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Abstract—The paper presents a program complex for solving 
computational fluid dynamics problems, oriented on 
heterogeneous computer systems. Based on finite volumes 
method, an explicit difference scheme is constructed for Quasi 
Gas Dynamic equations system in 3D formulation on arbitrary 
hexagonal non-orthogonal structured index grid. The use of 
multi block grids is proposed. To improve the stability 
condition, the flux relaxation approach is used. The algorithm 
efficiency was verified on a set of test problems with wide 
variety of flow types. The speed-up for different computing 
units was investigated. 

Keywords-quasi gas dynamic equations; explicit scheme; 
finite volume method, nonorthogonal grid; hybrid supercomputer 
architecture. 

I.  INTRODUCTION 

The development of modern hybrid computer systems is 
connected with massively parallel multicore processors with 
powerful accelerators, such as general purpose graphics 
processing units (GP-GPUs). They open possibilities for 
reducing the cost of a computer system per unit of 
performance and significantly reduce power consumption. 
These systems bring new opportunities to mathematical 
modeling and simulation. However, the difficulties in the 
efficient use of such hybrid systems are much greater than 
those in using conventional cluster-type high performance 
computers. Many of the existing sophisticated numerical 
methods are often not sufficient for modern high 
performance computer (HPC) systems. Such systems require 
software being created to take into account different types of 
processing units and a hybrid structure of memory. 
Experience shows that, for an effective application, it is 
preferable to apply algorithms as simple as possible from the 
logic point of view. In this regard very promising are the 
explicit schemes, which can be easily adapted to the 
computer systems with different architectures. 

This paper presents further development of a program 
complex "Express-3D" [1], oriented on heterogeneous GPU-
based computer systems. The program complex uses the 
explicit variant of kinetically consistent finite difference 
schemes based on quasi gas dynamic (QGD) equation 
system [2][3]. These schemes belong to the class of kinetic 
or Boltzmann schemes which are presently often used in the 
computational fluid dynamics (CFD) [4][5]. They are an 
effective approach to the numerical simulation of continuous 

media problems. The use of previous version of our program 
complex showed good results in solving a large number of 
gas dynamic problems. However, its use was limited by 
rectangular grids. Here, we present a new version of this 
program complex, which uses multi block, non orthogonal 
curvilinear structured hexahedral grids. Such grids give the 
opportunity to solve problems with complicated geometry 
and, on the other hand, the computational algorithm for 
structured grid is usually much simpler than for widely used 
unstructured tetrahedral grids. 

In Section 2, the QGD equations system is presented and 
analyzed, the method of difference scheme construction is 
described, the stability conditions and the method of their 
improving are discussed. In Section 3, the results of a set of 
test problems simulation are presented. In Section 4, the 
parallel implementation of our program complex is 
described. The comparison is presented of speedups 
achieved on different GPU types. In Section 5, some 
conclusions are drawn based on our experience in using the 
program complex presented. 

II. NUMERICAL METHOD 

QGD equation system [2] differs from Navier-Stokes 
equations in some additional dissipative terms. These terms 
are small compared to the terms of natural viscosity and 
conductivity and equal to zero in flow regions where the 
solution satisfies the stationary Euler equations. They can be 
interpreted as efficient numerical stabilizers, which provide 
smoothness of the solution at distances of the order of mean 
free path. The successful use of kinetic schemes for solving a 
wide range of fluid dynamics problems shows that they 
describe viscous heat conducting flows, as well as the 
Navier–Stokes equations in the regions where the latter 
equations are applicable. 

For a 3D ideal polytrophic gas flow, this system in 
traditional notation may be written in the form of 
conservation laws approximation, as follows: 

   0
T

QGDt


  


U

W  

Here  – the vector of 

conservative variables, 

 1 2 3, , , ,
T

u u u E   U 
 2E   u 2  – total energy, 
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QGDW  – is the matrix consisting of the conservative 

variables fluxes: 

  , , ( )m m mp E p          j u u q j QGDW j  

I - is the unity matrix, vectors of mass flux (jm), heat flux 
(q) and viscous stress tensor (П) are defined as follows: 

 ( ),mi i i i j i
j i
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Closing equations are:
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p T

R p
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

     
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    

R


 

Here γ – specific ratio, Pr and Sc – Prandtl and Schmidt 
numbers, τ is a relaxation parameter having a dimension of 
time, summation is implied over repeated indices. 
Parameters in the Sutherland formula for viscosity may be 
taken from the tables. For example, for nitrogen C = 111 K, 
T0  = 300.55 K, μ0 = 17.81 μPac. 

