
RDF2NµSMV: Mapping Semantic Graphs to

NµSMV Model Checker
Mahdi Gueffaz

*1
, Sylvain Rampacek

*1
, Christophe Nicolle

*1

*LE2I UMR CNRS 5158, University of Bourgogne

BP 47870, 21078 Dijon cedex, France
1
{Mahdi.Gueffaz, Sylvain.Rampacek, CNicolle}@U-bourgogne.fr

Abstract— The most frequently used language to represent the

semantic graphs is the RDF (W3C standard for meta-modeling).

The construction of semantic graphs is a source of numerous

errors of interpretation. The processing of large semantic graphs

is a limit to the use of semantics in current information systems.

The work presented in this paper is part of a new research at the

border between two areas: the Semantic Web and the model

checking. For this, we developed a tool, RDF2NµSMV, which

converts RDF graphs into NµSMV language. This conversion

aims checking the semantic graphs with the model checker

NµSMV in order to verify the consistency of the data. To

illustrate our proposal we used RDF graphs derived from IFC

files (Building Information Modeling). These files represent

digital 3D building model. Our final goal is to check the

consistency of the IFC files that are made from a cooperation of

heterogeneous information sources (plumbers, architects,

electricians, etc.)

Keywords: Semantic graph, RDF, Model-checking, temporal logic,

NµSMV, IFC, BIM.

I. INTRODUCTION

The increasing development of networks and especially the

internet has greatly developed the heterogeneous gap between

information systems. In glancing over the studies about

interoperability of heterogeneous information systems we

discover that all works tend to the resolution of semantic

heterogeneity problems. Now, the W3C (World Wide Web

Consortium) suggests norms to represent the semantic by

ontology. Ontology is becoming an inescapable support for

information systems interoperability and particularly in the

Semantic Web. Literature now generally agrees on the

Gruber’s terms to define an ontology: explicit specification of

a shared conceptualization of a domain [1]. The physical

structure of ontology is a combination of concepts, properties

and relationships. This combination is also called a semantic

graph.

Several languages have been developed in the context of

Semantic Web and most of these languages use XML

(eXtensible Markup Language) as syntax [2]. The OWL (Web

Ontology Language) [3] and RDF (Resource Description

Framework) [4] are the most important languages of the

semantic Web, they are based on XML. OWL allows

representing the ontology, and it offers large capacity

machines performing web content. RDF enhances the ease of

automatic processing of Web resources. The RDF (Resource

Description Framework) is the first W3C standard for

enriching resources on the web with detailed descriptions. The

descriptions may be characteristics of resources, such as

author or content of a website. These descriptions are

metadata. Enriching the Web with metadata allows the

development of so-called Semantic Web [5]. The RDF is also

used to represent semantic graph corresponding to a specific

knowledge modeling. For example in the AEC (Architecture

Engineering Construction) projects, some papers used RDF to

model knowledge from heterogeneous sources (electricians,

plumbers, architects, etc.). In this domain, some models are

developed providing a common syntax to represent building

objects. The most recent is the IFC (Industrial Foundation

Classes) [6] model developed by the International Alliance of

Interoperability. The IFC model is a new type of BIM

(Building Information Model) and requires tools to check the

consistency of the heterogeneous data and the impact of the

addition of new objects into the building.
As the IFC graphs have a large size, their checking,

handling and inspections are a very delicate task. In [7] we

have presented a conversion from IFC to RDF. In this paper,

we propose a new way using formal verification, which

consists in the transformation of semantic graphs into a model

and verifying them with a model checker. We developed a

tool called “RDF2NµSMV” that transforms semantic graphs

into a model represented in NµSMV [8] language. After this

transformation, NµSMV verifies the correctness of the model

written in NµSMV language with temporal logic in order to

verify the consistency of the data described in the model of

the huge semantic graphs.

The rest of this paper is organized as follows. In Section 2

we present an overview of the semantic graphs, especially the

structure of the RDF graphs and the model checking. Then, in

Section 3, we describe the mapping of the semantic graphs into

models and our approach is defined in Section 4. Finally, we

end with the conclusion.

