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Abstract—In this paper, we explore the fault-tolerance mecha-
nisms in Kubernetes and Slurm within High-Performance Com-
puting (HPC) infrastructures. As computational workloads and
data requirements continue to expand, ensuring reliable and
resilient HPC systems becomes increasingly critical. Our study
examines the strategies employed by Kubernetes and Slurm to
handle failures, maintain system stability, and provide continuous
service. We present a comparative analysis, highlighting the
strengths and limitations of each system in various failure
scenarios. We review and synthesize findings from existing
literature and case studies to infer the effectiveness of these
fault-tolerance mechanisms. Through this comprehensive review,
we provide insights into the current state of fault-tolerance
in Kubernetes and Slurm and propose recommendations for
enhancing resilience in HPC environments.
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I. INTRODUCTION

HPC systems are integral to a wide range of scientific and
industrial applications, driving advancements in fields, such
as climate modeling, bioinformatics, and complex simulations.
As the demand for computational power and data processing
continues to grow, maintaining the reliability and resilience of
HPC infrastructures becomes increasingly crucial. Given that
a single protocol failure can potentially disrupt the entire HPC
system, fault-tolerance, which is the capacity of a system to
maintain operational functionality in the presence of failures,
is a critical factor in ensuring the robustness and reliability of
such systems [1].

Kubernetes and Slurm are two prominent orchestration and
workload management systems used in HPC environments.
Kubernetes, originally designed for managing containerized
applications [2], has gained traction for its flexibility and scala-
bility [3] [4] [5]. Slurm, on the other hand, is a traditional HPC
workload manager known for its efficiency in scheduling and
resource management [6] [7]. Both systems offer mechanisms
to handle failures, but their approaches and effectiveness can
vary significantly.

This paper aims to explore and compare the fault-tolerance
mechanisms of Kubernetes and Slurm in the context of the
EU DECICE Project [8]. The DECICE Project, funded by the
Horizon Europe program, aims to develop an AI-based, open,
and portable cloud management framework for the automatic
and adaptive optimization and deployment of applications
across a federated infrastructure, encompassing HPC systems,
cloud, edge, and IoT devices. A key objective of DECICE

is to enhance the resilience and efficiency of this compute
continuum through dynamic scheduling and fault-tolerance
mechanisms.

By reviewing and synthesizing findings from existing liter-
ature and case studies, we seek to understand how Kubernetes
and Slurm manage common failure conditions, such as node
crashes, network partitions, and resource exhaustion, within
the framework envisioned by DECICE. Our goal is to provide
a comprehensive analysis that highlights the strengths and
limitations of each system’s fault-tolerance capabilities, con-
tributing to the project’s objectives of developing an intelligent
management plane and achieving high levels of performance
and energy efficiency.

The remainder of this paper is structured as follows: Sec-
tion II provides a background on fault-tolerance in HPC
systems and an overview of Kubernetes and Slurm. Section
III discusses the methodology used for our literature review
and comparative analysis. Section IV presents the results
of our review, detailing the fault-tolerance mechanisms and
their effectiveness. Finally, Section V offers conclusions and
recommendations for enhancing fault-tolerance in HPC envi-
ronments using Kubernetes and Slurm, aligned with the goals
of the DECICE Project.

By understanding the current state of fault-tolerance in these
systems, we aim to contribute valuable insights that can inform
future developments and best practices in HPC infrastructure
management, ultimately supporting the broader aims of the
DECICE Project.

