
Parallel Program Complex “Express-3D” for 3D Flows Simulation on Hybrid
Computer Systems

Alexander A. Davydov and Evgeny V. Shilnikov
Keldysh Institute of Applied Mathematics RAS

Moscow, Russia
e-mail: alexander.a.davydov@gmail.com, shiva@imamod.ru

Abstract—The paper presents a program complex for solving
computational fluid dynamics problems, oriented on
heterogeneous computer systems. Based on finite volumes
method, an explicit difference scheme is constructed for Quasi
Gas Dynamic equations system in 3D formulation on arbitrary
hexagonal non-orthogonal structured index grid. The use of
multi block grids is proposed. To improve the stability
condition, the flux relaxation approach is used. The algorithm
efficiency was verified on a set of test problems with wide
variety of flow types. The speed-up for different computing
units was investigated.

Keywords-quasi gas dynamic equations; explicit scheme;
finite volume method, nonorthogonal grid; hybrid supercomputer
architecture.

I. INTRODUCTION

The development of modern hybrid computer systems is
connected with massively parallel multicore processors with
powerful accelerators, such as general purpose graphics
processing units (GP-GPUs). They open possibilities for
reducing the cost of a computer system per unit of
performance and significantly reduce power consumption.
These systems bring new opportunities to mathematical
modeling and simulation. However, the difficulties in the
efficient use of such hybrid systems are much greater than
those in using conventional cluster-type high performance
computers. Many of the existing sophisticated numerical
methods are often not sufficient for modern high
performance computer (HPC) systems. Such systems require
software being created to take into account different types of
processing units and a hybrid structure of memory.
Experience shows that, for an effective application, it is
preferable to apply algorithms as simple as possible from the
logic point of view. In this regard very promising are the
explicit schemes, which can be easily adapted to the
computer systems with different architectures.

This paper presents further development of a program
complex "Express-3D" [1], oriented on heterogeneous GPU-
based computer systems. The program complex uses the
explicit variant of kinetically consistent finite difference
schemes based on quasi gas dynamic (QGD) equation
system [2][3]. These schemes belong to the class of kinetic
or Boltzmann schemes which are presently often used in the
computational fluid dynamics (CFD) [4][5]. They are an
effective approach to the numerical simulation of continuous

media problems. The use of previous version of our program
complex showed good results in solving a large number of
gas dynamic problems. However, its use was limited by
rectangular grids. Here, we present a new version of this
program complex, which uses multi block, non orthogonal
curvilinear structured hexahedral grids. Such grids give the
opportunity to solve problems with complicated geometry
and, on the other hand, the computational algorithm for
structured grid is usually much simpler than for widely used
unstructured tetrahedral grids.

In Section 2, the QGD equations system is presented and
analyzed, the method of difference scheme construction is
described, the stability conditions and the method of their
improving are discussed. In Section 3, the results of a set of
test problems simulation are presented. In Section 4, the
parallel implementation of our program complex is
described. The comparison is presented of speedups
achieved on different GPU types. In Section 5, some
conclusions are drawn based on our experience in using the
program complex presented.

II. NUMERICAL METHOD

QGD equation system [2] differs from Navier-Stokes
equations in some additional dissipative terms. These terms
are small compared to the terms of natural viscosity and
conductivity and equal to zero in flow regions where the
solution satisfies the stationary Euler equations. They can be
interpreted as efficient numerical stabilizers, which provide
smoothness of the solution at distances of the order of mean
free path. The successful use of kinetic schemes for solving a
wide range of fluid dynamics problems shows that they
describe viscous heat conducting flows, as well as the
Navier–Stokes equations in the regions where the latter
equations are applicable.

For a 3D ideal polytrophic gas flow, this system in
traditional notation may be written in the form of
conservation laws approximation, as follows:

   0
T

QGDt


  


U

W  

Here – the vector of

conservative variables,

 1 2 3, , , ,
T

u u u E   U 
 2E   u 2 – total energy,

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

mailto:alexander.a.davydov@gmail.com
mailto:shiva@imamod.ru

QGDW – is the matrix consisting of the conservative

variables fluxes:

  , , ()m m mp E p          j u u q j QGDW j  

I - is the unity matrix, vectors of mass flux (jm), heat flux
(q) and viscous stress tensor (П) are defined as follows:

 (),mi i i i j i
j i

j u w w u u p
x x

 

  

     
,



 


