
Application of a Maneuver-Based Decision Making Approach for an Autonomous
System Using a Learning Approach

Xin Xing, Sebastian Ohl
Faculty of Electrical Engineering

Ostfalia University of Applied Sciences
Wolfenbuettel, Germany

e-mail: {xi.xing|s.ohl}@ostfalia.de

Abstract—Autonomous driving technology has progressed
significantly, necessitating advanced maneuver-based decision-
making systems for complex driving environments. Traditional
methods often fail in unpredictable real-world scenarios, leading to
the adoption of learning-based approaches, such as Deep Learning
(DL) and Reinforcement Learning (RL). This paper explores
safety-critical car-following models and traffic management,
focusing on Adaptive Cruise Control (ACC) and Automatic
Emergency Braking (AEB). Traditional mathematical models
are limited under extreme conditions, thus this study leverages
machine learning to enhance vehicle responsiveness. Specifically,
we apply RL to train car-following models. We emphasize policy-
based RL methods, including Policy Gradient (PG) and Proximal
Policy Optimization (PPO), within a simulated environment. The
results demonstrate that PPO converges faster and exhibits fewer
errors compared to PG. This study confirms that RL can effectively
automate maneuver-based decision-making, highlighting the need
for further research in diverse traffic conditions.

Keywords-Autonomous Driving; Decision-making; Reinforcement
Learning; Car-following models; Adaptive Cruise Control; Auto-
matic Emergency Braking; Proximal Policy Optimization; Policy
Gradient.

I. INTRODUCTION

Autonomous driving technology has made significant strides
in recent years, driven by the imperative need for a decision-
making system that can navigate complex and evolving
driving environments. Traditionally, decision-making methods
in autonomous driving have relied on robust, yet often rigid,
frameworks that struggle to accommodate the unpredictable
nature of real-world scenarios [1]. This limitation has led to
the growing adoption of learning-based approaches, especially
utilizing Deep Learning (DL) and Reinforcement Learning
(RL), aimed at enhancing the adaptability and accuracy
of Advanced Driver Assistance Systems (ADAS) [2][3][4].
Similarly, the ExerShuttle project is focused on the development
of autonomous campus shuttle services that can transport
passengers to desired locations within the campus, such as
a library or cafeteria. This initiative aims to leverage intelligent
driving technologies to enhance accessibility and convenience
in campus environments.

A critical aspect of intelligent driving systems is car-
following [5], which involves high-precision models crucial
for ensuring driving safety, alleviating urban traffic congestion,
and reducing the driver’s workload. In this context, systems,
such as Adaptive Cruise Control (ACC) [6] and Automatic
Emergency Braking (AEB) [7] play pivotal roles. ACC adjusts

the vehicle’s velocity to maintain a safe distance from the car
ahead, thereby easing the driver’s burden. Conversely, AEB
systems engage automatically to mitigate or prevent collisions
by applying brakes when a potential risk is detected. The
operational efficacy of both ACC and AEB is contingent upon
accurate vehicle tracking models that respond promptly and
reliably in varied driving conditions [8].

Traditional car-following models have largely been mathe-
matical and, while useful, occasionally fall short under extreme
conditions, thereby compromising safety. To overcome these
limitations, large amounts of trajectory data are utilized and
machine learning techniques are applied to reveal underlying
patterns. These models, which include traditional Machine
Learning, Deep Learning, and Deep Reinforcement Learning
approaches, potentially enhance the responsiveness of vehicles
to diverse driving scenarios, thus improving system accuracy
and generalizability [9][10][11].

The paper particularly focuses on the use of Deep Re-
inforcement Learning (DRL) to train car-following models.
RL is a policy-oriented decision-making method that aims to
maximize rewards through trial-and-error behaviors, such as
Policy Gradient (PG) [12]. DRL algorithms that integrate deep
neural networks with RL principles, such as Deep Q-Networks
(DQNs), have been demonstrated to effectively manage the
complexity of ADAS algorithms and significantly enhance the
system’s ability to respond effectively to hazardous situations
[2]. In [8], a novel RL-based longitudinal control and collision
avoidance algorithm is developed that effectively takes into
account the behavior of both the front and rear vehicles using
the Deep Deterministic Policy Gradient (DDPG) model. The
algorithm is shown to be capable of preventing potential serial
collisions.