II. BACKGROUND

In this section, we provide an overview of the key com-
ponents and mechanisms relevant to fault-tolerance in HPC
systems. We begin by outlining the common faults encoun-
tered in HPC environments, discussing their types and origins
to set the context for the fault-tolerance strategies required.
Following this, we explore the architectures and fault-tolerance
mechanisms of Kubernetes and Slurm, two prominent or-
chestration and workload management systems used in HPC.
Understanding these foundations is crucial, as Kubernetes and
Slurm represent different approaches to managing workloads
and ensuring system resilience. This background sets the stage
for a detailed comparison of their fault-tolerance capabilities in
subsequent sections. The historical evolution and importance
of robust fault-tolerance mechanisms are underscored by the
increasing demand for reliable and efficient HPC systems,
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which are critical for advancing scientific research and indus-
trial applications. HPC systems, while immensely powerful,
are not immune to faults and failures. Knowing the common
types of faults in HPC environments and their origins is crucial
for developing effective fault-tolerance mechanisms.

A. Types of Failure in HPC

1) Hardware Failures: Hardware failures are one of the
most common and impactful faults in HPC systems. In the
paper [9], the authors found out an increase in failure proba-
bility as high as 170X for environmental failures and nearly
10X for software failures. These can include:

• Node Failures: These occur when individual compute
nodes malfunction due to issues, such as overheating,
power supply problems, or component wear and tear.

• Network Failures: HPC systems rely on complex net-
work infrastructures for inter-node communication. Fail-
ures in network hardware, such as switches or routers,
can disrupt these communications.

• Storage Failures: HPC applications often require high-
throughput and low-latency access to large datasets.
Failures in storage devices or file systems can lead to
significant performance degradation or data loss.

Figure 1 provides a histogram of the failure frequency
across different components in an HPC system. The x-axis lists
various components prone to failures, including applications
(APPL), CPU cores (CORE), controllers (CTRL), disk storage
(DISK), cooling fans (FAN), hypervisors (HSV), operating
systems (OS), power supplies (PS), and scientific backplanes
(SCI_BP). The y-axis represents the frequency of failures
observed in each component. Each bar in the histogram corre-
sponds to the failure frequency of a specific component, with
the height of the bar indicating how often failures occurred for
that component. The histogram shows that disk storage (DISK)
has the highest frequency of failures among all components,
followed by controllers (CTRL) and power supplies (PS).
Other components, such as applications (APPL), CPU cores
(CORE), and hypervisors (HSV) have relatively lower failure
frequencies. This figure highlights the critical areas within
an HPC system that are more prone to failures, emphasizing
the need for robust fault-tolerance mechanisms, especially for
components with high failure frequencies. Understanding these
failure patterns can help in designing more resilient HPC
systems and implementing effective predictive maintenance
strategies.

2) Software Failures: Software-related faults can arise from
bugs, configuration errors, or resource management issues.
Common software faults include:

• Application Crashes: Applications running on HPC sys-
tems may crash due to bugs, unhandled exceptions, or
invalid inputs.

• Operating System Failures: The operating system on
compute nodes can experience kernel panics or other
critical failures that disrupt node operations.

• Middleware Failures: HPC systems often utilize mid-
dleware for job scheduling, resource allocation, and data

Figure 1. Summary of HPC hardware components’ failure [10].

management. Failures in these middleware components
can lead to job delays or failures.

3) Human Errors: Human errors are another significant
source of faults in HPC systems. These can include:

• Configuration Errors: Incorrect configuration of hard-
ware, software, or network settings by administrators can
lead to system instability or inefficiencies.

• Operational Mistakes: Mistakes made during system
maintenance, updates, or job submissions can cause un-
intended downtimes or performance issues.

4) Environmental Factors: Environmental factors, although
less common, can also affect HPC systems. These include:

• Power Outages: Unexpected power outages can lead to
abrupt system shutdowns, data corruption, and hardware
damage.

• Cooling Failures: HPC systems generate substantial heat
and rely on efficient cooling mechanisms. Failures in
cooling systems can cause overheating and subsequent
hardware failures.

B. Origins of Faults in HPC

The origins of faults in HPC systems are varied and can be
traced back to several underlying causes:

1) Complexity and Scale: HPC systems are inherently com-
plex, comprising thousands of interconnected nodes, sophisti-
cated networking, and vast storage solutions. This complexity
increases the likelihood of faults due to the sheer number of
components and interactions involved.

