
Automatic Generation of Efficient Solver for Query-Answering Problems

Songhao He
Department of Information Science and Technology

Hokkaido University

Sapporo, Japan

E-mail: hesonghao@ist.hokudai.ac.jp

Kiyoshi Akama, Bin Li
Information Initiative Center, Hokkaido University

Sapporo, Japan

E-mail: akama@iic.hokudai.ac.jp

E-mail: zjulb@hotmail.com

Abstract—The Query-Answering (QA) problem is a class of

the logical problem that is more general than the proof

problem and the database searching problem, and can be

applied in the semantic web. In this paper, we develop a new

technology about how to generate an efficient solver (C

program) corresponding to a given QA problem. We expect

to generate the specific solver, not the general solver for all

kinds of QA problem. The solver is generated based on the

bottom-up solution used to update models in the QA

problem. We have also developed the technology to suppress

the size of the solver to deal with the large-scale QA problem.

Keywords-Query-Answering problem; bottom-up solution;

specific solver; unfold transformation; support set.

I. INTRODUCTION

We know that Description Logic (DL) is a cornerstone
of the Semantic Web [1] for its use in the design of
ontology, and adding a rule layer on top of the DL-based
Web Ontology Language (OWL) is currently the central
task in the development of the Semantic Web. In the final
analysis, all of these efforts are going to get exactly the
right answers of problems, not only judging problems by
right or wrong like a proof problem.

The QA problem is a problem whose all answers
should be obtained as ground facts. However, adding rules
to DL to solve the QA problem in an efficient way is an
incomplete research. Moreover, to deal with the logic
problem in the real Semantic Web, we should extend the
logical expression of the QA problem such as being
composed of FOL, DL, Horn clauses, etc. Therefore, the
domain of QA problem in our research is larger than the
problem defined in the current Semantic Web. An efficient
solution corresponding to the QA problem is very
important in the development of the Semantic Web.
However, a sound solution for QA problems has not yet
been satisfactorily established. The process speed of the
proposed solution [2] decreases when the size of the
problem grows. And it might be impossible to be
processed as the size goes beyond a certain size.

In the bottom-up solution proposed by the previous
research [2], the data structure of the model is enumeration
type, in the pre-model’ updating process before generating
the representative model, it has to scan the constituted
atom from the first atom of the pre-model in the operation
like the retrieval, the addition, and the deletion. The
calculate speed is not so fast. Moreover, towards a large-
scale QA problem the data might explode, and it is
possible that the problem cannot be compiled because of
the limited memory [3, 4, 5].

In our research, to solve these problems (speed and
memory), we generate the specific solver corresponding to
the given QA problem by using the specific properties of
the problem instead of the general solver for all kinds of
QA problem. We think that the entire efficiency
improvement could be realized if the processing speed of
the specific solver is even fast though it needs to cost the
process of generating the solver. Concretely, the specific
properties of the problem in this research are clauses of the
problem.

Moreover, towards a large-scale QA problem the data
size might explode and the computing time takes a lot.
Sometimes the problem cannot be solved because of the
limited memory. Therefore, we have also developed the
technology to suppress the size of the solver to deal with
the large-scale QA problem. To generate the efficient
solver, simplifying initial clauses obtained from the given
QA problem based on the idea of the top down solution
named unfold transformation is applied.

The solution of the QA problem proposed in this
research is a combination of the top-down solution and the
bottom-up solution. And there are four steps in generating
the specific solver for the given QA problem.

A. Clauses of the QA problem are simplified by unfold

transformation based on Equivalent Transformation

theory

B. The set (support set) including all possible ground

atoms obtained from clauses are requested in a

minimized size.

C. A bit array that corresponds to this support set is

made.

D. Clauses, which are used to update the model, are

transferred into “if statement or for loops” in C

program as few as possible.

E. The final generated C program is the specific solver

corresponding to the given QA problem.

II. QA PROBLEM AND RESEARCH PURPOSE

A. QA Problem

In this research, the QA problem is a more general

class of the logical problem than the proof problem and

the database searching problem, and can be applied in the

semantic web.

114

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

The QA problem contains knowledge (Δ) and the

query atom (q), in which Δ not only includes the definite

clause (atom0 ← atom1, atom2…), which means the

clause has only one atom in the left side of the arrow, but

also the negative clause (← atom1…), which means there

is no atom in the left side, and non-definite clause (atom0,

atom1, … ← atom2, atom3…), which means there are

more than one atom in the left side. In this research, the

QA problem is described by the logical expression and we

have to obtain all answers to it. It is possible to describe

such problem’s answer generally as follows.

