
Mixing Flows in Dynamic Fluid Transport Simulations

Mehrnaz Anvari
Fraunhofer Institute for Algorithms

and Scientific Computing SCAI
Sankt Augustin, Germany

email: Mehrnaz.Anvari@scai.fraunhofer.de

Anton Baldin
PLEdoc GmbH and

Fraunhofer Institute SCAI
Sankt Augustin, Germany

email: Anton.Baldin@scai.fraunhofer.de

Tanja Clees
University of Applied Sciences

Bonn-Rhein-Sieg and
Fraunhofer Institute SCAI
Sankt Augustin, Germany

email: Tanja.Clees@scai.fraunhofer.de

Bernhard Klaassen
Fraunhofer Research Institution for

Energy Infrastructures IEG
Bochum, Germany

email: Bernhard.Klaassen@ieg.fraunhofer.de

Igor Nikitin
Fraunhofer Institute for Algorithms

and Scientific Computing SCAI
Sankt Augustin, Germany

email: Igor.Nikitin@scai.fraunhofer.de

Lialia Nikitina
Fraunhofer Institute for Algorithms

and Scientific Computing SCAI
Sankt Augustin, Germany

email: Lialia.Nikitina@scai.fraunhofer.de

Abstract—This paper presents a new numerically efficient
implementation of flow mixing algorithms in dynamic simulation
of pipeline fluid transport. Mixed characteristics include molar
mass, heat value, chemical composition and the temperature of
the transported fluids. In the absence of chemical reactions, the
modeling is based on the universal conservation laws for molar
flows and total energy. The modeling formulates a sequence of
linear systems, solved by a sparse linear solver, typically in one
iteration per integration step. The functionality and stability of
the developed simulation methods have been tested on a number
of realistic network scenarios. The main output of the paper is a
functioning and stable implementation of flow mixing algorithms
for dynamic simulation of fluid transport networks.

Keywords-simulation and modeling; mathematical and numeri-
cal algorithms and methods; mixing flows; pipeline fluid transport.

I. INTRODUCTION

This paper continues a series of our works on modeling of
fluid transport networks. Previous works presented stationary
[1] and dynamic [2] modeling of fluid transport networks
limited to a single chemical composition and constant tem-
perature. In addition, some aspects of stationary modeling of
mixing fluids of different compositions and/or temperatures
were considered in [3]. In this paper, flow mixing modeling
will be considered in more detail, with special emphasis on
the thermodynamic layer of the model. In particular, dynamic
mixing equations and algorithms for their solving will be
presented. The developed approach is implemented in our
Multi-phYsics Network Simulator (MYNTS) [4], which is
used to solve actual transport scenarios for natural gas [5],
hydrogen [6], carbon dioxide [7], water [8] and other fluids.

Fluid transport modeling is based on the conservation of
mass flows in the form of dynamic Kirchhoff equations;
Darcy-Weisbach pipeline pressure drop formula, with empir-
ical friction term by Nikuradse [9] and Hofer [10]; equation
of state computation by simplified analytical models by Pa-
pay [11], Peng-Robinson [12] and Soave-Redlich-Kwong [13]

or more complex ISO-norm models AGA8-DC92 [14] and
GERG2008 [15]–[17].

In state-of-the-art, a number of previous studies [18]–[24]
considered modeling of pipeline fluid transport, both at the
universal mathematical level [18], and in various application
scenarios. Such scenarios include transport of natural gas [19]
[21], steam transport in oil refineries [20], carbon dioxide
transport [22]–[24]. All these works are characterized by the
presentation of transport equations as laws of conservation
of mass, momentum and energy. In the presence of various
substances, conservation of molar flows is added, while the
general relations of thermodynamics of open systems [25]
regulate the relations of energy and temperature.

A common drawback of existing solutions is the closed
nature of modeling within blackbox systems. If it is necessary
to change the modeling, modify or introduce new equations
and variables, the system must be reprogrammed. In addition,
existing systems experience difficulties in solving large realis-
tic network problems in the presence of numerical instabilities.
The novelty of our approach consists in transparent modeling,
where the user can freely change the equations and experiment
with different forms of representing physical processes in
fluid transport networks. We also pay special attention to the
stability and performance of solution algorithms, which is
especially important for realistic scenarios with a large number
of elements. The purpose of this work is to extend transparent
and numerically stable modeling to mixing flows present in
realistic fluid transport scenarios.