DQN and DDPG are mainly value-based methods, while PG
and PPO [13] are direct policy optimization methods. DQN
and DDPG usually require more samples for training, so they
may encounter policy instability and convergence problems in
actual training. In comparison, PG and PPO are more easily
adapted to environments that have specific requirements on
the form of the policy, such as scenarios that require the
policy to output specific probabilistic information or continuous
action [2]. Furthermore, PG and PPO demonstrate superior
adaptability in environments where the policy must respond
to dynamic or uncertain factors. This makes them well-suited
for training car-following models, offering more robust and

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

flexible solutions. This paper therefore emphasizes policy-
based Reinforcement Learning methods, including PG and PPO
algorithms, for training sophisticated car-following models.

The remainder of the paper is organized as follows: Section
II discusses the problem formulation. Section III provides
theoretical background. Section IV details the methodology.
Section V evaluates the results, and Section VI concludes the
paper and outlines future work.

II. PROBLEM FORMULATION

In this paper, we explore the ACC and AEB systems within
autonomous car-following models. The Autonomous Vehicle
(AV) maintains a safe following distance from a Leading
Vehicle (LV) or brakes urgently to avoid obstacles, such as a
yellow duck used in simulations.

RL typically employs a Markov Decision Processes (MDP)
to represent the interactions between the vehicle and its envi-
ronment, taking actions based on the state of the environment
and then receiving new states in response. For situations
if states are not fully observable, a Partially Observable
Markov Decision Process (POMDP) is employed to provide
a more realistic representation of the state space. In order to
design advanced policy using RL techniques, we formulate the
switching between ACC and AEB as a POMDP.

A. States and Observations

To simplify the training model, the state and observation
parameters are the AV’s velocity, the LV’s velocity, the gap
between the AV and the LV or obstacle ahead, and the current
action: st = [VAV , VLV , G,A]. The termination state is defined
as when the AV collides with the LV or obstacle ahead, or if
the LV’s velocity is 0 and the gap between the AV and the
LV or obstacle in front is less than the safe distance, which is
calculated from the Time To Collision (TTC).

B. Actions

The action space consists of two elements, ACC and AEB:
A = [ACC,AEB]. ACC adjusts the AV’s velocity based on
the Intelligent Driver Model (IDM) [14] to maintain a safe
distance from the LV or an obstacle ahead. In contrast, AEB
maximizes the AV’s negative acceleration in order to halt the
vehicle quickly when necessary.

C. Reward

Rewards depend on maintaining or breaching a safe distance
between the AV and the LV or an obstacle. Safety enhances
rewards, while penalties are assigned for risky proximities,
balancing safety with comfort. The simulation terminates upon
collision, adding penalties to prevent future rewards.

III. BACKGROUND

RL consists of three components: the actor, the environment,
and the reward function. The policy inside the actor determines
the actor’s actions, i.e., given an input, it outputs the action
that the actor should now perform. All we have to do is to
adjust the policy inside the actor so that the actor gets the

maximum reward. The formulas presented below have been
derived from [12] and [13].

A means of optimizing a policy π to solve the problem is
provided by RL

θ∗ = argmax
θ

R(πθ), (1)

where πθ denotes a policy with parameters θ and R(πθ) denotes
the expected finite-horizon undiscounted return of the policy,
often as a neural network.

A. Policy Gradient

PG method is a common method in RL. It uses gradient
ascent to maximise the expected reward

∇R(πθ) = E
τ∼πθ

[ΣT
t=0∇ log πθ(at|st)Aπθ (st, at)], (2)

where τ is a trajectory and Aπθ is the expected sum of rewards
for the current policy. The policy parameter is updated via
stochastic gradient ascent

θk+1 = θk + η∇R(πθ), (3)

where η is learning rate of neural network.