1

,NS NS
i i i j i

j j

q q u u p q T
x x x

  


   
         

,
i

 

2

3

1
.

j i k
ij ij

i j k

j k
i k ij k

k j k k

u u u

x x x

u up p
u u u p

x x x

 

  


   
         

    
            x




 

Closing equations are:

 (1), ,
Sc

p
p T

R p

  


     


3 2

0
0

0

,
(1) Pr

С T T

C T T

   


 
    

R


 

Here γ – specific ratio, Pr and Sc – Prandtl and Schmidt
numbers, τ is a relaxation parameter having a dimension of
time, summation is implied over repeated indices.
Parameters in the Sutherland formula for viscosity may be
taken from the tables. For example, for nitrogen C = 111 K,
T0 = 300.55 K, μ0 = 17.81 μPac.

In order to achieve computational stability, an item
proportional to the spatial step size is usually added to the
expression for relaxation parameter in (6)

 ,
Sc

h

p c

    

where c – is a local speed of sound,  – is a number of
the order of unity, which is adjusted experimentally. Note
that for high Reynolds numbers and not very fine grids the
first term in (8) is much less than the second one and may be
neglected.

When the flow of non viscid gas is simulated, we have
0  and .h с  So, all dissipative terms in QGD

equations system are artificial regularizers, corresponding to
the artificial viscosity art p Sc    . In the case of viscous

flows, equations contain both terms with natural viscosity
and terms with artificial one. However, this combined
viscosity may be insufficient for the computational stability
when hypersonic flows with strong shock waves are
simulated. In this case we correct the natural viscosity by
some artificial additive proportional to the spatial step size. It
means that the natural viscosity μ is replaced in all Navier-
Stokes terms by corrected value p Sc     , where τ is
taken from (8).

To construct difference scheme we use the control
volume method. Let some regular index grid be done, which
consists of arbitrary convex hexahedrons in the
computational domain. Let all gas dynamic parameters be

addressed to cell centers and equal to 1 ,
V

V d U U

lS

V where

V is a cell volume (we will omit the dash over variables in
the following text). Integrating (1) over cell volume we
obtain integral form of conservation laws. Replacing time
derivative by finite difference, we have the following
expression for conservative variables at the next time level
(here summation is held over cell faces with normal

vectors): ln


6

1

ˆ (,)
l

T
l

l S

t
dS

V 


   U U W n  

To calculate the integrals in (9), we suppose the gas
dynamic values be constant on the cell faces. These values
may be calculated by linear interpolation between values in
the centers of the cells adjacent to the face. The
approximation of spatial derivatives in the fluxes of
conservative variables is also based on the finite volume
method. The control volume is constructed connected with
each face of grid cells. Let this volume be the octahedron
with the vertices in the four centers of the face edges and two
centers of the adjacent cells. The values of gas dynamic
variables in the edge center may be calculated as a quarter of
the sum of their values in the centers of four adjacent cells.
Consider the vector-function and
integrate its divergence over the volume Ω of the octahedron.
By use of Gauss-Ostrogradsky formula, we have:

((, ,),0,0)f x y zA

  
8

1

, .
m

mx
m S

div dV dS n fdS
 

   A A n   

If we suppose the function f(x,y,z) is linear at each
octahedron face, we may calculate last integral. It is equal to
the product of the face square and the arithmetic mean of
function values in the face vertices. On the other hand, the
volume integral in (10) is equal to the product of the
octahedron volume by some average value of the
derivative f x  . Addressing this value to the cell face
center we obtain it after algebraic transformations as a linear
combination of the function values in six octahedron
vertices. The coefficients of this combination only depend on

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

the grid points coordinates. Derivatives f y  and f z 
may be expressed similarly. As a result, we have a 19-point
stencil for the space approximation.

Usually, the explicit schemes impose stringent stability
limitations on a time step, especially when the parabolic
equations are solved, Δt  , which is not appropriate for
fine grids used in HPC calculation. Theoretical investigation
of QGD based explicit schemes showed that, for numerical
modeling of inviscid gas flows (when all dissipative terms in
(1) – (7) are the artificial regularizers), the stability condition
has a Courant type Δt  h, and the time step may be defined
by the formula

2h

 min ,i

i
i i

h
t

c u
  


 

where are the spatial step, local speed of sound

and gas velocity in i-th grid cell, β is a coefficient (Courant
number), which does not depend on spatial step size. In the
case of viscous gas flow simulation the situation is more
complicated. Computational experience shows that these
schemes have Courant-like stability condition with β close to
unity for high and medium Mach number () flow
simulation, giving the opportunity to use very fine meshes to
study the fine flow structure. However, with the Mach
number diminishing the stability condition tends to Δt  ,
which is typical for parabolic equations. A similar situation
takes place in the case of hypersonic flow simulation
(), when Courant number acceptable for calculation
stability does not exceed 0.1.