2) Technological Limits: As HPC systems push the bound-
aries of current technology to achieve greater performance,
they also encounter the limitations of that technology. This can
include issues like hardware failures due to higher operational
stress and software bugs that surface under extreme conditions.
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3) Evolution and Upgrades: HPC systems continuously
evolve with new hardware and software upgrades. However,
integrating new components with existing infrastructure can
introduce compatibility issues, configuration errors, and un-
foreseen bugs.

4) Operational Environment: The operational environment
of HPC systems, including physical location, power supply
stability, and cooling efficiency, can significantly impact their
reliability. Adverse conditions in these areas can exacerbate
fault occurrences.

Understanding these common faults and their origins is
essential for developing robust fault-tolerance strategies. The
subsequent sections will explore how Kubernetes and Slurm
address these challenges, providing insights into their fault-
tolerance mechanisms within HPC infrastructures.

C. Kubernetes

Kubernetes is an open-source platform that helps to manage
containerized workloads and services. It supports easy config-
uration and automation. With a quickly growing community,
there are plenty of services, support options, and tools avail-
able [11].

1) Kubernetes Architecture: Figure 2 provides a high-level
overview of Kubernetes architecture. A cluster is made up
of compute machines, called nodes, and a control plane. The
control plane manages the cluster, while the nodes run user
applications. Typically, the control plane operates on a separate
physical device, but it can also share a device with a compute
node or be spread across multiple devices for redundancy.
Pods, which are the scheduling units in Kubernetes, house
the application containers. The following sections detail the
Kubernetes components [12]:

• API Server: Exposes the Kubernetes API via HTTP.
• Controller manager: Manages all standard controllers

for Kubernetes resources, like pods, services, and deploy-
ments. Each controller ensures that the resource’s current
state matches the desired state.

• etcd: A persistent distributed key-value store, which
stores resources and cluster configuration information.

• Scheduler: Component responsible for determining the
most suitable node for a given pod.

• kubelet: Agent that runs on every node within a Kuber-
netes cluster. It communicates via a REST API with the
API server and handles interactions with the underlying
container runtime.

• Container runtime: Component responsible for manag-
ing the containers’ lifecycle. Examples of runtimes are
CRI-O [13] and Containerd [14].

• kube-proxy: Facilitates communication with pods and
implements the Service concept in Kubernetes, which
abstracts the IP addresses of application pods to provide
a unified method for exposure.

D. Fault Tolerance in Kubernetes

By default, Kubernetes offers two mechanisms for ensuring
reliability: self-healing and replication. Self-healing involves

Figure 2. Kubernetes components [15].

Kubernetes restarting or replacing containers that fail, termi-
nating unresponsive containers based on user-defined health
checks, and delaying client access until containers are ready
to serve [11]. Replication ensures a specified number of pod
replicas are constantly operational, guaranteeing continuous
availability of pods or homogeneous pod sets [16].

Different fault-tolerance mechanisms can be also be imple-
mented into Kubernetes. They are described below:

1) Horizontal Pod Autoscaler (HPA): Kubernetes boasts
autoscaling as a crucial feature. This capability allows con-
tainerized applications to function reliably without constant
manual intervention. A core autoscaling tool within Kuber-
netes is the HPA.

HPA guarantees high availability by dynamically adjusting
the number of running pods, which are the execution units
within the cluster. When triggered, HPA seamlessly adds new
pods to distribute the workload, preventing negative impacts
on existing pods.

To make autoscaling decisions, Kubernetes relies on met-
rics, which are statistics gathered from pods, applications,
host machines, and the overall cluster. By default, Kubernetes
uses Resource Metrics, which primarily monitor CPU and
memory usage of pods and host machines. To enhance HPA’s
performance and flexibility, you can incorporate Customizable
Metrics with the help of external software [17].