B. Proximal Policy Optimization

PPO is a state-of-the-art RL algorithm that belongs to the
type of actor-critic algorithm. The actor is responsible for
deciding which actions to take, while the critic is responsible
for evaluating the actions taken by the actor. It is an on-policy
algorithm, which means that it learns from the actions taken
within the current policy, rather than from a separate set of
data.

PPO is an improvement on the Trust Domain Policy
Optimization (TRPO) [15] algorithm, which uses trust domain
constraints to ensure that the new policy does not deviate too
far from the old policy, thus providing stability. PPO-Clip
builds on this idea by using a clipping function to limit policy
changes. This allows PPO to make major policy updates while
still maintaining stability.

The loss for the actor network is called Conservative Policy
Iteration (CPI), which is the ratio between the policy under
old parameters to the policy under new parameters multiplied
by the advantage value

LCPI
t (θ) =

πθ(at|st)
πθk(at|st)

Ât, (4)

where πθk is old policy parameter and Ât is the advantage
reward value.

PPO-Clip adds an additional parameter ϵ. With the help of ϵ,
the actor loss will be calculated by taking the minimum value
between the cropped and uncropped values and multiplying it
by the dominance:

LPPO
t (θ) = Et

[
min

(
πθ(at|st)
πθk(at|st)

Ât,

clip
(

πθ(at|st)
πθk(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
. (5)

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

The critic loss is calculated as the Mean Square Error (MSE)
between the predicted value estimate and the true value estimate.
In other words, the critic loss is the MSE between the predicted
value function and the true value function:

Lcritical =
1

N

N∑
i=1

(
V̂ (si)− V (si)

)2

, (6)

where V̂ (si) is the predicted value function and V (si) is the
true value function for state si, and N is the number of samples.

The learning process in the context of PPO-Clip model is
visualised in Figure 1. This model employs an actor-critic
framework where two distinct networks are utilized: the Actor
Network and the Critic Network. The Actor Network proposes
actions given the current state of the environment, which are
evaluated both by the environment and the Critic Network.
The Critic Network estimates the value function of a given
state, helping in the calculation of the Advantage Function,
which measures how much better an action is compared to the
average. The CPI ensures that the updates of the policy are
kept within a certain range, preventing large policy updates
that might destabilize learning.

Environment

Actor Network CPI

PPO Loss Clipped

Critic Network Advantage Function

Critic Loss

(s, a′, r, s′)

Update policy parameters

a

Update critic parametersActor-Critic
PPO

Figure 1. Reinforcement Learning PPO-Clip model

IV. METHODOLOGY

A. Simulation Environment

A simulated test environment constructed from the main
test field of the ExerShuttle project is shown in Figure 2. The
road network is mainly a closed road with two lanes. It has a
maximum allowable velocity of 30 km/h and is connected to
the 50 km/h road at the bottom of the figure. Since the test field
is an university campus, the roadway will be relatively complex.
There are private vehicles, buses, motorcycles, bicycles, and
pedestrians on the road. There are no traffic lights at the 4-
way stops road, so special attention must be paid to suddenly
appearing vehicles and pedestrians. To reduce the reset time of
the training environment, the simulated environment depicted
in Figure 3. is used for training the model.

During training and evaluation, the IDM is used as the
velocity control model for ACC. During the training period,
the desired velocity of the vehicle is 30 km/h. The safe time

Figure 2. Simulation Environment of ExerShuttle Project

Figure 3. Simple Simulation Envi-
ronment

Figure 4. AV follows the LV if
there is no obstacle

Figure 5. A yellow duck in front
of the AV

Figure 6. Collision between the
yellow duck and the AV

headway is set to 1.5 s and the minimum distance is set to
7m. The absolute values of both acceleration and negative
acceleration are set to 1.5m/s2.

