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Abstract— The most frequently used language to represent the 

semantic graphs is the RDF (W3C standard for meta-modeling). 

The construction of semantic graphs is a source of numerous 

errors of interpretation. The processing of large semantic graphs 

is a limit to the use of semantics in current information systems. 

The work presented in this paper is part of a new research at the 

border between two areas: the Semantic Web and the model 

checking. For this, we developed a tool, RDF2NµSMV, which 

converts RDF graphs into NµSMV language. This conversion 

aims checking the semantic graphs with the model checker 

NµSMV in order to verify the consistency of the data. To 

illustrate our proposal we used RDF graphs derived from IFC 

files (Building Information Modeling). These files represent 

digital 3D building model. Our final goal is to check the 

consistency of the IFC files that are made from a cooperation of 

heterogeneous information sources (plumbers, architects, 

electricians, etc.) 

 
Keywords: Semantic graph, RDF, Model-checking, temporal logic, 

NµSMV, IFC, BIM. 

I. INTRODUCTION 

The increasing development of networks and especially the 

internet has greatly developed the heterogeneous gap between 

information systems. In glancing over the studies about 

interoperability of heterogeneous information systems we 

discover that all works tend to the resolution of semantic 

heterogeneity problems. Now, the W3C (World Wide Web 

Consortium) suggests norms to represent the semantic by 

ontology. Ontology is becoming an inescapable support for 

information systems interoperability and particularly in the 

Semantic Web. Literature now generally agrees on the 

Gruber’s terms to define an ontology: explicit specification of 

a shared conceptualization of a domain [1]. The physical 

structure of ontology is a combination of concepts, properties 

and relationships. This combination is also called a semantic 

graph.  

Several languages have been developed in the context of 

Semantic Web and most of these languages use XML 

(eXtensible Markup Language) as syntax [2]. The OWL (Web 

Ontology Language) [3] and RDF (Resource Description 

Framework) [4] are the most important languages of the 

semantic Web, they are based on XML. OWL allows 

representing the ontology, and it offers large capacity 

machines performing web content. RDF enhances the ease of 

automatic processing of Web resources. The RDF (Resource 

Description Framework) is the first W3C standard for 

enriching resources on the web with detailed descriptions. The 

descriptions may be characteristics of resources, such as 

author or content of a website. These descriptions are 

metadata. Enriching the Web with metadata allows the 

development of so-called Semantic Web [5]. The RDF is also 

used to represent semantic graph corresponding to a specific 

knowledge modeling. For example in the AEC (Architecture 

Engineering Construction) projects, some papers used RDF to 

model knowledge from heterogeneous sources (electricians, 

plumbers, architects, etc.). In this domain, some models are 

developed providing a common syntax to represent building 

objects. The most recent is the IFC (Industrial Foundation 

Classes) [6] model developed by the International Alliance of 

Interoperability. The IFC model is a new type of BIM 

(Building Information Model) and requires tools to check the 

consistency of the heterogeneous data and the impact of the 

addition of new objects into the building. 
As the IFC graphs have a large size, their checking, 

handling and inspections are a very delicate task. In [7] we 

have presented a conversion from IFC to RDF. In this paper, 

we propose a new way using formal verification, which 

consists in the transformation of semantic graphs into a model 

and verifying them with a model checker. We developed a 

tool called “RDF2NµSMV” that transforms semantic graphs 

into a model represented in NµSMV [8] language. After this 

transformation, NµSMV verifies the correctness of the model 

written in NµSMV language with temporal logic in order to 

verify the consistency of the data described in the model of 

the huge semantic graphs.     

The rest of this paper is organized as follows. In Section 2 

we present an overview of the semantic graphs, especially the 

structure of the RDF graphs and the model checking. Then, in 

Section 3, we describe the mapping of the semantic graphs into 

models and our approach is defined in Section 4. Finally, we 

end with the conclusion. 

II. AN OVERVIEW OF SEMANTIC GRAPHS AND MODEL 

CHECKING 

The RDF is also used to represent semantic graphs 

corresponding to a specific knowledge modeling. It is a 

language developed by the W3C to bring a semantic layer to 

the Web [9]. It allows the connection of the Web resources 

using directed labeled edges. The structure of the RDF 

documents is a complex directed labeled graph.  An RDF 

document is a set of triples <subject, predicate, object> as 

shown in the Figure 1. In addition, the predicate (also called 

49

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-148-9



property) connects the subject (resource) to the object (value). 