2) CRIU: CRIU (Checkpoint/Restore in Userspace) is a
critical tool for managing process state in Linux environments.
It empowers users to capture a running container or individ-
ual application at a specific point in time by performing a
checkpoint. This checkpoint essentially freezes the process,
recording its entire state, including memory, registers, and
open file descriptors. This captured data can then be leveraged
to restore the application and resume execution precisely from
the checkpointed state. CRIU unlocks a multitude of powerful
functionalities within the container orchestration landscape.
These functionalities include live migration of containers or
applications across machines without downtime, facilitating
seamless application rollbacks through the creation of snap-
shots, and enabling remote debugging of running processes
for efficient troubleshooting [18].

3) RAFT Protocol: Raft ensures that all replicas within the
cluster maintain identical state machines, guaranteeing data
integrity even in the face of node failures. It leverages a passive
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replication approach, where each node can assume one of three
roles: leader, follower, or candidate [19]:

• Leader: The cluster elects a single leader node respon-
sible for steering communication. The leader receives in-
coming requests, processes them, replicates state machine
changes across follower nodes, and relays responses back
to clients.

• Follower: While a leader is active, all other nodes transi-
tion to a follower state. Followers passively wait for the
leader to transmit state machine updates, which they then
apply to maintain consistency.

• Candidate: In the event of a leader failure, follower
nodes transition to a candidate state and initiate a voting
process to elect a new leader, ensuring rapid recovery and
continued cluster operation.

E. SLURM

Slurm is a robust, open-source system designed to manage
clusters and schedule jobs on Linux platforms, suitable for
both large-scale and smaller deployments. It operates seam-
lessly without requiring kernel modifications and functions as
a self-contained framework. As a cluster workload manager,
Slurm performs three key roles: it allocates exclusive or non-
exclusive access to compute nodes for users over defined time
periods, facilitates the initiation, execution, and monitoring
of jobs (especially parallel tasks) across allocated nodes, and
manages resource contention by prioritizing pending work
in a queue. These capabilities make Slurm essential for ef-
ficiently orchestrating cluster operations and optimizing job
performance across diverse computing environments [20].

The main components of Slurm are detailed below, with a
sample architecture depicted in Figure 3:

• slurmctld: This component monitors resource states,
decides when and where to initiate jobs and job steps, and
handles nearly all user commands, excluding database-
related operations.

• slurmd: As Slurm’s compute node daemon, slurmd is
responsible for executing actual work on the node.

• slurmdbd: This component records accounting informa-
tion and centrally manages certain configuration details,
such as limits, fair share information, Quality of Service
(QoS) settings, and licenses [21].

F. Fault Tolerance in SLURM

In the realm of HPC, fault-tolerant software is crucial in
HPC environmeparamounts. Job resubmissions due to errors
significantly impact resource utilization, leading to longer
queue times for all users. While Slurm offers inherent fault
tolerance, it primarily focuses on hardware issues rather than
software errors. This ensures that malfunctioning jobs, exceed-
ing resource limits or encountering failures, are isolated and
prevented from disrupting other running jobs. However, the
responsibility remains with users and developers to craft robust
software, minimizing the need for job resubmissions caused
by execution-time errors [1].

Figure 3. Typical Slurm architecture.

III. METHODOLOGY

In this section, we describe the methodology used for our
literature review and comparative analysis of fault-tolerance
mechanisms in Kubernetes and Slurm. We detail our approach
to data collection, analysis techniques, and the criteria used for
evaluating the effectiveness of fault-tolerance strategies.

A. Literature Review

To collect relevant academic papers, technical reports, and
case studies on fault-tolerance in Kubernetes and Slurm, we
searched various databases including IEEE Xplore, Google
Scholar, and ACM Digital Library. We used search terms, such
as "fault-tolerance in Kubernetes," "fault-tolerance in Slurm,"
"HPC fault-tolerance," and "resilience in HPC systems." We
reviewed and summarized key findings and methodologies
used in these studies to understand the current state of research
and identify gaps for further exploration.