The training environment is a sequential sequence, as
illustrated in Figures 4 to 6. During the training period, the AV
will initially follow the LV, which is traveling at a speed of
20 km/h. After the AV has traveled for 4 s, an obstacle, such
as a yellow duck, will randomly appear in front of the AV.
If the car does not brake in time, the car will collide with
the duck. In the absence of an obstacle, the LV will cease
movement after 25 s. The AV must therefore be able to make
the appropriate decision in a variety of circumstances.

B. Action Space

As stated in subsection II-B, the action space A includes
only two actions: ACC and AEB. The AEB action is selected
only if there is a sudden close-by obstacle in front of the AV,
or if the LV applies an emergency brake. In the car-following
model, the driving behavior of the AV is a comfortable driving
behavior similar to human driving by setting the appropriate
parameters of IDM. It is inadvisable to select the AEB action
in inappropriate situations. For instance, the AV should have
followed the LV using ACC, or the AV should have braked
slowly and decelerated to a stop but emergency braking is
selected instead. This also results in a significant decrease in
passenger comfort. Mostly the AV uses ACC to follow the LV.

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

C. State Space

The gap between the AV and the LV and their velocities are
included in the state space. The velocity of the AV is to be
determined via the Global Positioning System (GPS) sensor,
while that of the LV is to be gauged by the Radar. The distance
of the obstacle in front of the AV will be determined by the
distance sensor. The maximum range of the distance sensor is
set to 50m. Obstacles or vehicles in front of the vehicle will
be ignored when the distance is greater than 50m. This allows
the vehicle to be driven at the maximum allowed velocity.

The selection of actions as part of the state can be described
as history-dependent [16]. In partially observable environments,
state information may not be sufficient to fully characterize
the current state of the environment. By combining previous
actions and states, an augmented state representation can be
formed, which allows the policy to better capture the dynamics
of the environment.

D. Reward Function

In an automated driving system, the reward functions of ACC
and AEB are designed to ensure that the vehicle’s behavior
is safe and comfortable. Therefore, it is necessary to design
the reward functions of ACC and AEB separately. The goal
of ACC is to maintain a safe distance between the vehicles
and the appropriate velocity. The AV should maintain a safe
distance from the LV or from an obstacle, too close will be
penalized:

Raccdist =

{
10, if Dactual > Dsafe
−10, otherwise . (7)

where Dactual is the current distance between the AV and
the LV and Dsafe is Distance to Collision (DTC), calculated
from the TTC. The AV maintains a consistent speed with the
LV, whenever possible. Excessive velocity difference will be
penalized:

Raccvelocity = −k1 × Vdiff. (8)

The primary objective of AEB is to prevent collisions and
provide safe braking in emergency situations. The occurrence
of a collision is subject to significant penalties:

Raebcollision =

{
−100, if collision
0, otherwise . (9)

In the event that the distance between vehicles is too close,
the vehicle slows down quickly to avoid a collision:

Raebdist =

{
−10, if Dactual > Dsafe
10, otherwise . (10)

In addition, AVs should avoid using the emergency brake
while following. Thus, the decision to take longer to follow a
vehicle in the same following situation will be penalized more
severely:

RT = −k2 × T. (11)

Equation (12) is the total reward function. The k1, k2 in (8)
and (11) are weight coefficients.

Rtotel = Raccdist +Raccvelocity +Raebcollision +Raebdist +RT (12)

E. Training Architecture

The RL Environment is constructed using the OpenAI Gym
[17] and the Webots simulator [18] in Python. Webots is an
open-source application for simulating robots. It provides a
Driver controller for controlling the vehicle and a Supervisor
for modifying the parameters of the simulation environment.
For instance, the Driver is capable of acquiring and controlling
the vehicle’s velocity and steering. The Supervisor is more
powerful and interacts with the environment to obtain and set
state variables, such as the position of an obstacle. The Driver
and Supervisor sample state variables and select actions at
a rate of 5Hz, which corresponds to a time step of 0.2 s
in the simulation. In the event of a collision or timeout,
the simulator is reset. A timeout is initiated after 100 s of
simulation. The architectural framework is depicted in Fig 7.
As presented in Subsection IV-A, Driver 1 and Driver 2 control
the motion of the AV and the LV, respectively. The Supervisor
obtains and transmits information about the vehicles, such as
velocity or sensor data, by interacting with the parameters
of the two Drivers. Furthermore, the Supervisor also controls
the translation of obstacles in the environment. A gym-based
simulation environment is used to train the models for RL.