Thus, the subject and the object are nodes of the graph 

connected by an edge directed from the subject towards the 

object. The nodes and the edges belong to the “resource” 

types. A resource is identified by an URI (Uniform Resource 

Identifier) [10, 11]. 

Ressource Property Value

 

Figure 1. RDF triplet. 

The declarations can also be represented as a graph, the 

nodes as resources and values, and the arcs as properties. The 

resources are represented in the graph by circles; the 

properties are represented by directed arcs and the values by a 

box (a rectangle). Values can be resources if they are 

described by additional properties. For example, when a value 

is a resource in another triplet, the value is represented by a 

circle. 

 

 

Figure 

 2. Example of a partial RDF graph. 

The RDF graph in the fig. 2 defines a node “University of 

Bourgogne” located at “Dijon”, having as country “France” 

and as department “Cote d’Or”. RDF documents can be 

written in various syntaxes, e.g., N3 [12], N-Triple [13], and 

RDF/XML. Below, we present the RDF\XML document 

corresponding to Figure 2. 

 
<rdf:Description 

rdf:about="http://example.org/university of 

Bourgogne"> 

<ex:Location> 

<rdf:Description 

rdf:about="http://example.org/Dijon"> 

<ex:Country> France</ex:Country> 

<ex:Department>Cote 

d'or</ex:Department> 

</rdf:Description> 

 </ex:Location> 

</rdf:Description> 

The model checking [14] described in fig. 3 is a verification 

technique that explores all possible system states in a brute-

force manner. Similar to a computer chess program that 

checks all possible moves, a model checker, the software tool 

that performs the model checking, examines all possible 

system scenarios in a systematic manner. In this way, it can be 

shown that a given system model truly satisfies a certain 

property. Even the subtle errors that remain undiscovered 

using emulation, testing and simulation can potentially be 

revealed using model checking. 

To make a rigorous verification possible, properties should 

be described in a precise unambiguous way. It is the temporal 

logic that is used in order to express these properties. The 

temporal logic is a form of modal logic that is appropriate to 

specify relevant properties of the systems. It is basically an 

extension of traditional propositional logic with operators that 

refer to the behavior of systems over time. 

 

Figure 3. Model Checking approach 

The following algorithm explains the way that the model 

checking works. First we put in the stack all the properties 

expressed in the temporal logic. All of them are verified one 

by one in the model and if a property does not satisfy the 

model, it is whether the model or the property that we must 

refine. In case of a memory overflow, the model must be 

reduced. Whereas formal verification techniques such as 

simulation and model checking are based on model 

description from which all possible system states can be 

generated, the test, that is a type of verification technique, is 

even applicable in cases where it is hard or even impossible to 

obtain a system model.  

 
Algorithm: Model-checking 

Begin  

While stack  nil do 

P := top (stack);  

while   satisfied (p) then 

 Refine the model, or property; 

Else if satisfied (p) then  

P := top (stack); 

Else // out of memory  

Try to reduce the model; 

End  

End  

III. THE MAPPING 

The RDF graphs considered here are represented as XML 

verbose files, in which the information is not hierarchically 

stored (so-called graph point of view). These RDF graphs are 

not necessarily connected, meaning they may have no root 

vertex from which all the other vertices are reachable. The 

RDF graph transformation into a model is articulated in three 
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steps: exploring the RDF graph, holding election of the root 

vertex, generating the model of the semantic graph.  

A. Exploring RDF graph 

In order to exploit the RDF graphs, we therefore have to 

determine whether they have a root vertex, and if this is not 

the case, we must create a new root vertex by taking care to 

keep the size of the resulting graph as small as possible. 

We achieve this by appropriate explorations of the RDF 

graphs, as explained below. Let us consider that an RDF graph 

is represented as a couple (V, E), where V is the set of vertices 

and VxVE  is the set of edges. For a vertex x, we note 

 EyxVyxE  ),()(  the set of its successor vertices, 

and we assume that these vertices are ordered from 

0)(xE to
1)(

)(
xE

xE . This corresponds to the classical data 

structure for representing graphs in memory, consisting of an 

array indexed by the vertices and containing in each entry the 

list of successor vertices of the corresponding vertex. There 

are several algorithms to traverse a large graph, of these basic 

algorithms include the best known, depth-first search (DFS) 

and breadth-first search (BFS). We use depth-first search 

algorithm illustrated below to explore graph, knowing that the 

breadth-first algorithm also works in this context: 
 