A = {g|∆|=g∈G, g =qθ, θ∈S}

Here, we take the Oedipus [6] problem as an example.

“OE is the child of IO. PO is the child of IO. PO is

the child of OE. TH is the child of PO. OE is a

patricide. TH is not a patricide. A person's child is a

patricide, but his/her grandchild is not a patricide.

Who is the person?”

This problem is composed of knowledge (Δ, “OE is

the child of IO. …, but his/her grandchild is not a

patricide.”) and the question (q, “Who is the person?”).

The result (A) is “IO”. This QA Problem can be rewritten

as the following clauses (There are two atoms existing in

the left side of the arrow including the question atom,

which indicates to wider meaning QA problem).

Knowledge (Δ):
isChild(oe, io) ←. isChild(po, io) ←. pat(oe) ←.

isChild(th, po) ←. isChild(po, oe) ←. ← pat(th).

prob(*x),pat(*b)←isChild(*a, *x),pat(*a),isChild(*b, *a).

Query Atom (q): prob(*x)

Answer (A): {(Δ, q)} ==> {io}.

B. Research Purpose

In this research, we want to develop a new

technology about how to generate an efficient solver

(C program) corresponding to a given QA problem.

Before generating the specific solver (C program) for

a given QA problem, not the general solver for all

kinds of QA problems, we need to do the memory

saving work. Therefore, the present research purpose

is shown as follows.

1) As the size of the QA problem grows, suppressing the

memory consumption is important. To generate the

efficient solver, the reduction of the size of the QA

problem by simplifying initial clauses based on the

idea of the top down solution named unfold

transformation is applied.

2) We propose how to generate the solver corresponding

to the given problem by using the unfolded clauses

based on the bottom-up solution. Because the final

solver is generated by C program, the data structure

of the model is the bit-array type, not the usual

enumeration type.

III. APPROACH OF THE RESEARCH

To achieve the research purpose, we do the following

four steps (Figure 1) [7, 8].

Figure 1. Approach of the research

A. Simplification Processing of Clauses based on the

Unfold Transformation

In this research, as the size of the QA problem grows,

the memory consumption for updating the model will

become very big. Before applying the clauses obtained

from the QA problem, we firstly do the unfold

transformation based on the equivalent transformation

theory, the simplification of clauses is pursued by

substituting the definite clause, which will be introduced

in Section 4.

B. Digitalization of Clauses

As introduced in the research purpose, we want to

generate the specific solver (C program) for each QA

problem, it is necessary to make the mechanism about

how to convert clauses, which are the result of the unfold

transformation in step A, into the corresponding C

program. In order to transfer clauses to C program, the

algorithm about how to convert the atom, the basic

element consisting of the clause, into the index number of

the bit array used in C program is very important.

C. Generation of Clauses with Variables Information

When we convert each clause into C program (if

statement or for loops) by using the result of process B, in

order to consolidate the size of the generated C program,

we want to generate for loops as far as we can. For this

reason, we need to firstly obtain the variables information

of each clause (the information of clauses without

variables is empty, and this kind of clause will be

transferred into if statement), then based on this variables

information, the clause with variables will be converted to

for loops.

115

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

D. Solver Generation

Based on atoms-index’s corresponding algorithm

obtained in step B and clauses with variables information

generated by step C, all clauses will be transferred into

the corresponding if statement or for loops in C program.
As a result, the solver corresponding to the given QA

problem is generated. Finally, the answer of the given QA

problem will be got by executing the generated solver.

In Section 4, we will introduce the simplification

processing of clauses based on the unfold transformation.

In Section 5, we will explain the processing of

digitalization of clauses. In Section 6, generation of

clauses with condition and automatic generation of solver

will be introduced.

IV. SIMPLIFICATION PROCESSING OF CLAUSES BASED

ON THE UNFOLD TRANSFORMATION

To apply a large-scale QA problem, the size and the

complexity of clauses requested from the QA problem can

be reduced by the unfold transformation based on the

Equivalent Transformation theory [9, 10, 11].

In this research, the unfold transformation is started

by deciding the target predicate of the atom, and other

atoms (with different predicates) exist in the same clause

would be substituted by definite clauses. The definite

clause will be finally removed after being applied. In this

way, the simplification of clauses obtained from the given

QA problem could be accomplished.

Here, there is an example showing the unfold

transformation for a non-definite clause (e.g.:← (Wolf

*A) (Fox *B) (eat *A *B).), which is done by using two

ground clauses (e.g.: (Wolf wolf) ←. (Fox fox) ←.)

