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Abstract—With the increasing popularity of 3D technology like
3D printing, 3D modeling, etc., there is a growing need for
searching similar models on the Internet. Subsequently,
matching non-rigid shapes has become an active research field
in computer graphics. In this paper, we present an efficient
and effective non-rigid model retrieval method based on
topological structure and Shape Diameter function (SDF). The
integral geodesic distances are first calculated for each vertex
on a mesh to construct the topological structure. Next, each
node on the topological structure is assigned a local volume,
which is calculated using the Shape Diameter function. Finally,
we utilize the Hungarian algorithm to measure similarity
between two non-rigid models. Experimental results on the
latest benchmark (SHREC’ 15 Non-rigid 3D Shape Retrieval)
demonstrate that our method works well compared to the
state-of-the-art.
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I. INTRODUCTION

The rapid development of 3D technology (3D printing,
3D scanning, 3D modeling, etc.) and computer networks
have naturally led to more and more 3D models being widely
used in many fields. Considering that designing and creating
a 3D model is not that simple, retrieving 3D accurately and
quickly from a huge database is becoming more and more
necessary.

In the beginning of 3D shape retrieval, most efforts were
focused on retrieval methods for rigid 3D models. However,

in recent years, retrieval methods for non-rigid 3D models,
which may require more shape analysis, have been an active
research area in computer graphics. As shown in Fig. 1, non-
rigid 3D models indicate that, with different poses or
articulations, the human and hand models in each row are in
the same category.

For the purpose of comparing two non-rigid models
appropriately, shape descriptors are required to be invariant
to non-rigid bending and articulations. In this paper, we
utilize two characteristics on non-rigid models to measure
dissimilarity between two non-rigid models. The first
characteristic is geodesic distance and path, which means
shortest distance and path between two vertices on the mesh
surface. As we can see in Fig. 2 (a), the distance and path on
the mesh between two pose-deformed models are nearly
unchanged. The second characteristic is local volume on the
corresponding position between two non-rigid models. In
Fig. 2 (b), the color on the models indicates local volume
which we calculated by SDF [1]. We can see the local
volume on the corresponding positions are very similar.

II. RELATED WORK

During the past few years, many algorithms [2-7] have
been proposed for 3D shapes retrieval. Generally, existing
methods can be divided into mainly two types: retrieval
methods for rigid and non-rigid 3D models. For rigid model
retrieval, there were algorithms based on 2D views, spectral
transformation, topology and statistic, etc. For more details
about these algorithms, we refer readers to [9]. The second
type is retrieve approaches for non-rigid models that can be
seen as an extension of algorithms for rigid model retrieval.

Figure 1. Non-rigid models Figure 2. (a) Geodesic path (b) Local volume
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The extension requires extracted features from models to be
isometry-invariant. For example, Lian et al. in [4] extended a
2D-view based rigid model retrieval method [3], which they
had proposed before, to work on non-rigid model retrieval by
first utilizing Multidimensional Scaling on the 3D model to
get its bending invariant representation. Readers can refer to
[10] for a good comparison of methods for non-rigid 3D
shape retrieval.

One intuitive approach for non-rigid 3D model retrieval
is to compare the topological structure and the corresponding
geometric features between two non-rigid 3D models. Hilaga
et al. [2] presented Multi-resolution Reeb Graph which is a
topology construction method based on geodesic distance
and reed graph theory. The topology matching used coarse-
to-fine strategy to search the node pairs that give the
maximum similarity. However, these kind of topology
construction and similarity measure algorithms need to
satisfy many conditions which cannot achieve good
performance. Sfikas et al. [5] proposed a conformal factor
guided topological structure construction algorithm.
Nevertheless, conformal factor is mainly based on curvature,
which can be easily affected by geometric noise.

Gal [6] proposed a 2D histogram based pose-oblivious
shape signature which combines two scalar functions defined
on the surface of a 3D model. The first function called as
local-diameter function can measure local volume of a 3D
model. In the following study [1], they did a little
modification on this function and renamed it as SDF used in
consistent mesh partitioning and skeletonisation. The second
function is called centricity function, which measures the
integral geodesic distances for the whole 3D model.

Inspired by the papers mentioned above, we propose here
an efficient and effective approach for non-rigid 3D model
retrieval, which is largely based on two pose invariant
features: geodesic distance and SDF.