, ,i i ih c u

0.3Ma 

2h

5Ma 

To improve this situation we used the flux relaxation
approach, proposed in [6]. The main idea of this method is a
statement that the fluxes of conservative variables at any
time moment cannot achieve new values instantly. They
have to relax to them, starting from the previous values with
some characteristic time of flux relaxation f . Thus, the

system (1) is transformed to

   ,
T

f QGDt t
 

   
 

U W W W W.  

For small values of f or for slow processes (12)

practically coincides with (1). But the new system has a
hyperbolic type and, consequently, the Courant stability
condition for the explicit schemes. So, we may construct
finite difference scheme based on system (12) and use f as

a regularizing parameter. This parameter must be large
enough to provide the best stability and small enough to
receive the solution close to the solution of system (1). In
[7], such transformation was investigated on the sample of
heat conductivity equation. It was proved that, if the solution
of the hyperbolic problem has no sufficient oscillations
(second time derivative is not very large), then difference
between solutions of parabolic and hyperbolic problems is

small for small values of f . Note that introducing the

relaxation of fluxes, we remove the global defect of
parabolic equations – infinite speed of disturbances
propagation.

The second equation in (12) is the first order linear ODE,
so, its solution on a time step may be written, as follows: t

)D D ˆ (1 , exp / .QGD fD t    W W W   

So, a time step consists of three parts. At first, using the
known values of gas dynamic parameters we calculate fluxes

. Then we find a time step from (11) and, according to

(13), correct fluxes values and find . At last, we calculate
new values of density, velocity components and energy from
(9).

QGDW

Ŵ

III. TEST PROBLEMS SIMULATION

The program complex was tested on a set of problems
including subsonic, supersonic and hypersonic flows. Some
test results were presented in [8]. Here, we present some new
simulations.

The first test problem is a nitrogen flow simulation over
2D edge compression corner described in [9]. This 2D
problem was solved by means of 3D program with small
number of cells in the third direction (y). The free stream
parameters were Ma = 9.22, Re = 47106 per meter, T =
64.5 K, stagnation temperature Ts = 1070 K, without
boundary layer tripping ahead of the flip. The compression
corner angles were taken as 15° and 38°. The distance
between the left border and angle edge is 76 cm. The
boundary conditions are: constant inflow parameters on the
left bound, no slip conditions on the bottom, zero normal
derivatives on the upper and right bounds, and periodic
boundary conditions in the third direction.

The calculation results are presented in Fig. 1 and Fig. 2.
Fig. 1 demonstrates stream lines on the background of the
pressure distributions in the central section of the
computational region. For the case of 15° angle we have an
attached flow with the shock wave attached to the corner
edge. If the angle is equal to 38°, the separated flow is
formed with a vortex and a chock wave in front of it. It is in
agreement with the experimental results [9]. The calculated
maximum values of pressure in flow field also coincide with
experimental data.

Fig. 2 presents the comparison of calculated wall
pressure distribution in the middle section with the
experimental results. The calculations were held with
different values of α coefficient in (8). One can see that the
results obtained with α = 0.2 are better than for α = 0.5. This
effect is natural because the coefficient α is responsible for
the artificial members in equations. Further diminishing of
this coefficient leads to the computational instability.

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 1. Stream traces near the compression corner with angle of 15° (a)
and of 38° (b)

Figure 2. Wall pressure distribution for the corner angle of 15°.

The next problem was a subsonic (Ma = 0.1) flow around
a hill. The Reynolds number was taken to be Re = 104. For
such parameters a flow must be turbulent. A complicated 3D
flow arises behind the hill with the separations and

reattachments. Volume stream traces on the background of a
density distribution are presented in Fig. 3.

Note that, according to [3], boundary conditions for
subsonic flow differ from conditions for supersonic ones.
This difference concerns only the inflow and outflow
conditions for pressure. We state constant pressure p = p at
the right bound (outflow) and 0p n   at the left bound
(inflow).