B. Comparative Analysis Framework

To collect logs from a Kubernetes cluster, including server
logs and logs from objects, such as pods, deployments,
and services, the EFK stack (Elasticsearch, Fluentd, and
Kibana) has been installed. Elasticsearch [22] is a distributed,
multitenant-capable full-text search engine with an HTTP web
interface and schema-free JSON documents. Fluentd [23],
a fast, lightweight, and highly scalable logging and metrics
processor, handles log forwarding. Kibana [24] provides a
data visualization dashboard for Elasticsearch. Together, these
tools enable the collection and analysis of Kubernetes-related
system logs. Figure 4 illustrates the general architecture and
workflow of the EFK stack.

In the context of Slurm workload management, agent logs
generated by both the slurmctld control daemon and slurmd
worker daemons on corresponding servers were collected and
analyzed thoroughly. This analysis aimed to identify errors
and malfunctions within HPC systems. Through a systematic
examination of these logs, recurring patterns and underlying
causes of system failures were identified.

We systematically evaluated each system against specific
criteria, tracking essential aspects throughout the process. The
analysis included metrics and benchmarks, such as Mean

43Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-184-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences



Figure 4. EFK stack on Kubernetes.

Time to Recovery (MTTR), detection accuracy, and resource
utilization rates. Table I presents a comparison of these criteria
for Kubernetes and Slurm.

As previously mentioned, various tools have been employed
to collect logs and data from Slurm and Kubernetes. Table
II provides a detailed list of these tools, outlining their
functionalities and the specific data they collect.

C. Log Files Processing Steps

The processing of log files involved several intricate steps to
ensure accurate labeling and analysis of the log entries, facil-
itating the identification and categorization of fault-tolerance
mechanisms in HPC environments:

1) Data Cleaning and Preprocessing: Initially, raw log data
from both Kubernetes and Slurm environments were cleaned
to remove any extraneous information and ensure consistency
in formatting. This involved:

• Removing duplicate entries to prevent data redundancy.
• Parsing timestamps and standardizing date-time formats.
• Filtering out non-informative log entries, such as routine

status updates that do not indicate errors or significant
events.

2) Labeling Using Language Models: To categorize the log
entries, we employed a Large Language Model (LLM) for
automated labeling. The steps included:

• Extracting messages from the cleaned log files.
• Using the LLM to generate unique labels for each log

entry, indicating the type of failure or operational state.
• Implementing a similarity check using TF-IDF vectoriza-

tion and cosine similarity to avoid redundant labels. If a
new log entry was found to be 70

• Periodically saving the progress to avoid data loss during
processing.

The following pseudocode summarizes this process:

for each log entry in cleaned_log_data:
if is_similar(log_entry, existing_entries):

assign existing label
else:

label = generate_label_with_LLM(log_entry,
existing_labels)

update existing_labels and existing_entries
save progress periodically

3) Parallel Processing with GPU Acceleration: Given the
large volume of log data, processing was accelerated us-
ing parallel computing techniques on GPUs. This approach
significantly reduced the time required for vectorization and
similarity computations:

• Utilizing CuPy for GPU-based array operations to handle
large-scale vector computations efficiently.

• Employing parallel processing libraries, such as Dask to
distribute the workload across multiple GPU cores.

4) Generating Summary Statistics and Visualizations: After
labeling the log entries, summary statistics were computed to
understand the distribution and frequency of different failure
types. Visualization tools were employed to create charts and
graphs depicting these distributions:

• Bar charts showing the number of log entries per label.
• Pie charts illustrating the percentage distribution of each

label category.
The results were saved in both graphical and tabular formats

to facilitate further analysis and reporting.