Algorithm: procedure Dfs (x): 

begin 

  visited(x) :=  true;  
   // vertex x becomes visited 

  p(x) := 0; // start exploring its successors 

  stack := push(x, nil); 
 while stack ≠ nil do 

y := top(stack); 
if p(y) < |E (y)| then  
 // y has some unexplored successors 

 z := E (y) )(yp ; 

    p(y) := p(y)+1;  
    // take the next successor of y 

    if visited (z) then 

    visited(z) := true;  // visit it 
    p(z) := 0;//start exploring its successors 

    stack := push(z, stack) 
    endif  

   else //all successors of y were explored 

   stack := pop(stack) 
  endif 

 end 

end 

 

We considered here an iterative variant of DFS, which 

makes use of an explicit stack, rather than the recursive 

variant given in [15]; this is required in practice to avoid 

overflows of the system call stack when the algorithm is 

invoked for exploring large graphs. 

B. Determining a root vertex 

If the RDF graph has no vertex root, we must create a root 

as to be the successors of all vertices of the graph but it will 

increase the number of edges. We look forward to doing this 

by adding a few edges as possible. A vertex x of a directed 

graph is a partial root if it cannot be reached from any other 

vertex of the graph. If the graph contains only one partial root, 

all other vertices of the graph can be reached from the root, 

otherwise there would be other roots in the partial graph. If the 

graph has multiple partial roots, the most economical way to 

provide a root is to create a new record with all the roots as a 

partial successor: this will add to the graph a minimum 

number of edges. We compute the set of partial roots in two 

phases, each one consisting in successive explorations of the 

graph. The first phase identifies a set of candidate partial roots, 

and the second one refines this set in order to determine the 

partial roots of the graph. 

Remark: a property must always have a resource and a 

value; the resource should never be a value with the same 

predicate, i.e. a loop in the graph. 

 
Algorithm: procedure RootElection():         

// precondition:  x  V.visited(x) = false 

Begin // first phase 

 root_list := nil; 

 forall  x  V do 
  if visited(x) then 

   Dfs(x); 

   root_list := cons(x, root_list) 
  endif 

 endfor; 
//second phase 

 if |root_list|= 1 then 

  root := head(root_list)  
   // the single partial root is the global root 

  else 

  forall x  V do  visited(x):= false;       
  endfor; 

  forall x  root_list do  
   // reexplore partial roots in reverse order 

   if visited(x) then Dfs(x) 

   else 

    root_list := root_list \ {x}  
     // partial root is not a real one 

   endif 

  endfor; 

  if |root_list| = 1 then 

   root := head(root_list)  
    // a single partial root is the global root 

   else 

   root := new_node();  
    // new root predecessor of the partial roots 

   E(root) := root_list 

  endif 

 endif 

The first phase explores the graph until it is fully explored, 

and inserts in root_list all vertices that have no predecessor. If 

root_list contains a single vertex, so overall it is the global 

root of the graph since all the other vertex are accessible from 

it and it is useless to the second phase has passed. Otherwise, 

any vertex contained in root_list could also be a root of the 

graph: the role of the second phase is to determine which of 

the partial root the root of the global graph is. 

The second phase performs a new wave of exploration of 

the roots contained in partial root_list in reverse order in 
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which they were inserted in the list. If a root in root_list is to 

be visited by a partial root, it is removed from the list because 

it is not a partial root. At the end of this phase, all partial roots 

of the graph are present in root_list. Indeed, each vertex is 

unreachable from the partial roots which were explored during 

the second phase. A new root is created (see Fig. 4), having as 

successor all the partial roots of root_list, which ensures that 

all vertices of the graph are accessible from the new root. 

Therefore, such a summit is inaccessible from other nodes of 

the graph. 

A

B

C R

A

B

C

 

Figure 4. A root is a single node that has no predecessor. In this graph, we 

have node A and node B, two roots, and then we will create a new virtual root 

(blue circle "R") that points to the two roots. 

The algorithm for determining a root has a complexity 

O(|V|+|E|), linear in the size of the graph (number of vertices 

and edges), since each phase visits every state and traverses 

every edge of the graph only once. Given that the graph must 

be traversed entirely in order to determine whether it has a 

root or not, this complexity is optimal. 

C. Generating the model 

The third step is divided into three sub-steps. The first one 

consists in creating the table of all triplets by exploring the 

entire graph; the second one consists in generating the 

correspondence table and the last one in producing the model 

representing the semantic graph in NµSMV language. 

Table of triplets – Going through the RDF graph by graph 

traversal algorithms, we will create a table consisting of 

resources, properties and values. In our RDF graph, the 

resource is a vertex, the property represents the edge and the 

value is the successor vertex corresponding to the edge of the 

vertex. The table of triplets of the RDF graph is useful to the 

next sub-step. 