II. AN OVERVIEW OF SEMANTIC GRAPHS AND MODEL

CHECKING

The RDF is also used to represent semantic graphs

corresponding to a specific knowledge modeling. It is a

language developed by the W3C to bring a semantic layer to

the Web [9]. It allows the connection of the Web resources

using directed labeled edges. The structure of the RDF

documents is a complex directed labeled graph. An RDF

document is a set of triples <subject, predicate, object> as

shown in the Figure 1. In addition, the predicate (also called

49

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

property) connects the subject (resource) to the object (value).

Thus, the subject and the object are nodes of the graph

connected by an edge directed from the subject towards the

object. The nodes and the edges belong to the “resource”

types. A resource is identified by an URI (Uniform Resource

Identifier) [10, 11].

Ressource Property Value

Figure 1. RDF triplet.

The declarations can also be represented as a graph, the

nodes as resources and values, and the arcs as properties. The

resources are represented in the graph by circles; the

properties are represented by directed arcs and the values by a

box (a rectangle). Values can be resources if they are

described by additional properties. For example, when a value

is a resource in another triplet, the value is represented by a

circle.

Figure

 2. Example of a partial RDF graph.

The RDF graph in the fig. 2 defines a node “University of

Bourgogne” located at “Dijon”, having as country “France”

and as department “Cote d’Or”. RDF documents can be

written in various syntaxes, e.g., N3 [12], N-Triple [13], and

RDF/XML. Below, we present the RDF\XML document

corresponding to Figure 2.

<rdf:Description

rdf:about="http://example.org/university of

Bourgogne">

<ex:Location>

<rdf:Description

rdf:about="http://example.org/Dijon">

<ex:Country> France</ex:Country>

<ex:Department>Cote

d'or</ex:Department>

</rdf:Description>

 </ex:Location>

</rdf:Description>

The model checking [14] described in fig. 3 is a verification

technique that explores all possible system states in a brute-

force manner. Similar to a computer chess program that

checks all possible moves, a model checker, the software tool

that performs the model checking, examines all possible

system scenarios in a systematic manner. In this way, it can be

shown that a given system model truly satisfies a certain

property. Even the subtle errors that remain undiscovered

using emulation, testing and simulation can potentially be

revealed using model checking.

To make a rigorous verification possible, properties should

be described in a precise unambiguous way. It is the temporal

logic that is used in order to express these properties. The

temporal logic is a form of modal logic that is appropriate to

specify relevant properties of the systems. It is basically an

extension of traditional propositional logic with operators that

refer to the behavior of systems over time.

Figure 3. Model Checking approach

The following algorithm explains the way that the model

checking works. First we put in the stack all the properties

expressed in the temporal logic. All of them are verified one

by one in the model and if a property does not satisfy the

model, it is whether the model or the property that we must

refine. In case of a memory overflow, the model must be

reduced. Whereas formal verification techniques such as

simulation and model checking are based on model

description from which all possible system states can be

generated, the test, that is a type of verification technique, is

even applicable in cases where it is hard or even impossible to

obtain a system model.

Algorithm: Model-checking

Begin

While stack  nil do

P := top (stack);

while  satisfied (p) then

 Refine the model, or property;

Else if satisfied (p) then

P := top (stack);

Else // out of memory

Try to reduce the model;

End

End

III. THE MAPPING

The RDF graphs considered here are represented as XML

verbose files, in which the information is not hierarchically

stored (so-called graph point of view). These RDF graphs are

not necessarily connected, meaning they may have no root

vertex from which all the other vertices are reachable. The

RDF graph transformation into a model is articulated in three

http://example.org/University_of_Bourgogne

http://example.org/Dijon

http://example.org/Cote_d’or

http://example.org/France

http://example.org/Location

http://example.org/Country

http://example.org/Department

50

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

http://example.org/University_of_Bourgogne
http://example.org/Dijon
http://example.org/Cote_d'or
http://example.org/France

steps: exploring the RDF graph, holding election of the root

vertex, generating the model of the semantic graph.