Supervisor

Driver 1 Driver 2 Obstacle

PG or PPO
Algorithm

Open AI Gym Environment

Webots
s
r
a′

a

Figure 7. Training Architecture of Reinforcement Learning

The agents are trained using the online policy algorithms
PG and PPO. A broader range of algorithms has not been
evaluated, as our focus is on exploring the feasibility of using
RL models for state switching in car-following models. In
order to accommodate the training environment, the gym-based
environment is rebuilt in Webots. The agent is trained using
PPO-Clip for 1000 episodes on an Intel i9-8950HK and a
NVIDIA Quadro P2000.

The neural network utilized during training comprises two
hidden layers with a width of 256, as shown in Figure 8. The
widths of the input and output layers correspond to the number
of items in the state and action sets, respectively. Furthermore,
the neural network is employed with ReLU and Softmax acti-
vation functions to streamline the computation and circumvent
the gradient vanishing issue. The output is transformed into a
probability distribution, which is also suitable for classification

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

vAV

vLV

d

a′

...

256
nodes

...

256
nodes

ACC

AEB

Figure 8. Simple Actor Network for PPO-Clip. Orange layer: inputs, blue
layer: outputs, grey layers: hidden nodes.

tasks. Furthermore, the PPO experience pool is employed in
the training process. At the conclusion of each iteration, the
previous data set is discarded and a new round of data collection
and training commences. The objective of this process is to
ensure that when the policy is updated, the data collected based
on the latest policy is utilized. The values of the key parameters
of the PG and PPO algorithms are presented in Tables I and
II, respectively.

TABLE I. AGENT PARAMETERS
FOR PG

Parameters Value

Learning rate 0.003

Discount factor 0.8

TABLE II. AGENT PARAMETERS
FOR PPO-CLIP

Parameters Value

Learning rate 0.0003

Number of steps 200

Number of epochs 10

Batch Size 2048

λ of GAEa 0.95

Clipping range 0.2

Discount factor 0.99

Note: aGeneralized Advantage Estimation

V. EVALUATION

A. Training

The model successfully converges using both the PG and
PPO-Clip algorithms. However, by adjusting the parameters
of the training models, it is found that the PG algorithm is
more likely to converge successfully than the PPO algorithm.
For both implementations of the algorithm, the reward values
begin at approximately −1800, as shown in Figure 9. The mean
reward during training of the PG algprithm shwon in royal blue
while the episode reward shown in light royal blue. The mean
reward during training of the PPO algprithm shwon in orange
while the episode reward shown in light orange. However, if
the PG algorithm is employed, the reward value stabilizes
at approximately 500 after approximately 150 episodes. In
contrast, if the PPO-Clip algorithm is utilized, the reward value
stabilizes at approximately 500 after about 50 episodes. It can
be observed that the PPO model converges at a faster rate than
the traditional PG model. This is primarily due to the fact that
the PPO model limits the magnitude of change in the policy
update step and avoids the introduction of excessive policy
changes. PPO employs multi-step data sampling to optimize
the policy and enhance the efficiency of data utilization.

0 200 400 600 800 1,000

−1,500

−1,000

−500

0

500

Episode

M
ea

n
R

ew
ar

d

Mean Reward PG
Mean Reward PPO

Figure 9. Training results of the PG and the PPO model

Furthermore, PPO employs additional optimizations when
addressing rewards. These include the use of GAE to balance
the variance and bias, and the estimation of the policy gradient
with greater accuracy.