In order to achieve computational stability, an item 
proportional to the spatial step size is usually added to the 
expression for relaxation parameter in (6) 

 ,
Sc

h

p c

    

where c – is a local speed of sound,  – is a number of 
the order of unity, which is adjusted experimentally. Note 
that for high Reynolds numbers and not very fine grids the 
first term in (8) is much less than the second one and may be 
neglected. 

When the flow of non viscid gas is simulated, we have 
0   and .h с   So, all dissipative terms in QGD 

equations system are artificial regularizers, corresponding to 
the artificial viscosity art p Sc    . In the case of viscous 

flows, equations contain both terms with natural viscosity 
and terms with artificial one. However, this combined 
viscosity may be insufficient for the computational stability 
when hypersonic flows with strong shock waves are 
simulated. In this case we correct the natural viscosity by 
some artificial additive proportional to the spatial step size. It 
means that the natural viscosity μ is replaced in all Navier- 
Stokes terms by corrected value p Sc     , where τ is 
taken from (8). 

To construct difference scheme we use the control 
volume method. Let some regular index grid be done, which 
consists of arbitrary convex hexahedrons in the 
computational domain. Let all gas dynamic parameters be 

addressed to cell centers and equal to 1 ,
V

V d U U

lS

V where 

V is a cell volume (we will omit the dash over variables in 
the following text). Integrating (1) over cell volume we 
obtain integral form of conservation laws. Replacing time 
derivative by finite difference, we have the following 
expression for conservative variables at the next time level 
(here summation is held over cell faces  with normal 

vectors ): ln


6

1

ˆ ( , )
l

T
l

l S

t
dS

V 


   U U W n  

To calculate the integrals in (9), we suppose the gas 
dynamic values be constant on the cell faces. These values 
may be calculated by linear interpolation between values in 
the centers of the cells adjacent to the face. The 
approximation of spatial derivatives in the fluxes of 
conservative variables is also based on the finite volume 
method. The control volume is constructed connected with 
each face of grid cells. Let this volume be the octahedron 
with the vertices in the four centers of the face edges and two 
centers of the adjacent cells. The values of gas dynamic 
variables in the edge center may be calculated as a quarter of 
the sum of their values in the centers of four adjacent cells. 
Consider the vector-function  and 
integrate its divergence over the volume Ω of the octahedron. 
By use of Gauss-Ostrogradsky formula, we have: 

( ( , , ),0,0)f x y zA

  
8

1

, .
m

mx
m S

div dV dS n fdS
 

   A A n   

If we suppose the function f(x,y,z) is linear at each 
octahedron face, we may calculate last integral. It is equal to 
the product of the face square and the arithmetic mean of 
function values in the face vertices. On the other hand, the 
volume integral in (10) is equal to the product of the 
octahedron volume by some average value of the 
derivative f x  . Addressing this value to the cell face 
center we obtain it after algebraic transformations as a linear 
combination of the function values in six octahedron 
vertices. The coefficients of this combination only depend on 
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the grid points coordinates. Derivatives f y   and f z   
may be expressed similarly. As a result, we have a 19-point 
stencil for the space approximation. 

Usually, the explicit schemes impose stringent stability 
limitations on a time step, especially when the parabolic 
equations are solved, Δt  , which is not appropriate for 
fine grids used in HPC calculation. Theoretical investigation 
of QGD based explicit schemes showed that, for numerical 
modeling of inviscid gas flows (when all dissipative terms in 
(1) – (7) are the artificial regularizers), the stability condition 
has a Courant type Δt  h, and the time step may be defined 
by the formula 

2h

 min ,i

i
i i

h
t

c u
  


 

where  are the spatial step, local speed of sound 

and gas velocity in i-th grid cell, β is a coefficient (Courant 
number), which does not depend on spatial step size. In the 
case of viscous gas flow simulation the situation is more 
complicated. Computational experience shows that these 
schemes have Courant-like stability condition with β close to 
unity for high and medium Mach number ( ) flow 
simulation, giving the opportunity to use very fine meshes to 
study the fine flow structure. However, with the Mach 
number diminishing the stability condition tends to Δt  , 
which is typical for parabolic equations. A similar situation 
takes place in the case of hypersonic flow simulation 
( ), when Courant number acceptable for calculation 
stability does not exceed 0.1. 

, ,i i ih c u

0.3Ma 

2h

5Ma 

To improve this situation we used the flux relaxation 
approach, proposed in [6]. The main idea of this method is a 
statement that the fluxes of conservative variables at any 
time moment cannot achieve new values instantly. They 
have to relax to them, starting from the previous values with 
some characteristic time of flux relaxation f . Thus, the 

system (1) is transformed to 

   ,
T

f QGDt t
 

   
 

U W W W W.  