In this work, Section II presents the modeling of mix-
ing flows incorporating molar and temperature relationships.
Section III describes the numerical experiments performed
using the developed methods. Section IV summarizes the main
results and conclusions of the work.

II. MODELING OF MIXING FLOWS

This section describes the details of modeling of mixing
flows, consisting of modeling fluid molar composition and
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temperature distribution.

A. Molar fluid composition

A fluid transport network is described by a directed graph
consisting of nodes and edges connecting them. The graph is
described by an incidence matrix Ine, in which each edge e
has nonzero entries for the nodes n that this edge connects;
−1 for the node that edge comes from, +1 for the node that
edge enters. Mixing fluid flows are described by following
equations

Vn∂ρn/∂t =
∑

e Ineme, (1)
Vn∂(ρnµ

−1
n )/∂t =

∑
e Inemeµ

−1
e , (2)

Vn∂(ρnµ
−1
n xn)/∂t =

∑
e Inemeµ

−1
e xe, (3)

where Vn is the volume assigned to the node; ρn represents
the mass density at the node; t denotes time; the sum applies
to all edges adjacent to the node; me is the mass flow in an
edge, considered positive if the direction of flow coincides
with the direction of the edge, and negative otherwise; µn/e

is the molar mass assigned to both the node and the edge;
xn/e are the mole fractions of the components that make up
the fluid.

Physically, the above equations describe various conserva-
tion laws. In particular, (1) is the dynamic Kirchhoff equation
and describes the conservation of mass. Here, Vnρn on the
left side, with Vn representing a time-independent volume,
describes the mass of fluid in the node. The sum on the right
side accounts for the mass flow into the node, minus the flow
out. Equation (2) describes the conservation of the total molar
amount of a fluid, where Vnρnµ

−1
n represents the number of

moles in a node, and the sum on the right side is the total molar
flow in the node. Finally, (3) describes the molar conservation
for each component, Vnρnµ

−1
n xn represents the number of

moles of a given component in a node, and the sum is the
molar flow of that component. Equations (1) and (2) are valid
in the absence of chemical reactions between the components
of the fluid.

The x-vector may also include other quantities to which
linear molar mixing applies, such as the molar heat value Hm,
and linear approximations (Tc, Pc) used in certain equations
of state for critical temperature and critical pressure, among
others. Alternatively, such quantities can be calculated in post-
processing as a linear combination over the molar composition.
Explicit inclusion in the mixing equation allows these quan-
tities to be calculated even when the determination of molar
composition is disabled.

The conservation equations of type (1)–(3) are standard,
can be found in a textbook, e.g., eq.(4.1) in [25]. Now we
will rewrite them in a more convenient form, resolved with
respect to derivatives:

Vnρn∂µ
−1
n /∂t =

∑′
e Ineme(µ

−1
e − µ−1

n ), (4)
Vnρnµ

−1
n ∂xn/∂t =

∑′
e Inemeµ

−1
e (xe − xn), (5)∑′

e =
∑

e,Ineme>0, (6)

where the sum is taken over the flows incoming to the node.
To prove it, it is necessary to perform the differentiation in (2)
and take into account (1), which will result in (4), in which
the sums are taken over all flows, incoming and outgoing.
Further, if one takes into account that µ−1

e for an outgoing
flow is equal to µ−1

n at a node, the sum can be reduced to the
incoming flows. The proof for (5) is similar. The condition of
equality of mixed quantities in the node and in the outgoing
flow can also be used to reduce the total number of variables.
Namely, one can completely eliminate the variables in the edge
e, replacing them with the values in the upstream node n′,
µ−1
e → µ−1

n′ , xe → xn′ . When time derivatives are set to
zero, these equations are reduced to stationary formula (see
eq.(13) in [3]).

Boundary conditions: µ = µset, x = xset are fixed to the
specified values in the network entry nodes. The system of (4)–
(6) and boundary conditions is closed. Its stationary part on the
right side of the equations is non-degenerate if all nodes are
connected to at least one entry node in the upstream direction.
A complete dynamical system can be non-degenerate even
if this rule is violated, for example if all flows are zero. In
this case, the dynamic term ensures the preservation of the
transported quantities, keeping them at the starting values.