A. Exploring RDF graph

In order to exploit the RDF graphs, we therefore have to

determine whether they have a root vertex, and if this is not

the case, we must create a new root vertex by taking care to

keep the size of the resulting graph as small as possible.

We achieve this by appropriate explorations of the RDF

graphs, as explained below. Let us consider that an RDF graph

is represented as a couple (V, E), where V is the set of vertices

and VxVE  is the set of edges. For a vertex x, we note

 EyxVyxE ),()(the set of its successor vertices,

and we assume that these vertices are ordered from

0)(xE to
1)(

)(
xE

xE . This corresponds to the classical data

structure for representing graphs in memory, consisting of an

array indexed by the vertices and containing in each entry the

list of successor vertices of the corresponding vertex. There

are several algorithms to traverse a large graph, of these basic

algorithms include the best known, depth-first search (DFS)

and breadth-first search (BFS). We use depth-first search

algorithm illustrated below to explore graph, knowing that the

breadth-first algorithm also works in this context:

Algorithm: procedure Dfs (x):

begin

 visited(x) := true;
 // vertex x becomes visited

 p(x) := 0; // start exploring its successors

 stack := push(x, nil);
 while stack ≠ nil do

y := top(stack);
if p(y) < |E (y)| then
 // y has some unexplored successors

 z := E (y))(yp ;

 p(y) := p(y)+1;
 // take the next successor of y

 if visited (z) then

 visited(z) := true; // visit it
 p(z) := 0;//start exploring its successors

 stack := push(z, stack)
 endif

 else //all successors of y were explored

 stack := pop(stack)
 endif

 end

end

We considered here an iterative variant of DFS, which

makes use of an explicit stack, rather than the recursive

variant given in [15]; this is required in practice to avoid

overflows of the system call stack when the algorithm is

invoked for exploring large graphs.

B. Determining a root vertex

If the RDF graph has no vertex root, we must create a root

as to be the successors of all vertices of the graph but it will

increase the number of edges. We look forward to doing this

by adding a few edges as possible. A vertex x of a directed

graph is a partial root if it cannot be reached from any other

vertex of the graph. If the graph contains only one partial root,

all other vertices of the graph can be reached from the root,

otherwise there would be other roots in the partial graph. If the

graph has multiple partial roots, the most economical way to

provide a root is to create a new record with all the roots as a

partial successor: this will add to the graph a minimum

number of edges. We compute the set of partial roots in two

phases, each one consisting in successive explorations of the

graph. The first phase identifies a set of candidate partial roots,

and the second one refines this set in order to determine the

partial roots of the graph.

Remark: a property must always have a resource and a

value; the resource should never be a value with the same

predicate, i.e. a loop in the graph.

Algorithm: procedure RootElection():

// precondition:  x  V.visited(x) = false

Begin // first phase

 root_list := nil;

 forall x  V do
 if visited(x) then

 Dfs(x);

 root_list := cons(x, root_list)
 endif

 endfor;
//second phase

 if |root_list|= 1 then

 root := head(root_list)
 // the single partial root is the global root

 else

 forall x  V do visited(x):= false;
 endfor;

 forall x  root_list do
 // reexplore partial roots in reverse order

 if visited(x) then Dfs(x)

 else

 root_list := root_list \ {x}
 // partial root is not a real one

 endif

 endfor;

 if |root_list| = 1 then

 root := head(root_list)
 // a single partial root is the global root

 else

 root := new_node();
 // new root predecessor of the partial roots

 E(root) := root_list

 endif

 endif

The first phase explores the graph until it is fully explored,

and inserts in root_list all vertices that have no predecessor. If

root_list contains a single vertex, so overall it is the global

root of the graph since all the other vertex are accessible from

it and it is useless to the second phase has passed. Otherwise,

any vertex contained in root_list could also be a root of the

graph: the role of the second phase is to determine which of

the partial root the root of the global graph is.

