and high 
resolution, and the extension to arbitrary Lagrangian-
Eulerian method. 

 

 

 
Fig.1 The distribution of variables in chemical reaction zone for PBX9502 
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Fig.2 The growth course of one-dimensional planar detonation for PBX9502 
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