Startup algorithm: at entry nodes, the transported values
are initialized to set values to satisfy the boundary conditions.
In all other nodes, values are initialized to default values,
which are either specified by the user or averaged over all set
values. As a part of the general procedure [2], the initial flows
are set to zero and all fluid composition-dependent quantities,
such as density ρ, are calculated from the appropriate equa-
tions of state. This procedure provides a smooth startup, with
all equations initially satisfied. Then, fluid starts to propagate
from entries to the neighbor nodes with growing massflow,
replacing default values with current ones.

Scaling factors: according to the general procedure [2],
all equations are scaled to cover the range of 100 units when
variables are changed in their physical domain. Such factors
can influence convergence of the solver and should be selected
carefully.

Vn-definition: in accordance with the discretization
scheme formulated in [2], each pipe contributes half of its
volume to the end nodes, and all other elements contribute a
nominally specified volume V0.

Linearity of the system: with known m-flows, the µ−1-
subsystem (4) is linear; also, for known m and µ−1, the
x-subsystem (5) is linear. This property is convenient for
controlling convergence, since each linear subsystem in the
non-degenerate case is solvable in one iteration. The following
algorithm is used to integrate the equations.

Algorithm (simulation workflow):
init;
repeat{ mumix; xmix; Tmix; PM; t+=dt; }

Here, init represents the initialization of all variables
according to the startup algorithm described above. mumix
is the solution of the µ−1-subsystem, xmix is the solution
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of the x-subsystem, Tmix is the solution of the temperature
subsystem formulated below, and PM is the solution of the
pressure-massflow subsystem as formulated in [2]. As in [2],
our primary goal is to determine stationary solutions of the
system by integrating with as large steps as possible until
stationarity is achieved. The most stable method suitable
for this purpose is time discretization of the implicit Euler
type: ∂v/∂t → (v − vprev)/dt, for all dynamic variables v,
where vprev is the value from the previous step, dt is the
integration step. For a detailed study of dynamic processes,
more sophisticated finite-difference schemes [26] [27] can be
used.

B. Temperature modeling

The starting point is the law of conservation of energy for
open systems (see, for example, eq.(4.14) in [25]):

Vn∂(ρnµ
−1
n Un)/∂t =

∑
e Inemeµ

−1
e He, (7)

where U is the molar internal energy, H = U + Pµ/ρ is the
molar enthalpy, and P is the pressure. The equation is similar
to the conditions of molar mixing in (3). The difference is that
the derivative of the nodal internal energy is on the left side,
and the total enthalpy flow in the node is on the right side.
Physically, with each flow, internal energy is introduced into
the node, as well as the work of the fluid against the pressure
in the node. This work can be combined with internal energy,
giving enthalpy on the right side of the equation. On the left
side, under the derivative, there is still nodal internal energy. In
general case, other terms can be present in the conservation
law, vanishing for simple mixing in the node. In particular,
no additional work is performed in the node, and due to the
assumed absolute thermal insulation of the node, heat transfer
becomes zero. Possible processes with additional work and
heat transfer are assigned to special edge elements and are
described below.

We rewrite the equation (7) as follows:

Vnρnµ
−1
n ∂Hn/∂t− Vn∂Pn/∂t =

=
∑′

e Inemeµ
−1
e (He −Hn), (8)

the derivation is similar to (5), also here the nodal internal
energy is re-expressed in terms of enthalpy and pressure in
the node.

Boundary conditions: H = Hset, enthalpy is fixed to the
specified value in entry nodes. Alternatively, one can use the
condition T = Tset, which fixes the temperature at the entry
nodes.