For small values of f  or for slow processes (12) 

practically coincides with (1). But the new system has a 
hyperbolic type and, consequently, the Courant stability 
condition for the explicit schemes. So, we may construct 
finite difference scheme based on system (12) and use f  as 

a regularizing parameter. This parameter must be large 
enough to provide the best stability and small enough to 
receive the solution close to the solution of system (1). In 
[7], such transformation was investigated on the sample of 
heat conductivity equation. It was proved that, if the solution 
of the hyperbolic problem has no sufficient oscillations 
(second time derivative is not very large), then difference 
between solutions of parabolic and hyperbolic problems is 

small for small values of f . Note that introducing the 

relaxation of fluxes, we remove the global defect of 
parabolic equations – infinite speed of disturbances 
propagation. 

The second equation in (12) is the first order linear ODE, 
so, its solution on a time step  may be written, as follows: t

)D D ˆ (1 , exp / .QGD fD t    W W W   

So, a time step consists of three parts. At first, using the 
known values of gas dynamic parameters we calculate fluxes 

. Then we find a time step from (11) and, according to 

(13), correct fluxes values and find . At last, we calculate 
new values of density, velocity components and energy from 
(9). 

QGDW

Ŵ

III. TEST PROBLEMS SIMULATION 

The program complex was tested on a set of problems 
including subsonic, supersonic and hypersonic flows. Some 
test results were presented in [8]. Here, we present some new 
simulations. 

The first test problem is a nitrogen flow simulation over 
2D edge compression corner described in [9]. This 2D 
problem was solved by means of 3D program with small 
number of cells in the third direction (y). The free stream 
parameters were Ma = 9.22, Re = 47106 per meter, T = 
64.5 K, stagnation temperature Ts = 1070 K, without 
boundary layer tripping ahead of the flip. The compression 
corner angles were taken as 15° and 38°. The distance 
between the left border and angle edge is 76 cm. The 
boundary conditions are: constant inflow parameters on the 
left bound, no slip conditions on the bottom, zero normal 
derivatives on the upper and right bounds, and periodic 
boundary conditions in the third direction. 

The calculation results are presented in Fig. 1 and Fig. 2. 
Fig. 1 demonstrates stream lines on the background of the 
pressure distributions in the central section of the 
computational region. For the case of 15° angle we have an 
attached flow with the shock wave attached to the corner 
edge. If the angle is equal to 38°, the separated flow is 
formed with a vortex and a chock wave in front of it. It is in 
agreement with the experimental results [9]. The calculated 
maximum values of pressure in flow field also coincide with 
experimental data. 

Fig. 2 presents the comparison of calculated wall 
pressure distribution in the middle section with the 
experimental results. The calculations were held with 
different values of α coefficient in (8). One can see that the 
results obtained with α = 0.2 are better than for α = 0.5. This 
effect is natural because the coefficient α is responsible for 
the artificial members in equations. Further diminishing of 
this coefficient leads to the computational instability. 
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Figure 1.  Stream traces near the compression corner with angle of 15° (a) 
and of 38° (b) 

 

Figure 2.  Wall pressure distribution for the corner angle of 15°. 

The next problem was a subsonic (Ma = 0.1) flow around 
a hill. The Reynolds number was taken to be Re = 104. For 
such parameters a flow must be turbulent. A complicated 3D 
flow arises behind the hill with the separations and 

reattachments. Volume stream traces on the background of a 
density distribution are presented in Fig. 3. 

Note that, according to [3], boundary conditions for 
subsonic flow differ from conditions for supersonic ones. 
This difference concerns only the inflow and outflow 
conditions for pressure. We state constant pressure p = p at 
the right bound (outflow) and 0p n   at the left bound 
(inflow).  

The third problem was a simulation of the wind load on a 
launch vehicle standing on the launch pedestal. Unlike 
previous problems, complicated geometry of this problem 
forced us to use multi block grid. The computational region 
was divided into a number of blocks with different index 
grids in each one. The grid vertices of neighbor blocks 
coincide on their boundary surface. The volume stream 
traces and pressure distribution on the vehicle surface in a 
stationary flow are presented in Fig. 4. The ascending 
vortices are clearly visible near pods. 

 

Figure 3.  Volume instant stream traces behind the hill. 

 
Figure 4.  Flow around standing Soyuz launch vehicle. 
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IV. PARALLEL IMPLEMENTATION 

There are two levels of parallelism in CFD program 
complex "Express-3D" [1][6]: 

• The first level — geometrical decomposition. The 
computation domain is divided into blocks with the 
indexed grid in each. Blocks are distributed on MPI 
(Shmem) to processes so that to provide load 
balancing of all processes. Each MPI (Shmem) 
process can process one or several blocks. 