The action selection of ACC and AEB is relatively chaotic
in the early stages of training, with an average of 100 to
150 episodes required for the reward value to remain stable.
Once this occurs, the correctness of the action selection rate
is greatly improved. Furthermore, the accuracy of the action
selection also increased significantly and is maintained until
the conclusion of the training period.

B. Results

The generated models has been subjected to evaluation
in a simulation environment. For each evaluation, 1000 car-
following tests are conducted and a random obstacle is placed
in front of the AV. The results of the car-following tests are
determined in two main ways: whether a collision occurred or
not, and the selection of inappropriate behaviors. This includes
instances where the AV braked inappropriately and collided
with the obstacle and instances where the driving behavior
suddenly chose the emergency braking action when it should
follow the LV. If the AV is able to brake safely in front of
an obstacle via the ACC system, it is also considered to be
driving correctly. The results are presented in Table III.

TABLE III. COMPARISON OF DRIVING BEHAVIOR UNDER TWO
ALGORITHMS

Algorithm Wrong behavior or
Collision / %

AEB Selection / %

PG 1.5 24.85

PPO 0.3 1.0

The trained models based on the PPO algorithm demonstrate
superior performance overall. The mean number of erroneous
behavioral choices or collisions across 1000 tests is 3. However,
the mean number of instances in which the trained model based
on the PG algorithm exhibited an error is 15.

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

When encountering obstacles, the PPO model rarely triggers
the AEB, activating it less often than the PG model, which uses
the AEB 24.85% of the time. This suggests that the PPO model
relies primarily on the ACC system for emergency interventions.
This difference can be attributed to the PG model’s extensive
exploration of both policy options during training, which helps
it learn different emergency braking scenarios. In contrast,
PPO’s conservative update approach, characterized by clipped
probability ratios and a targeted objective function, limits its
exploration of certain actions, such as AEB. This conservative
strategy may cause the PPO model to underutilize AEB in
unforeseen scenarios during validation, resulting in less frequent
use of emergency braking. However, this does not compromise
the vehicle’s ability to stop effectively, as it can still use either
ACC or AEB to avoid collisions.

VI. CONCLUSION AND FUTURE WORK

This study examines a maneuver-based decision-making
approach in a simulation framework. The objective is to
implement and test the selection of ACC and AEB in a car-
following model using traditional PG and PPO algorithms. The
results include:

• Both PG and PPO models are able to effectively select the
ACC and AEB systems to follow the vehicle or emergency
obstacle avoidance.

• The PPO algorithm converges faster, stabilizing at a reward
value of 500 after about 50 episodes, compared to 150
episodes for the PG algorithm.

• Over multiple 1000 follow-up tests, the PPO-trained model
have an average error rate of 0.3% for misbehavior or
collisions, while the PG-trained model had an error rate
of 1.5%.

• The simulations provide valuable insights showing that RL
can automate maneuver-based decision making in driving
is feasible.

The results thus far remain constrained by a number of limita-
tions: The vehicle is capable of autonomously selecting between
the ACC and AEB systems, utilizing a car-following model
trained through RL. Nevertheless, the current simulation is
trained in a relatively simple traffic environment. Consequently,
future work should consider more diverse traffic conditions and
improve the generality of the results by optimizing the training
algorithm and adjusting the parameters. In addition to the ACC
and AEB systems in the car-following model, it is also possible
to consider the integration of systems for reasonable overtaking
into the overall training environment.

The sensors utilized in vehicle simulations are still relatively
simple in design. Consequently, if the results of these simula-
tions are to be utilized in real-world environments in the future,
it is imperative that the sensors employed in vehicle of the
future be given greater consideration. In addition, the trained
models will be validated and optimized in the ExerShuttle
project in real world traffic. Further research should also
concentrate on integrating a wider range of driving behaviours

into the training models, followed by rigorous testing and
validation in real-world conditions.