In addition, according to eq.(4.14) in [25], gravitational and
kinetic terms can be added to the internal energy and enthalpy:
H → H + µgh + µv2/2, where g is the acceleration of
free fall, h is the height, and v is the speed of translational
motion of the fluid. To calculate the kinetic term, one needs
to know the diameter, which is not available for all types
of elements. For example, a compressor is a very complex
structure to be described by a single diameter. Also, at nodes
where many edges join, complex internal motion occurs,

which does not coincide with the simple translational motion
described by a kinetic term with a single diameter. On the other
hand, for the transport of gases, the kinetic term is usually
significantly less than the internal energy, for translational
velocities significantly lower than the speed of sound. In our
simulation, we made it possible to optionally turn off the
kinetic term in the temperature equations.

In (8), Hn represents the nodal value, and He represents the
edge downstream value. The difference from x-mixing is that
here the edge downstream value in the general case cannot be
replaced by the upstream nodal value, since there are elements
that change the enthalpy value. The system cannot be reduced
to a purely nodal one; in addition, the system also includes
the temperature T of the fluid.

HT -constraint:

H = Hmod(P, T, x), (9)
H = Hmod(P, Tprev, x) + cp(T − Tprev), (10)

where Hmod is the thermodynamic model for enthalpy, cp =
∂Hmod/∂T is the molar heat capacity calculated at point
(P, Tprev, x). The equations (9)–(10) and (H,T ) variables are
introduced per node and edge.

The first equation relates enthalpy and temperature accord-
ing to the thermodynamic model used. We use GERG2008
[15]–[17] as a concrete implementation of such relation. For
software-technical reasons, it cannot be used directly; its call
once per internal iteration produces too many total calls of
GERG2008 module, resulting in significant slowdown. In ad-
dition, the equation is nonlinear, violating the desired linearity
property of the Tmix subsystem. The second equation is a
linearization of the first, it can be used in internal iterations,
with a less frequent update of the coefficients. When using
the workflow formulated above, (m,P, ρ) in all mix phases
are considered as fixed parameters, updated in PM-phase. For
Hmod and cp, updates occur immediately before the start
of the Tmix phase. In addition, to increase stability, the
temperature is clamped to a given range, by default set to
[223.15, 423.15]K.

Default element equation:

He = me > 0?Hn1 : Hn2 (11)

formulates isenthalpic process [25], where the edge enthalpy
is taken from the upstream node, similar to x-mixing. In this
and further equations, the edge e goes from node n1 to node
n2, conditions are written in C-notation: x?y:z = if(x) then y;
else z. This model is applied to the most of element types, in
particular, to valves, regulators, resistors and shortcuts; while
the exceptional types are listed below.

Pipe equation:

(me > 0?(Hn1 −He)µ
−1
n1 : (Hn2 −He)µ

−1
n2 )|me| =

= πDLcht(Te − Tsoil), (12)

the change of enthalpy over the pipe is equal to a heat
exchange with the soil, eq.(33.3) in [28]. Here Tsoil is soil
temperature, D is pipe diameter, L is pipe length, and cht is
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heat transfer coefficient. The pipe should have sufficiently fine
subdivision to model the heat exchange appropriately.

Compressor equation:

me > 0?(Te − Tn1((|Pn2/Pn1|(κ−1)/κ − 1)/η +

+1)zn1/ze) : (He −Hn2) = 0, (13)

for positive flow, the change of temperature is described by
eq.(38.51) in [28], or a similar formula (eq.(13-31)) without
z-correction from [29]; otherwise, isenthalpic process is used.
Here κ is isentropic exponent, η is efficiency, z is compress-
ibility factor. This basic model is designed for gas transport,
while for liquids, e.g., CO2 pumps, customer-specific models
can be used.

Coolers and heaters:

me > 0?(Aset > 0?(Te − Tset) : (He −Hn1))

: (He −Hn2) = 0, (14)

at the simplest modeling level, we implement these elements
by clamp formulas: Te = min(Tn1, Tset) for coolers and Te =
max(Tn1, Tset) for heaters. These formulas are piecewise-
linear. Their linearization leads to the common formula above
and the active set flag described by the following algorithm.

Algorithm (active set):

cooler:
if(Aset==1&&He>Hn1) then Aset=0
if(Aset==0&&Te>Tset) then Aset=1

heater:
if(Aset==1&&He<Hn1) then Aset=0
if(Aset==0&&Te<Tset) then Aset=1

Here Aset = 1 corresponds to an active mode, Aset = 0 to
a standby mode. The algorithm is applied after Tmix-phase,
its convergence is tracked.