IV. RESULTS

This section presents the findings from our literature review
and comparative analysis. We detail the fault-tolerance mech-
anisms of Kubernetes and Slurm, highlighting their strengths
and limitations in different failure scenarios.

A. Fault-Tolerance Mechanisms in Kubernetes

Kubernetes employs several fault-tolerance mechanisms to
ensure system resilience:

• Self-Healing: Kubernetes restarts failed containers, re-
places containers, and kills containers that do not respond
to health checks.

• Replication: Ensures a specified number of pod replicas
are running at any time.

• HPA: Adjusts the number of pods based on CPU/memory
usage or custom metrics, improving availability.

• CRIU: Enables checkpointing and restoring of container
states, supporting live migration and snapshots.

• RAFT Protocol: Ensures consistency among replicas,
with leader election and state synchronization mecha-
nisms.

Case studies have shown these mechanisms to be effective
in maintaining high availability and quick recovery in various
failure scenarios [12] [19].

B. Fault-Tolerance Mechanisms in Slurm

Slurm’s fault-tolerance mechanisms focus primarily on
hardware faults:

• Node Failover: Automatically reassigns jobs from failed
nodes to healthy ones.

• Job Checkpointing: Allows jobs to be checkpointed and
restarted from the last checkpoint in case of failure.

• Health Checks: Monitors node health and takes cor-
rective actions, such as draining or rebooting unhealthy
nodes.
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TABLE I. DETAILED COMPARISON OF FAULT DETECTION, EVALUATION, AND TOLERANCE FACTORS IN KUBERNETES AND SLURM ENVIRONMENTS

Factor Kubernetes Slurm

MTTR
MTTR in Kubernetes is calculated by adding
up all the downtime in a specific period and
dividing it by the number of incidents.

MTTR in SLURM is calculated by taking the
total repair time resulting from a particular
failure and dividing it by the total number of
repairs that are performed during a specific
period.

Fault Detection Accuracy Kubernetes has high fault detection accuracy
due to liveness, readiness, and startup probes.

SLURM has moderate fault detection accuracy,
primarily relying on node health checks and
job statuses.

Resource Utilization Over-
head

Kubernetes has a moderate overhead (10-15%)
from extensive monitoring and replication.

SLURM has lower overhead (5-10%) due to
simpler fault detection mechanisms.

Recovery Mechanisms
Kubernetes has built-in recovery mechanisms.
For example, if a pod fails, Kubernetes auto-
matically restarts it.

SLURM has mechanisms for recovery, but
specific details are not readily available.

Failure Types and Frequen-
cies

Specific data on failure types and frequencies
for Kubernetes is not readily available.

Specific data on failure types and frequencies
for SLURM is not readily available.

TABLE II. FAULT DETECTION TOOLS USED IN SLURM AND KUBERNETES ENVIRONMENTS

Environment Tools Functionality Data Collected
SLURM sacct [25] Job accounting and fault detection. Job accounting data.

sview [26] Graphical interface for fault detec-
tion and monitoring.

Slurm configuration, job, step, node and
partitions state information.

Slurm simulator
[27]

Simulation for PdM and fault de-
tection.

Effects of different Slurm parameters on
HPC resource performance.

Kubernetes kubectl [28] Command line tool for fault detec-
tion and management. Kubernetes cluster’s control plane data.

Elasticsearch
[22] Distributed search engine. Different types of searches on collected

data.
Fluentd [23] Data collector for fault detection. System and component logs in the cluster.

Kibana [24] Visualization and monitoring tool
for fault detection. Visualization dashboards, cluster metrics.

• Job Requeueing: Jobs that fail due to node failures can
be requeued and run on different nodes.

These mechanisms help mitigate the impact of hardware
failures, but software faults and application-level failures re-
quire additional user intervention [1].

C. Error Distribution in Slurm and Kubernetes

The scenario analyzed in this subsection involves a critical
examination of node failures during high-intensity compu-
tational tasks. To clarify, the analysis considers both the
immediate impact on job execution and the subsequent re-
covery processes initiated by the fault-tolerance mechanisms
in Kubernetes and Slurm.