The third problem was a simulation of the wind load on a
launch vehicle standing on the launch pedestal. Unlike
previous problems, complicated geometry of this problem
forced us to use multi block grid. The computational region
was divided into a number of blocks with different index
grids in each one. The grid vertices of neighbor blocks
coincide on their boundary surface. The volume stream
traces and pressure distribution on the vehicle surface in a
stationary flow are presented in Fig. 4. The ascending
vortices are clearly visible near pods.

Figure 3. Volume instant stream traces behind the hill.

Figure 4. Flow around standing Soyuz launch vehicle.

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

IV. PARALLEL IMPLEMENTATION

There are two levels of parallelism in CFD program
complex "Express-3D" [1][6]:

• The first level — geometrical decomposition. The
computation domain is divided into blocks with the
indexed grid in each. Blocks are distributed on MPI
(Shmem) to processes so that to provide load
balancing of all processes. Each MPI (Shmem)
process can process one or several blocks.

• The second level — small-grain parallelism. Each
mesh cell is processed by one Compute Unified
Device Architecture (CUDA) stream [10].

Each face and edge have additional layers of ghost cells
for organization of data exchange between blocks. We also
add some additional arrays for sending and receiving data for
each face and edge. The depth of additional arrays and ghost
layers depends on the scheme stencil.

The orientation of faces of neighbor blocks may be
arbitrary. Therefore, they are reordered before data
transmission. All transferred values are packed into one array
for each face and each edge.

We will call “computing process” one of the following
tasks:

• The CPU core task — if calculation goes without
use of GPU

• The GPU + CPU core task — if calculation goes on
GPU under management of CPU

A Shmem (MPI) process corresponds to each computing
process.

The data transfer is asynchronous. After processing each
block new data are transferred to the neighbor blocks. If
blocks are in the same computing process, there is simply a
data copying from the sending array of one block to the
receiving array of another one. If, on the contrary, the blocks
are in different computing processes, we use shmem_put()
procedure to asynchronously copy data from the sending
array of one block to the receiving array of another one.
Addresses of the sending and receiving arrays in each block
are adjusted just after the application launch and reading the
configuration file. The exchange between computing
processes is executed under the control of the CPU-core. In
the case of calculation on GPU it is necessary at first to copy
data to corresponding CPU memory, then exchange data
through Shmem (MPI) and finally copy data to GPU, if
needed.

Blocks in computing process are sorted by diminishing
the number of cells. For example, the big blocks are
processed at first. In combination with asynchronous data
transmission it is possible to assume that the main volume of
data is already transferred, when processing the last (the
smallest) block. The exchange procedure is finished by
barrier synchronization. Actually, data exchange consists of
two stages with synchronization after each of them. At the
first step we exchange information from faces. After
obtaining the updated information from faces, at the second
step, data from edges are formed and transferred.

In [1][11], efficiency experiments were conducted with
program complex "Express-3D". A set of test problems was

solved based on QGD equations system on rectangular grids
on a large number of graphic processors. Transition to
curvilinear structured grids in addition to complication of
computing algorithms, demands storage of large volumes of
additional information and ensuring access to it.

Explicit finite-volume schemes are quite suitable for
realization on CUDA architecture, and we will not dwell on
this separately. We will note only some aspects connected
with transition to non orthogonal grids.

Graphic processors of CUDA architecture with compute
capability 2.0 (such as Tesla C20xx) have small number of
registers on thread. As a result, a significant increase in the
number of data access operations leads to a loss of
efficiency. Acceleration of calculations on such processors is
only 5-7 times in comparison with modern CPU cores.
However, upon transition to more modern graphic processors
with architecture of Kepler and compute capability 3.5 it is
possible to achieve the acceptable acceleration without any
changes in program code.

The results of the comparison of productivity of various
devices are presented in the Table 1. The calculation times
were measured for a fixed number of time steps.

TABLE I. DIFFERENT DEVICES PERFORMANCES

Computing
Device

Intel
Xeon

E5-2670
1xCore

Nvidia
Tesla
C2050

Nvidia
Kepler

K20

Nvidia
Kepler

K40

Nvidia
Kepler

K80

Time (s) 592 175 49,70 39,85 26,81

Speedup 1 3,38 11,91 14,86 22,08

Unfortunately, there was only a small cluster containing
only 4 K80 processors at the author’s disposal. That’s why
we had no opportunity to make full research of scalability.
However the efficiency received on 4 accelerators (more
than 95%) and our previous experience in parallel computing
allow to suggest that transition to a large number of GPU
will be also effective in a case of non orthogonal grids as
well.