III. NUMERICAL EXPERIMENTS

We performed a series of simulations on networks of
different complexity levels to study in detail the effects of
flow mixing, integration stability, and iteration convergence.

N1 network: the network shown in Figure 1 contains 100
nodes, 111 edges and is used for numerical experiments with
the transport of natural gas and hydrogen. Detailed settings of
supplies in the considered scenario are presented in Table I.
Selected time discretization is dt = 3 · 104s, nsteps = 100.
The network has a simple Y-shaped topology, with two supply
nodes n99_gm and n56_gm, as well as a mixing node n89,
where the flows from the supplies come together, and the rest
of the network, ending with the most distant exit node n76.

Figure 2a shows the evolution of inverse molar mass. Fig-
ure 2b presents molar heat value, and Figure 2c demonstrates
molar fraction of CH4, representative for chemical compo-
sition in the considered test scenario. In all these plots, the
values in supply nodes n99_gm and n56_gm are kept constant
at set values. In stationary solution, the simple topology of
the network leads to a single mixed state, formed in node
n89 and propagated downstream to the rest of the network.

Figure 1. Test network N1.

Figure 2. Simulation results (see text for details).

In the evolution, the values in all nodes tend either to supply
values or to this mixed state. Interestingly, in the startup of
the evolution, the curves perform several large oscillations
between the boundary states, before they relax at the stationary
state. This happens due to a complex distribution of flows at
the startup phase.

Note that the graphs Figure 2a and Figure 2c have an
identical shape, and Figure 2b has the same shape vertically
reflected. This happens because there are only two supplies
in the network, and the default composition is a linear com-
bination of them. As a result, the trajectory of the system
in x-space is limited to a 1-dimensional subspace. Graphs
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TABLE I
SUPPLY SETTINGS IN VARIOUS SCENARIOS

scenario entry composition temperature
N1 nat.gas n99_gm 87% CH4, 1% C2H6, 303.15K

1% C3H8, 1% CO2,
10% N2

N1 nat.gas n56_gm 85% CH4, 3% C2H6, 293.15K
1% C3H8, 1% CO2,

10% N2

dyn-pipe H2 n0000 95% H2, 5% N2 313.15K
dyn-pipe CO2 n0000 95% CO2, 3% N2, 313.15K

2% O2

TABLE II
TESTING VARIOUS IMPLEMENTATIONS OF HEATERS

ON N85 NETWORKS SET

implementation of heaters num. of divergent cases
disabled 3

local 0
nonlocal 85
joined 2

Figure 2a-c are projections of this trajectory to different
directions and therefore have the same shape.

Figure 2d shows temperature dependence in selected nodes.
During startup evolution, strong heating occurs due to the
inverse Joule-Thomson (JT) effect and the influence of the
∂P/∂t-term in (8). With further evolution, the temperature
in nodes close to supplies tends to the corresponding constant
temperature values of the incoming fluid. In more detail, in the
considered scenario, after each supply there is a compressor
station, the outlet temperature of which is regulated by a
cooler. The outlet temperature of the cooler is set to the same
value as that of the corresponding supply. The temperature
in network nodes remote from the supply tends to a constant
value, slightly below Tsoil = 283.15K, due to the influence
of the JT-effect.

N85 networks set: contains 85 realistic natural gas net-
works, obtained for benchmarking from our industrial part-
ner. The networks are highly resolved, containing up to 4
thousands of nodes each. We used these networks for nu-
merical experiments testing the stability of simulation with
a different implementation of heaters. Unlike coolers, which
control their own output temperature, heaters must control the
temperature in an adjacent element, the regulator. In dynamic
formulation of the problem, especially at low flows, heaters
do not have time to regulate their temperature in order to
constantly ensure the set temperature values in the regulator.
This leads to divergences. We have tested several options for
implementation of heaters, shown in Table II. For disabled
heaters, 3 scenarios out of 85 are divergent. For the most stable
implementation option, when heaters control their own local
temperature, all scenarios are convergent. If the heaters try to
control the temperature nonlocally, in the attached regulators,
all scenarios diverge, making such implementation impossible.
For our selected option, the heaters are joined with regulators,
the unified element controls its own output temperature, 2

scenarios out of 85 are divergent, slightly better than the
complete disabling of the heaters. On average, simulating one
converging scenario from the N85 set takes about one minute
on a 2.6 GHz CPU 16 GB RAM computer.