III. METHOD DESCRIPTION

A. Construction of Topological Structure

Our algorithm for construction of topological structure
needs four steps. First, integral geodesic distances are
calculated for every vertex on the mesh. Second, we extract

vertices that reside on tips of protrusions and vertex on the
center of surface using integral geodesic distances. Third, the
protrusion tips and vertex on the surface center are connected
by finding shortest geodesic paths. Finally, we sample points
on the geodesic paths to extract topological nodes. Fig. 3
illustrates the overall topology construction process. We will
discuss the process in detail below.

Integral geodesic distances were first proposed by Hilaga
et al. [2] and their discrete case can be defined as following:

 ���(�) = ∑ �(�, �)�∈� (1) 

where �(�, �) denotes the shortest geodesic distance
between vertex � and � . So ���(�) means integral of all
geodesic distances from � to all vertices � on a surface �. In
our approach, all geodesic distances and paths are computed
by fast marching method [8]. Fig. 3 (b) shows color-coding
of integral geodesic distances of the model. Generally, the
vertex which has minimum integral geodesic distance would
reside on the center of surface, and the vertices that farther
from the center of surface would have larger scalar value of
integral geodesic distance. Using this property of integral
geodesic, we could extract vertices on the tips of protrusions
by measuring whether the scalar value of integral geodesic
distance of a vertex is the local maxima within a radius of
geodesic neighborhood [7]. In our implementation, the radius

of geodesic neighborhood is set as �0.08 ∗ ����(�). In Fig.
3 (c), the blue point and the red points represent the surface
center and extracted protrusion tips respectively.

To construct the topological structure simply and
effectively, we found that connecting protrusion tips and
surface center on the mesh surface can approximately
represents the topology of a model without any complex
process (Fig. 3 (c)). The connection can be easily done by
finding the shortest paths from each protrusion tip to the
surface center using fast marching method [8]. In Fig. 3 (c),
the black line represents the shortest paths. For better
presentation, we show the topological structure alone in Fig
3 (d). Every path from protrusion tip to surface center, we
call topological path in this paper.

Figure 3. Overall topology construction process (a) Original model (b) Color-coding of integral geodesic distance of the model (c) Shortest paths from
each protrusion tip to surface center (d) Topological structure (e) Selected topological nodes.
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After constructing the topological structure, we select the
topological nodes which can represents corresponding sub-
part of the 3D model. On every topological path, we choose
points from protrusion tip to surface center in a certain
geodesic distance interval �� , and regard it as topological
nodes. In Fig. 3 (e), the points with the same color represent
selected topological nodes on the same topological path. We
define the topological nodes on the same topological path
with order from the protrusion tip to surface center as a
topological string.

B. SDF values Assignment

Shapira et al. in [1] have introduced the SDF, which is a
scalar function defined on the mesh surface to measure the
local shape’s volume of a 3D mesh. For a given face on a
mesh, the SDF send cone-shaped rays (Fig. 4 (a)) from the
centroid of a face to its normal-opposite side (inward
direction to the mesh). The length of the rays can be
calculated by checking the ray-mesh intersections. Finally,
the scalar value of the SDF for the face is the weighted
average of all ray’s lengths.

In our implementation, SDF is computed using a cone of
angle 120° with 30 rays. We do not calculate SDF values for
every face on the mesh, we only need to care about faces
which are nearby the topological nodes. As shown in Fig. 4
(b), assume that the red point is a topological node which we
selected on a topological path (thick black line), and then we
find the one vertex-ring faces (yellow faces) of the two blue
points which construct the edge where the topological node
resides on. Subsequently, the topological node is assigned
the average SDF values of these faces.

After calculating all SDF values for topological nodes, in
order to be compatible with 3D meshes in different scales
and resolution, the SDF values are normalized as follows:

                            ����(��) =
���(��)

�����(�)
(2)

where ���(��) and ����(��) denote the original SDF
value and normalized SDF value for topological node
respectively, and � denotes surface of the mesh. Instead of
using the logarithmized version [1], we normalize the SDF

values by dividing them by the root area of the mesh.
Because we do not calculate SDF values for every face on
the mesh, as mentioned before, to reduce computation time,
it may be that the max SDF value and the min SDF value
could be different between two non-rigid models in the same
class.

C. Matching Approach

For matching approach, we first calculate all dissimilarity
distance among topological strings with node-by-node SDF
values between two 3D models. Next, the Hungarian
algorithm is utilized to find a “minimum matching”. The
Hungarian algorithm is a combinatorial optimization
algorithm that solves the assignment problem. Our matching
approach is similar to [5], but different in penalizing method.