REFERENCES

[1] F. Leon and M. Gavrilescu, “A review of tracking, prediction
and decision making methods for autonomous driving”, arXiv,
2019.

[2] Z. Zhu and H. Zhao, “A survey of deep rl and il for autonomous
driving policy learning”, IEEE Transactions on Intelligent
Transportation Systems, vol. 23, pp. 14 043–14 065, 2021.

[3] Q. Liu, X. Li, S. Yuan, and Z. Li, “Decision-making technology
for autonomous vehicles: Learning-based methods, applications
and future outlook”, in 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), 2021, pp. 30–37.

[4] Y. Ye, X. Zhang, and J. Sun, “Automated vehicle’s behavior
decision making using deep reinforcement learning and high-
fidelity simulation environment”, Transportation Research Part
C: Emerging Technologies, vol. 107, pp. 155–170, 2019, ISSN:
0968-090X.

[5] M. Brackstone and M. McDonald, “Car-following: A historical
review”, Transportation Research Part F: Traffic Psychology
and Behaviour, vol. 2, no. 4, pp. 181–196, 1999, ISSN: 1369-
8478.

[6] A. Vahidi and A. Eskandarian, “Research advances in intelli-
gent collision avoidance and adaptive cruise control”, IEEE
Transactions on Intelligent Transportation Systems, vol. 4, no. 3,
pp. 143–153, 2003.

[7] L. Yang et al., “A systematic review of autonomous emergency
braking system: Impact factor, technology, and performance
evaluation”, Journal of Advanced Transportation, vol. 2022,
F. Galante, Ed., pp. 1–13, Apr. 2022, ISSN: 0197-6729.

[8] D. Chen, Y. Gong, and X. T. Yang, “Deep reinforcement learn-
ing for advanced longitudinal control and collision avoidance
in high-risk driving scenarios”, ArXiv, 2024.

[9] P. Qin, H. Li, Z. Li, W. Guan, and Y. He, “A cnn-lstm car-
following model considering generalization ability”, Sensors,
vol. 23, no. 2, p. 660, 2023, ISSN: 1424-8220.

[10] T. Li and R. Stern, “Car-following-response-based vehicle
classification via deep learning”, ACM Journal on Autonomous
Transportation Systems, vol. 1, no. 1, p. 23, Mar. 2024.

[11] X. Yang, Y. Zou, H. Zhang, X. Qu, and L. Chen, “Im-
proved deep reinforcement learning for car-following decision-
making”, Physica A: Statistical Mechanics and its Applications,
vol. 624, p. 128 912, 2023, ISSN: 0378-4371.

[12] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function
approximation”, in Advances in Neural Information Processing
Systems, S. Solla, T. Leen, and K. Müller, Eds., vol. 12, MIT
Press, 1999, pp. 1057–1063.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, “Proximal policy optimization algorithms”, arXiv,
2017.

[14] S. Albeaik et al., “Limitations and improvements of the
intelligent driver model (idm)”, SIAM Journal on Applied
Dynamical Systems, vol. 21, no. 3, pp. 1862–1892, 2022.

[15] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel,
“Trust region policy optimization”, arXiv, 2015.

[16] G. Tennenholtz, N. Merlis, L. Shani, M. Mladenov, and
C. Boutilier, “Reinforcement learning with history dependent
dynamic contexts”, in Proceedings of the 40th International
Conference on Machine Learning (ICML 2023), Honolulu,
Hawaii, 2023.

[17] G. Brockman et al., “Openai gym”, arXiv, 2016.
[18] O. Michel, “Webots: Professional mobile robot simulation”,

Journal of Advanced Robotics Systems, vol. 1, no. 1, pp. 39–42,
2004.

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-184-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences

	Introduction
	Problem Formulation
	States and Observations
	Actions
	Reward

	Background
	Policy Gradient
	Proximal Policy Optimization

	Methodology
	Simulation Environment
	Action Space
	State Space
	Reward Function
	Training Architecture

	Evaluation
	Training
	Results

	Conclusion and Future Work