Correspondence table – In this second sub-step, 

RDF2NµSMV generates a table of correspondence. This table 

contains an identifier for each resource, property and value. 

The model – In this last sub-step, we will write the model in 

NµSMV language for RDF2NµSMV tool, corresponding to 

the RDF graph that we want to check.  

 

IV. THE VERIFICATION WITH MODEL CHECKER 

As we saw in Section 2, the model checker needs properties 

in order to check the model of semantic graphs. These 

properties are expressed in temporal logic. The concepts of 

temporal logic used for the first time by Pnueli [16] in the 

specification of formal properties are fairly easy to use. The 

operators are very close in terms of natural language. The 

formalization in temporal logic is simple enough although this 

apparent simplicity therefore requires significant expertise. 

Temporal logic allows representing and reasoning about 

certain properties of the system, so it is well-suited for the 

systems verification. There are two main temporal logics, that 

is linear time and branching time. In linear time temporal 

logic, each execution of the system is independently analysed. 

In this case, a system satisfies a formula f, if f holds along 

every execution. The branching time combines all possible 

executions of the system into a single tree. Each path in the 

tree is a possible representation of the system execution. 

This Section details our approach which consists in 

transforming semantic graphs into models in order to be 

verified by the model-checker. For this, we have developed a 

tool called “RDF2NμSMV” that transforms semantic graphs 

into NµSMV language.  

We use NµSMV as model checkers to verify the model of 

semantic graphs. NµSMV is the amelioration of SMV model 

checker, working on the same simple principles as SMV. 

NµSMV verifies the properties in both linear time logic and 

computation tree logic.    

 

Figure 5. Our architecture. 

The architecture of the fig. 5 is divided into two phases. 

The first phase concerns the transformation of the semantic 

graph into a model using our tool “RDF2NμSMV”, as 

described in Section III. The second phase concerns the 

verification of the properties expressed in temporal logic on 

the model using the model-checker NµSMV.  

To illustrate our approach, we take an RDF graph 

represented in the Figure 6 and a temporal logic expressed in 

the table 1 to verify if the BIM “b1” contains a floor.  

 

 

Figure 6. Example of partial RDF graph.  

 

 

 

Tool verification 

Model-checker 

(NµSMV) 

 

 

 

 

 

 

 

 

 

 

 

M’: simplified model 

of semantic graph 

 

 

 

 

 

 

 

 

 

 

 

M: semantic graph 
(RDF) 

 

 

 

 

 

 

 

 

 

 

 

Temporal logic 

description of 
semantic graph 

 

 

 

 

 

 

 

 

 

 

 

M’ satisfies the 
temporal logic 

 

 

 

 

 

 

 

 

 

 

 

M’ not satisfies + 
counter example 

 

 

 

 

 

 

 

 

 

 

 

RDF2NµSMV 

 

 

 

 

 

 

 

 

 

 

 

First phase 

 

 

 

 

 

 

 

 

 

 

 

Second
 
phase 

 

 

 

 

 

 

 

 

 

 

 

52

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-148-9



TABLE 1. Temporal logic formula. 

Temporal logic Meaning Result  

Eventually (b1  

Next Next floor ) 

 Is there a floor 

after two states 

starting from the 

state b1 

True 

 

We tested several RDF graphs on our tool “RDF2NµSMV”, 

graphs representing buildings as shown in Figure 7, using a 

machine that runs on a processor with a capacity of 2.4 GHz 

and 4 GB of RAM, calculating the time of conversion as 

shown in Fig 8. Note that the RDF2NµSMV tool is faster in 

converting semantic graphs. We have almost 22 seconds for a 

graph of 53 MB size. The transformation tool follows a 

polynomial curve. In Fig. 9, we see the size of the converted 

semantic graphs from RDF to NµSMV language. 

 

 

Figure 7. The 3D view of an IFC file.  

 
Figure 8. Time conversion of semantic graphs. 

 
Figure 9. Size of the models 

 

V. CONCLUSION  

This paper presents how to transform a semantic graph into 

a model for verification by using a powerful formal method, 

that is the “model checking”. Knowing that the model-checker 

does not understand the semantic graphs, we developed a tool 

RDF2NµSMV to convert them into NµSMV language in 

order to be verified with the temporal logics. This 

transformation is made for the purpose of classifying large 

semantic graphs in order to verify the consistency of IFC files 

representing 3D building. We notice the advantage of 

NµSMV, whose verification can be made with both linear 

time logic and computation tree logic formulas.  
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