For calculating the dissimilarity between two topological
strings, if two topological strings have the same number of
topological nodes, the dissimilarity can be simply calculated
by averaging the difference between the corresponding SDF
scalar values. If two topological strings have different
lengths, we first append the shorter topological string with its
last topological node to have same length as the longer one.
Then we penalizing these appended values by putting
weights. Let � and � be two topological strings, and let
�[�]. ��� denotes the SDF value of the �th topological node
start from protrusion tip on � . Assuming that � has more
topological nodes than  � , the dissimilarity between two
topological strings is defined as:

���(�, �) =

�

∑ |�[�]. ��� − �[�]. ���|���(�)
��� +

∑ |�[�]. ��� − �[���(�)]. ���|���(�)
�����(�)��

× ������(�)

�

���(�)
(3)

          �� = 1 + � × �,       � = 1, … , ���(�) − ���(�)                  (4)

where ��� denotes the number of topological nodes in a
topological string. � denotes the penalizing weights. Fig. 5
illustrates the comparison between two topological strings. In
our experiments, � = 0.2 yields good retrieval result.

Let � and � be two 3D models. Assuming they have �
and � topological strings respectively, after comparing each
topological string in � with each in �, we can get a � × �

matrix filled with the dissimilarity values, which are
calculated using equation (3). To apply the Hungarian
algorithm, the dissimilarity matrix is required to be a square

Figure 4. (a) Cone-shaped rays sent to the inside of the mesh (b)
Faces related to SDF values assignment.

Figure 5. Comparison between two topological strings (�, �) with
SDF values, where ���(�) > ���(�)
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matrix. In the case of � = �, the Hungarian algorithm can
be directly applied. And if � ≠ � we pad the rows (or
columns) of the dissimilarity matrix with mean of existing
values of the columns (or rows). Assuming that � > �, we
can define a � × � dissimilarity matrix as ����(�, �) ,
where 1 ≤ � ≤ �, � ≤ � have the dissimilarity values of
topological strings. The padding procedure is mathematically
formulated as follows:

����(�, �) = � ����(�, �)

�

���

�� , (5)

                                1 ≤ � ≤ �, � < � < �, � > �

After applying the Hungarian algorithm, it will return the
“minimum matching” indexes. The final dissimilarity value
between the two models is the average of the indexed value
of the dissimilarity matrix.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the retrieval performance of
the proposed algorithm and compare it with other state-of-
the-art methods. We carry out experiments on the datasets of
the SHREC’ 15 Non-rigid 3D Shape Retrieval [11]. The
datasets contain 1200 deformable models, classified into 50
classes, each with 24 models. The retrieval accuracy is
evaluated by the following five quantitative measures [9]:
 Nearest Neighbor (NN): The percentage of best matches

that belong to the query’s class.

 First Tier (FT) and Second Tier (ST): The percentage of
models belonging to the query’s class that appear within
the top (� − 1) and 2 (� − 1) matches respectively,
where � is the number of models in the query’s class.

 E-measure: A composite measure of the precision and
recall for a fixed number (32) of retrieved models.

 Discounted Cumulative Gain (DCG): A statistic that
weights correct results near the front of the list more than
correct results later in the ranked list.

All metrics above are in the range [0,1] and higher values
indicate better retrieval results. For more details about the
metrics, we refer readers to [9].

We implemented the proposed algorithm in Matlab on a
personal computer with a 3.60 GHz i7-4790 CPU, 8GB
DDR3 memory. As the calculation of geodesic distances is
computationally expensive, we first use QSlim [12] to
simplify mesh with 1500 faces and it takes only around 3
seconds for topological structure construction and
corresponding SDF values calculation of a mesh by adopting
parallel computation with 4 cores. For mesh matching which
uses the Hungarian algorithm, it takes around 2 milliseconds
for comparing between two meshes. The proposed algorithm
was evaluated on the datasets with parameters: �� =

�0.0025 ∗ ����(�), � = 0.2
As we can see from Fig. 6, our method obtains

competitive results among the 11 contestants. There are only
two contestants writing about their running time, Giachetti’s
HAPT algorithm needs 3 min on average for extracting
feature map of the tested dataset, and Limberger’s algorithm
needs 18 seconds to compute three local descriptors on a
model. Moreover, our topological structure and SDF value
based descriptor is compact, which only need less than 2000
bytes.

V. CONCLUSION

In this paper, we developed an efficient and effective
method for the retrieval of non-rigid 3D models mainly
based on geodesic distance and Shape Diameter function,
which are two pose-invariant features on the mesh surface.
The experiment on the SHREC’ 15 Non-rigid 3D Shape
Retrieval shows that our method is competitive against state-
of-the-art. Furthermore, our method has the advantage of low
complexity to implement, fast running time and small data
storage space for descriptors.
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