The second phase performs a new wave of exploration of

the roots contained in partial root_list in reverse order in

51

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

which they were inserted in the list. If a root in root_list is to

be visited by a partial root, it is removed from the list because

it is not a partial root. At the end of this phase, all partial roots

of the graph are present in root_list. Indeed, each vertex is

unreachable from the partial roots which were explored during

the second phase. A new root is created (see Fig. 4), having as

successor all the partial roots of root_list, which ensures that

all vertices of the graph are accessible from the new root.

Therefore, such a summit is inaccessible from other nodes of

the graph.

A

B

C R

A

B

C

Figure 4. A root is a single node that has no predecessor. In this graph, we

have node A and node B, two roots, and then we will create a new virtual root

(blue circle "R") that points to the two roots.

The algorithm for determining a root has a complexity

O(|V|+|E|), linear in the size of the graph (number of vertices

and edges), since each phase visits every state and traverses

every edge of the graph only once. Given that the graph must

be traversed entirely in order to determine whether it has a

root or not, this complexity is optimal.

C. Generating the model

The third step is divided into three sub-steps. The first one

consists in creating the table of all triplets by exploring the

entire graph; the second one consists in generating the

correspondence table and the last one in producing the model

representing the semantic graph in NµSMV language.

Table of triplets – Going through the RDF graph by graph

traversal algorithms, we will create a table consisting of

resources, properties and values. In our RDF graph, the

resource is a vertex, the property represents the edge and the

value is the successor vertex corresponding to the edge of the

vertex. The table of triplets of the RDF graph is useful to the

next sub-step.

Correspondence table – In this second sub-step,

RDF2NµSMV generates a table of correspondence. This table

contains an identifier for each resource, property and value.

The model – In this last sub-step, we will write the model in

NµSMV language for RDF2NµSMV tool, corresponding to

the RDF graph that we want to check.

IV. THE VERIFICATION WITH MODEL CHECKER

As we saw in Section 2, the model checker needs properties

in order to check the model of semantic graphs. These

properties are expressed in temporal logic. The concepts of

temporal logic used for the first time by Pnueli [16] in the

specification of formal properties are fairly easy to use. The

operators are very close in terms of natural language. The

formalization in temporal logic is simple enough although this

apparent simplicity therefore requires significant expertise.

Temporal logic allows representing and reasoning about

certain properties of the system, so it is well-suited for the

systems verification. There are two main temporal logics, that

is linear time and branching time. In linear time temporal

logic, each execution of the system is independently analysed.

In this case, a system satisfies a formula f, if f holds along

every execution. The branching time combines all possible

executions of the system into a single tree. Each path in the

tree is a possible representation of the system execution.

This Section details our approach which consists in

transforming semantic graphs into models in order to be

verified by the model-checker. For this, we have developed a

tool called “RDF2NμSMV” that transforms semantic graphs

into NµSMV language.

We use NµSMV as model checkers to verify the model of

semantic graphs. NµSMV is the amelioration of SMV model

checker, working on the same simple principles as SMV.

NµSMV verifies the properties in both linear time logic and

computation tree logic.

Figure 5. Our architecture.

The architecture of the fig. 5 is divided into two phases.

The first phase concerns the transformation of the semantic

graph into a model using our tool “RDF2NμSMV”, as

described in Section III. The second phase concerns the

verification of the properties expressed in temporal logic on

the model using the model-checker NµSMV.

To illustrate our approach, we take an RDF graph

represented in the Figure 6 and a temporal logic expressed in

the table 1 to verify if the BIM “b1” contains a floor.

Figure 6. Example of partial RDF graph.

Tool verification

Model-checker

(NµSMV)

M’: simplified model

of semantic graph

M: semantic graph
(RDF)

Temporal logic

description of
semantic graph

M’ satisfies the
temporal logic

M’ not satisfies +
counter example

RDF2NµSMV

First phase

Second

phase

52

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

TABLE 1. Temporal logic formula.