• The second level — small-grain parallelism. Each 
mesh cell is processed by one Compute Unified 
Device Architecture (CUDA) stream [10]. 

Each face and edge have additional layers of ghost cells 
for organization of data exchange between blocks. We also 
add some additional arrays for sending and receiving data for 
each face and edge. The depth of additional arrays and ghost 
layers depends on the scheme stencil. 

The orientation of faces of neighbor blocks may be 
arbitrary. Therefore, they are reordered before data 
transmission. All transferred values are packed into one array 
for each face and each edge. 

We will call “computing process” one of the following 
tasks: 

• The CPU core task — if calculation goes without 
use of GPU 

• The GPU + CPU core task — if calculation goes on 
GPU under management of CPU  

A Shmem (MPI) process corresponds to each computing 
process. 

The data transfer is asynchronous. After processing each 
block new data are transferred to the neighbor blocks. If 
blocks are in the same computing process, there is simply a 
data copying from the sending array of one block to the 
receiving array of another one. If, on the contrary, the blocks 
are in different computing processes, we use shmem_put() 
procedure to asynchronously copy data from the sending 
array of one block to the receiving array of another one. 
Addresses of the sending and receiving arrays in each block 
are adjusted just after the application launch and reading the 
configuration file. The exchange between computing 
processes is executed under the control of the CPU-core. In 
the case of calculation on GPU it is necessary at first to copy 
data to corresponding CPU memory, then exchange data 
through Shmem (MPI) and finally copy data to GPU, if 
needed. 

Blocks in computing process are sorted by diminishing 
the number of cells. For example, the big blocks are 
processed at first. In combination with asynchronous data 
transmission it is possible to assume that the main volume of 
data is already transferred, when processing the last (the 
smallest) block. The exchange procedure is finished by 
barrier synchronization. Actually, data exchange consists of 
two stages with synchronization after each of them. At the 
first step we exchange information from faces. After 
obtaining the updated information from faces, at the second 
step, data from edges are formed and transferred. 

In [1][11], efficiency experiments were conducted with 
program complex "Express-3D". A set of test problems was 

solved based on QGD equations system on rectangular grids 
on a large number of graphic processors. Transition to 
curvilinear structured grids in addition to complication of 
computing algorithms, demands storage of large volumes of 
additional information and ensuring access to it. 

Explicit finite-volume schemes are quite suitable for 
realization on CUDA architecture, and we will not dwell on 
this separately. We will note only some aspects connected 
with transition to non orthogonal grids. 

Graphic processors of CUDA architecture with compute 
capability 2.0 (such as Tesla C20xx) have small number of 
registers on thread. As a result, a significant increase in the 
number of data access operations leads to a loss of 
efficiency. Acceleration of calculations on such processors is 
only 5-7 times in comparison with modern CPU cores. 
However, upon transition to more modern graphic processors 
with architecture of Kepler and compute capability 3.5 it is 
possible to achieve the acceptable acceleration without any 
changes in program code. 

The results of the comparison of productivity of various 
devices are presented in the Table 1. The calculation times 
were measured for a fixed number of time steps. 

 

TABLE I.  DIFFERENT DEVICES PERFORMANCES 

Computing 
Device 

Intel 
Xeon  

E5-2670 
1xCore 

Nvidia 
Tesla 
C2050 

Nvidia 
Kepler 

K20 

Nvidia 
Kepler 

K40 

Nvidia 
Kepler 

K80 

Time (s) 592 175 49,70 39,85 26,81 

Speedup 1 3,38 11,91 14,86 22,08 
 

Unfortunately, there was only a small cluster containing 
only 4 K80 processors at the author’s disposal. That’s why 
we had no opportunity to make full research of scalability. 
However the efficiency received on 4 accelerators (more 
than 95%) and our previous experience in parallel computing 
allow to suggest that transition to a large number of GPU 
will be also effective in a case of non orthogonal grids as 
well. 

V. CONCLUSION 

The efficiency of using modern multicore systems 
including those based on NVidia GPUs largely depends on 
the properties of computational algorithms. On one hand, 
these algorithms must be logically simple; on the other hand, 
they must be efficient. These stringent requirements are 
satisfied by the algorithms based on the use of the hyperbolic 
variant of the quasi gas dynamic equations system. 

Use of multi-block non orthogonal index hexahedral 
grids allows simulating gas flows in the regions with very 
complicated geometry as well as multiscale problems 
extremely close to their real behavior. 

Numerical simulation of a set of test problems by use of 
QGD based algorithm demonstrated its good efficiency. This 
fact opens wide perspectives for modeling real scientific and 
engineering problems on modern high performance hybrid 
computer systems by use of explicit schemes, which are very 
convenient for parallel implementation. 
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