Hydrogen and carbon dioxide pipelines: this is one of our
standard test cases, L = 150km D = 0.5m horizontally laid
pipeline, transporting gaseous H2 or CO2 in liquid or super-
critical phase. The case supports variable spatial discretiza-
tion, for the considered scenario selected to nsubdiv = 50.
Time discretization is the same as for N1 network. Supply
setting is presented in Table I. The considered scenario has
a single fluid composition and is used mainly for testing of
the temperature modeling. The dynamic simulation starts from
Tsoil = 283.15K and a different Tset = 313.15K at the
pipeline entry. The simulation converges to stationary solution
with nearly exponential fall of temperature from Tset to Tsoil.
For CO2, an observed stronger deviation from the exponent
is due to JT-effect and the nonlinear enthalpy model.

Convergence of iterations: in our implementation, we
use the globally convergent Newton’s solver with Armijo
line search rule [30], applied at every time step. For linear
problems, it just forwards the solution to the underlying sparse
linear solver, that for non-degenerate problems converges in 1
iteration. Due to proper initialization, at the first time step
all phases converge in 0 iteration, just keeping the starting
values. This provides a good method to test that all variables
are correctly initialized. At the second time step, all mix
phases also converge in 0 iteration, while in the last PM
phase the network filling begins, and PM phase starts to
increase its iteration number. For N1 network and H2/CO2

pipe scenarios, all mix phases are solved in 1 iteration on
intermediate timesteps, as it should be for non-degenerate
linear systems; and in 0 iteration at the last timesteps, due to
convergence to stationary solution. For large N85 networks,
Tmix phase can have intermediately 2-3 iterations, indicating
the remaining degeneracy or the disbalance of scaling factors
in Tmix system. This effect is planned to be studied in
more details, with the application of principal component
analysis [31].

The numerical experiments performed show that the purpose
of this work has been fully achieved, the modeling has
been extended to include mixing flows and is working for
scenarios of varying complexity. The modeling in our system
is presented in open text form, as a list of variables and
equations, which both we and the users can freely modify.
This distinguishes us from the existing solutions, in which
the modeling is usually hardcoded within the system. We also
provide numerical stability of the modeling and the solution
algorithms, which allows us to solve large realistic scenarios
in fluid transport simulation.

IV. CONCLUSION AND FUTURE WORK

This paper considered the modeling of mixing flows in
dynamic simulation of pipeline fluid transport. Mixed charac-
teristics include molar mass, heat value, chemical composition
and temperature of the transported fluids. In the absence of
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chemical reactions, the modeling is based on the universal con-
servation laws for molar flows and total energy. The modeling
leads to a system of differential algebraic equations, including
linear molar mixing formulas, nonlinear temperature-energy
relationships, and piecewise-linear element equations for cool-
ers and heaters. In our approach, for nonlinear relations,
linearization is carried out in the vicinity of the previous in-
tegration step, piecewise-linear relations are reduced to linear
ones using the active set method. The resulting sequence of
linear systems is solved by a sparse linear solver, typically
in one iteration per integration step. The functionality and
stability of the developed approach have been tested in a
number of realistic network scenarios.

Numerical experiments on the moderate size N1 network
allow us to follow the mixing processes in detail, including the
evolution of molar mass, heat value, chemical composition,
and temperature. Experiments on the N85 set of large-scale
networks demonstrate the stability of the developed methods
and its sensitivity to such details as nonlocality of equations
used in the implementation of heaters. Hydrogen and carbon
dioxide pipeline scenarios are used for testing the temperature
modeling and the convergence of simulation. Due to the
linearity of the mixing equations, their solution is typically
carried out in one iteration, representing a minor overhead
to solving the main system of nonlinear equations describing
the distribution of pressures and flows over the fluid transport
networks.

Our future plans include studying the balance of scaling
factors in the temperature mixing system for large-scale net-
works and applying the developed methods to more complex
hydrogen and carbon dioxide scenarios.
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