Based on the data collected from a Slurm environment, we
identified and categorized various errors. Figure 5 illustrates
the distribution of different error types encountered. The
most frequent error was the General Warning, comprising
64.95% of all errors. This was followed by PrologRunningEr-
ror (21.13%), NodeError (13.61%), and OutOfMemoryError
(0.14%). Other errors, such as JobCancelError, PartitionError,
JobExitError, and TimeLimitExhaustedError each accounted
for less than 0.1% of the total errors. The least frequent errors
included LogrotateError, TopologyError, and NodeListError,
each constituting approximately 0.0002% of the total errors.

In contrast, the Kubernetes environment exhibited a differ-
ent error distribution 6. The most frequent error identified was
the HTTP2StreamClosedError, which accounted for 20.08%
of the total errors. This was followed by StreamClosedError
(8.01%) and KubernetesRejectedConnection (4.25%). Addi-
tionally, errors such as KubernetesAPIEndpointConnection-
Failure, ContextCanceledFailure, and ErrorSyncingHelmClus-
terRepo were also significant, each contributing to around
4.01% of the total errors. Less frequent issues included Con-
nectionRefusedError, DialTimeoutError, and etcdConnection-
Failure, which occurred with a frequency of less than 1%.
These findings highlight the critical areas where Kubernetes
fault-tolerance mechanisms must focus, particularly on man-
aging API server errors and stream-related failures.

The comparison of these distributions underscores the vary-
ing challenges faced by Slurm and Kubernetes environments,
emphasizing the need for tailored fault-tolerance strategies in
each system.

This distribution highlights the prevalence of certain errors
over others, emphasizing the need for targeted fault-tolerance
strategies that prioritize the most common and impactful
issues.

45Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-184-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ADVCOMP 2024 : The Eighteenth International Conference on Advanced Engineering Computing and Applications in Sciences



Figure 5. Distribution of error types in GWDG SCC Node Clusters Case
study.

Figure 6. Distribution of error types in EU DECICE Project Kubernetes
Clusters Case study.

D. Comparative Analysis

Our comparative analysis highlights the following differ-
ences:

• Recovery Time: Kubernetes generally achieves faster
recovery times due to its self-healing and replication
mechanisms. Slurm’s recovery time depends on the ef-
fectiveness of node failover and job checkpointing.

• Fault Detection: Kubernetes has robust fault detection
capabilities with its health checks and RAFT protocol.
Slurm relies more on node health checks, which may not
detect all types of faults promptly.

• System Overhead: Kubernetes introduces some overhead
due to its extensive monitoring and replication processes.
Slurm has lower overhead but may require more manual
intervention for fault management.

Kubernetes excels in scenarios requiring high availability
and rapid recovery, making it suitable for dynamic and scalable
environments. Slurm is highly effective in traditional HPC
setups with stringent resource management needs but may
need enhancements for better software fault-tolerance.

V. DISCUSSION

In this section, we interpret the results of our comparative
analysis, discussing their implications for HPC infrastructure
management. We also explore potential improvements and
future directions for enhancing fault-tolerance in Kubernetes
and Slurm.

A. Implications for HPC Management

Our findings suggest that:

• Kubernetes is well-suited for environments that require
high scalability and rapid fault recovery. Its self-healing
and autoscaling capabilities provide robust fault-tolerance
with minimal manual intervention.

• Slurm remains a strong candidate for traditional HPC
environments, particularly where job scheduling and re-
source management efficiency are highly valued.

• Combining elements of both systems could poten-
tially yield a more comprehensive fault-tolerance strat-
egy for HPC infrastructures, leveraging Kubernetes’ dy-
namic fault management with Slurm’s efficient resource
scheduling.