Temporal logic Meaning Result

Eventually (b1 

Next Next floor)

 Is there a floor

after two states

starting from the

state b1

True

We tested several RDF graphs on our tool “RDF2NµSMV”,

graphs representing buildings as shown in Figure 7, using a

machine that runs on a processor with a capacity of 2.4 GHz

and 4 GB of RAM, calculating the time of conversion as

shown in Fig 8. Note that the RDF2NµSMV tool is faster in

converting semantic graphs. We have almost 22 seconds for a

graph of 53 MB size. The transformation tool follows a

polynomial curve. In Fig. 9, we see the size of the converted

semantic graphs from RDF to NµSMV language.

Figure 7. The 3D view of an IFC file.

Figure 8. Time conversion of semantic graphs.

Figure 9. Size of the models

V. CONCLUSION

This paper presents how to transform a semantic graph into

a model for verification by using a powerful formal method,

that is the “model checking”. Knowing that the model-checker

does not understand the semantic graphs, we developed a tool

RDF2NµSMV to convert them into NµSMV language in

order to be verified with the temporal logics. This

transformation is made for the purpose of classifying large

semantic graphs in order to verify the consistency of IFC files

representing 3D building. We notice the advantage of

NµSMV, whose verification can be made with both linear

time logic and computation tree logic formulas.

REFERENCES

[1] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing. Presented at the Padua workshop on Formal

Ontology”, March 1993, later published in International Journal of

Human-Computer Studies, Vol. 43, Issues 4-5, November 1995, pp.
907-928.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and

J. Cowan, “Extensible Markup Language (XML) 1.1 (second edition)
W3C recommendation”, http://www.w3.org/TR/2006/REC-xml11-

20060816/. (2006)

[3] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.
McGuinness, P. Patel-Schneijder, and L. Andrea Stein, “OWL Web

Ontology Language Reference”, World Wide Web Consortium (W3C),

http://www.w3.org/TR/owl-ref/, (2004).
[4] D. Becket and B. McBride, “RDF/ XML Syntax Specification

(Revised)”. W3C recommendation. http://www.w3.org/TR/2004/REC-

rdf-syntax-grammar-20040210/. (2004)
[5] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”.

Scientific American. pp. 34–43. 2001.

[6] IFC Model, Industrial Foundation classes, International Alliance for

interoperability, http://www.buildingsmart.com/ (2008)

[7] R. Vanland, C. Nicolle, and C. Cruz, “IFC and Buildings Lifecycle

Management”, Journal of Automation in Construction, Elsevier, pp.
70-78 (2008).

[8] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new

symbolic model checker”. International Journal on Software Tools for
Technology Transfer, pp. 495- 499. (2000)

[9] J. J. C. G. Klyne, “Resource Description Framework (rdf): Concepts

and abstract syntax”. Tech. rep., W3C. (2004)
[10] V. Bönström, A. Hinze, and H. Schweppe, “Storing RDF as a graph”.

Latin American WWW conference, Santiago, Chile, pp. 27-36. (2003)

[11] T. Berners-Lee, “W3C recommandation.
http://www.w3.org/DesignIssues/ HTTP-URI”. (2007)

[12] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable RDF

syntax”. W3C recommendation,
http://www.w3.org/TeamSubmission/n3/. (2008)

[13] D. Becket and B. McBride, “RDF test cases. W3C Working draft”.

http://www.w3.org/TR/rdf-testcases/ (2004)

[14] J. P. Katoen, “Principles of Model Checking”. Formal Methods and

Tools Group. University of Twente, Lecture Notes, pp. 13-34. (2004)
[15] R. E. Tarjan, “Depth-First search and linear graph algorithm”. SIAM

Journal of Computing 1, 2, pp. 146-160. (1972)

[16] A. Pnueli, “The temporal logic of programs”. In proc. 18th IEEE Symp.
Foundations of Computer Science (FOCS’77), Providence, RI, USA,

pp. 46-57. (1977)

53

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