V. CONCLUSION

The efficiency of using modern multicore systems
including those based on NVidia GPUs largely depends on
the properties of computational algorithms. On one hand,
these algorithms must be logically simple; on the other hand,
they must be efficient. These stringent requirements are
satisfied by the algorithms based on the use of the hyperbolic
variant of the quasi gas dynamic equations system.

Use of multi-block non orthogonal index hexahedral
grids allows simulating gas flows in the regions with very
complicated geometry as well as multiscale problems
extremely close to their real behavior.

Numerical simulation of a set of test problems by use of
QGD based algorithm demonstrated its good efficiency. This
fact opens wide perspectives for modeling real scientific and
engineering problems on modern high performance hybrid
computer systems by use of explicit schemes, which are very
convenient for parallel implementation.

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

ACKNOWLEDGMENT

This work was partially supported by Russian
Foundation for Basic Research (grants No 15-01-03654-а,
15-01-03445-а and 16-07-00206-а).

REFERENCES
[1] B. N. Chetverushkin, E. V. Shilnikov, and A. A. Davydov,

“Numerical Simulation of Continuous Media Problems on
Hybrid Computer Systems,” Advances in Engineering
Software, vol. 60-61, pp. 42–47, 2013,
http://dx.doi.org/10.1016/j.advengsoft.2013.02.003.

[2] B. N. Chetverushkin, Kinetic Schemes and Quasi-
Gasdynamic System of Equations. Barcelona: CIMNE, 2008.

[3] T. G. Elizarova, Quasi-Gas Dynamic Equations. Berlin
Heidelberg New York: Springer-Verlag, 2009.

[4] E. Oñate and M. Manzam, “Stabilization techniques for finite
element analysis for convective-diffusion problem, ”
Barcelona: Publication CIMNE 183, (2000).

[5] S. Succi, The lattice Boltzmann equations for fluid dynamics
and beyond, Oxford: Clarendon, 2001.

[6] A. A. Davydov, B. N. Chetverushkin, and E. V. Shilnikov,
“Simulating Flows of Incompressible and Weakly
Compressible Fluids on Multicore Hybrid Computer
Systems,” Computational Mathematics and Mathematical
Physics, vol. 50, No 12, pp. 2157–2165, 2010.

[7] S. I. Repin and B. N. Chetverushkin, “Estimates of the
Difference between Approximate Solutions of the Cauchy
Problems for the Parabolic Diffusion Equation and a
Hyperbolic Equation with a Small Parameter,” Doklady
Mathematics, vol. 88, No 1, pp. 417–421, 2013.

[8] A. A. Davydov and E. V. Shilnikov, “Program complex for
fluid dynamic problems simulation on GPU-based computer
systems,” Proc. ICNAAM-2014, AIP Conference
Proceedings, vol. 1648, 850071, 2015, AIP Publishing LLC,
http://dx.doi.org/10.1063/1.4913126.

[9] J. G. Marvin, J. L. Brown, and P. A. Gnoffo, “Experimental
Database with Baseline CFD Solutions: 2-D and
Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-
Layer Interactions,” NASA/TM–2013–216604, November,
2013.

[10] N. Wilt, CUDA Handbook: A Comprehensive Guide to GPU
Programming. Reading MA: Addison-Wesley Professional,
2013. Available from: http://www.cudahandbook.com/.

[11] E. V. Shilnikov and A. A. Davydov. “Numerical Simulation
of the Low Compressible Viscous Gas Flows on GPU-based
Hybrid Supercomputers,” In: Computing: Accelerating
Computational Science and Engineering (CSE). Advances in
Parallel Computing, M. Bader, A. Bode, H.-J. Bungartz, M.
Gerndt, G.R. Joubert, F. Peters eds. IOS Press, vol. 25, pp.
315-323, 2014.

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-506-7

ADVCOMP 2016 : The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences

https://kias.rfbr.ru/Application.aspx?id=6370169
http://dx.doi.org/10.1016/j.advengsoft.2013.02.003
http://dx.doi.org/10.1063/1.4913126
http://www.cudahandbook.com/

	I. Introduction
	II. Numerical Method
	III. Test Problems Simulation
	IV. Parallel Implementation
	V. Conclusion
	Acknowledgment
	References