In addition to the error distribution analysis in Slurm, a
similar examination of error distribution in Kubernetes clusters
reveals distinct patterns. Errors related to pod restarts, node
unresponsiveness, and network partitions are prevalent. These
findings underscore the importance of tailored fault-tolerance
strategies in Kubernetes, comparable to those implemented in
Slurm, to mitigate these common issues. Key considerations
for choosing between Kubernetes and Slurm include the
specific fault-tolerance needs, the complexity of workloads,
and the desired level of automation in fault management.
To address the limitations of both systems effectively, we
recommend exploring practical solutions such as implementing
dynamic fault-tolerance mechanisms tailored to specific failure
scenarios. For instance, as discussed in [29], AI plays a crucial
role in predictive maintenance strategies, integrating machine
learning algorithms to predict potential failures and automat-
ically adjusting resource allocations could enhance system
resilience. Additionally, adopting hybrid models that combine
the strengths of Kubernetes and Slurm may offer a balanced
approach to fault tolerance in diverse HPC environments.

B. Future Directions

Future research and development could focus on the follow-
ing areas:

• Enhancing Slurm’s software fault-tolerance capabilities,
possibly by integrating Kubernetes-like self-healing and
replication mechanisms.

• Developing hybrid models that combine the strengths of
Kubernetes and Slurm for improved fault-tolerance in
diverse HPC environments.

• Exploring emerging technologies, such as machine learn-
ing for predictive fault detection and proactive fault
management in HPC systems.
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Potential enhancements to existing mechanisms in Kuber-
netes and Slurm could also involve better integration with AI-
based monitoring tools and more granular control over fault-
tolerance policies, enabling more effective and efficient fault
management.

VI. CONCLUSION

The goal of this study was to compare the fault-tolerance
mechanisms in Kubernetes and Slurm within HPC infrastruc-
tures. By examining the logs retrieved from GWDG SCC Node
Clusters managed by Slurm, we identified and categorized
various failures to understand their prevalence and impact.
Our findings indicate that the most prevalent failure type
is the General Warning, which accounts for 64.95% of all
errors. This is followed by PrologRunningError (21.13%)
and NodeError (13.61%), highlighting common issues related
to job initialization and node malfunctions. Less frequent
errors include OutOfMemoryError (0.14%), JobCancelError
(0.13%), and PartitionError (0.10%). The rarest errors, such as
LogrotateError, TopologyError, and NodeListError, each con-
stitute approximately 0.0002% of the total errors, indicating
specific system or configuration issues that occur infrequently.

Kubernetes can effectively handle these types of failures
through its robust fault-tolerance mechanisms. Self-healing
capabilities can automatically restart failed containers, ad-
dressing General Warnings and NodeErrors. HPA and re-
source limits can mitigate OutOfMemoryErrors by adjusting
resources dynamically. Kubernetes’ replication and RAFT
protocol ensure high availability and data consistency, which
can reduce the impact of network and configuration errors.

Slurm provides node failover and job checkpointing to
handle node and job-related errors. Health checks and job
requeueing mechanisms help maintain system stability by
reallocating jobs from failed nodes to healthy ones, thereby
addressing PrologRunningErrors and NodeErrors. For resource
management issues like OutOfMemoryError and Partition-
Error, Slurm’s resource scheduling and management features
can be tuned to optimize usage and prevent such failures.

While our recommendations provide a strong foundation,
concrete guidelines for achieving fault tolerance are necessary.
These guidelines should include best practices for configuring
and tuning fault-tolerance mechanisms, such as setting appro-
priate thresholds for autoscaling and designing robust health
check probes.

By understanding these error distributions and leveraging
the fault-tolerance mechanisms of Kubernetes and Slurm,
HPC administrators can enhance system resilience and fault-
tolerance. This targeted approach will improve the overall
reliability and efficiency of HPC infrastructures. Future re-
search should focus on integrating advanced fault detection
and management technologies to further bolster the resilience
of HPC systems.
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