(Figure 2).

Figure 2. Process of the unfold transformation

V. DIGITALIZATION AND LIMITATION OF CLAUSES

A. Generation of the Support Set

In the process of generating the solver from clauses,

we need to first decide the set of all possible atoms which

constitute clauses. In this research, the set of all atoms are

called the support set. The digitalization of clauses can be

made by deciding the support set. The support set

requesting process has been divided into three steps (A, B,

C) shown in Figure 3. Clauses requested by the unfold

transformation is input, and the support set corresponding

to the problem is output. In the approximate processing of

A, the atom corresponding to the problem is roughly

requested. The smaller and more accurate the support set

requested, the higher calculation cost for generating the

support set is. Based on the approximate idea, we do not

look for the most accurate support set, but within an

approximate range, search a little wide-ranging support

set efficiently, and finally generate the program used to

request the support set. The support set is requested by

executing the program.

Figure 3. Process of generating the support set

1) Approximate Process (A)

Clauses in the Oedipus problem:

(isChild oe io) ←. (isChild po io) ←.

(isChild po oe) ←. (isChild th po) ←.

(pat oe) ←. ← (pat th).

(prob *x), (pat *b)
← (isChild *a *x), (pat *a), (isChild *b *a).

New generated clauses:

(isChild1 oe) ←. (isChild2 io) ←.

(isChild1 po) ←. (isChild2 oe) ←.

(isChild1 th) ←. (isChild2 po) ←.

(pat oe) ←. ← (pat th).

(prob *x) ← (isChild1 *a), (isChild2 *x), (pat *a),

(isChild1 *b), (isChild2 *a).

(pat *b) ← (isChild1 *a), (isChild2 *x), (pat *a),

(isChild1 *b), (isChild2 *a).

2) Generation of the Approximate Clauses (B)

1: (isChild1 oe) ←. 2: (isChild2 io) ←.

3: (isChild1 po) ←. 4: (isChild2 oe) ←.

5: (isChild1 th) ←. 6: (isChild2 po) ←.

7: (pat oe) ←. 8: ← (pat th).

9: (prob *x) ← (isChild1 *a), (isChild2 *x),

(pat *a), (isChild1 *b), (isChild2 *a).

10: (pat *b) ← (isChild1 *a), (isChild2 *x),

(pat *a), (isChild1 *b), (isChild2 *a).

Output:
(whole *isChild1 *isChild2 *pat *prob *x1 *x2 *x3 *x4),

{(addelem *isChild1 (oe) on *isChild1new)}→(whole

*isChild1new *isChild2 *pat *prob *x1 *x2 *x3 *x4). 1

…
(whole *isChild1 *isChild2 *pat *prob *x1 *x2 *x3 *x4),

{(inter (*pat *isChild2 *isChild1) *mid1), (inter (*isChild2)

*mid2), (inter (*isChild1) *mid3), (cons *mid1), (cons *mid2),

Output

Input

Input

116

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

(cons *mid3), (addelem *pat *mid3 on *patnew)}→(whole

*isChild1 *isChild2 *patnew *prob *x1 *x2 *x3 *x4). 10

3) Generation of the Support Set by Executing the Rule

Based Program (C): By applying rules, each predicate

set (isChild1, isChild2, pat, prob) that constituted the

support set has been expanded (Figure 4).

Figure 4. Generating of each predicate set

The support set is composed by combining these

predicate sets, and the support set of the Oedipus problem

is shown as follows.

{(isChild oe io), (isChild oe oe), (isChild oe po), (isChild

po io), (isChild po oe), (isChild po po), (isChild th io),

(isChild th oe), (isChild th po), (pat oe), (pat po), (pat th),

(prob io), (prob oe), (prob po)}

Expression in clauses (Figure 5)：

Figure 5. Support set expressed in the clause

B. Digitalization of the Support Set

First of all, for all atoms in the support set, the symbol

set that includes all the symbol values which can

substitute the argument are requested. The order of

symbols in the symbol set is decided, and each symbol is

converted into the natural number. Second, all atoms in

the support set are sorted in alphabetical order of the

argument by the order of this symbol set (Figure 6)。

Figure 6. Digitalization of the support set

Symbol Set:

(oe po io th) → (0 1 2 3)

Input:

{(isChild oe io), (isChild oe oe), (isChild oe po), (isChild

po io), (isChild po oe), (isChild po po), (isChild th io),

(isChild th oe), (isChild th po), (pat oe), (pat po), (pat th),

(prob io), (prob oe), (prob po)}

Output:

{(isChild 0 0), (isChild 0 1), (isChild 0 2), (isChild 1 0),

(isChild 1 1), (isChild 1 2), (isChild 3 0), (isChild 3 1),

(isChild 3 2), (pat 0), (pat 1), (pat 3), (prob 0), (prob 1),

(prob 2)}

Expression in clauses (Figure 7)：

Figure 7. Digitalization of support set expressed in the clause

C. Digitalization of Clauses

In this research, we will finally convert each clause

into the corresponding the C program (if/for loops), it is

necessary to make the mechanism about how to convert

the atom into the address of the bit array. Here, the atom-

address calculating function, used to make all basic atoms

in the support set correspond to the address of the bit

array, is made. Based on the function, it is possible to

access the address which corresponds to the atom quickly

in the updating process.

In the sorted support set (from the result of B), the

argument of atoms with a consecutive value is brought

together. Then, the address function corresponding to this

kind of atom is generated. It generates completely

different address function for discontinuous argument

value in spite of having the same predicate (Figure 8).

Figure 8. Digitalization of clauses

117

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

The address "PAdr(s1,...,sn)" of all basic atoms

"Pred(s1,...,sn)" (There are n arguments) can be decided

by the introduced algorithm. It is requested from the

predicate number "I(pred)", and the relative address

"Rel(s1,...,sn)" of the predicate “Pred”, based on the

following formula.
 PAdr(s1,...,sn) = I(pred) + Rel(s1,...,sn) (1)

Relative address "Rel(s1,...,sn)" is requested from

the 1st argument value "Sym(s)" and its cardinal

"R(pred,s)" of the last argument by the following

formula.
Rel(s1,…,sn)=Sym(s1)*R(pred,s1)+…+Sym(sn)*R(pred,sn) (2)

Cardinal "R(p,i)" is requested by using symbol

number "Ssym(p, k)". For instance, based on the

support set how many symbols can substitute the back

arguments.

By applying the above-mentioned function, atoms in

the clause can be conver into address of the bit-array.

Expression in clauses (Figure 9)：

Figure 9. Example of digitalization of clauses

D. Limitation of Clauses

Based on the result of clauses requested in process C,

the atom with the same variable is extracted, and the

intersection calculation of the value set of the argument is

done. The result is shown in Figure 10.

Figure 10. Example of Limitation of clauses

As shown in Figure 10, because the value set

corresponding to the variable (*b) is not a consecutive

value, the clause with condition is generated based on the

value set corresponding to the argument (limitation of

clauses). The condition part of ground clauses is empty.

eg.: {(*x 0 2) (*b 0 1) (*a 0 1)}
((13 *x) (10 *b) ← (0 *a *x) (10 *a) (0 *b *a))

{(*x 0 2) (*b 3) (*a 0 1)}

((13 *x) (10 *b) ← (0 *a *x) (10 *a) (0 *b *a))

VI. SOLVER GENERATION

A. Solver Generation

In this research, the solver is composed by three

parts, which are main function definition, bit-array

declaration and if/for loops. We input the query (q),

the solver will output the corresponding answer (A).
The generation of if/for loops is requested by using

the conditional clause generated in the process D of

Section 5. Here, we will introduce the method about

how to convert various conditional clauses into if/for

loops of C program.

1) From Ground Clauses to if loops

The transmission from a ground clause to an if

loops in C program is shown as follows (Figure 11).

Figure 11. From ground clauses to if loops

2) From Not Ground Clause to for loops

A clause that contains variables will first

substitute all variables for possible symbols, and then

generate new ground clauses. The patterns of the

symbol those can substitute the variable increase

while the size of the QA problem grows. Therefore,

the size of the generated C program will grow,

sometimes it will become impossible to compile.

In this research, because the value set corresponding

to the variable of each atom in the clause is obtained

based on the support set, and been changed into natural

numbers (starting from 0) based on the symbol set, the

consecutive value will be expressed by one “for loops”.

The solver result of this “for loops” is already shown in

Figure 12.

Figure 12. Consolidate processing by “for loops”

118

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

3) Example of Solver Generation

Here is an example of generating the solver

corresponding to the Oedipus problem. Chiefly three parts

is shown (Figure 13)。

Figure 13. Example of solver generation

VII. SUMMARY

In this paper, we talk about generating a special solver

(C program) for a given QA problem. The solver is

composed by main function definition, bit-array

declaration, and if/for loops. We input the query (q), the

solver will output the corresponding answer. Because

models generated by the solver are based on the bit

calculation, the speed is absolutely fast. We also develop

the technology for suppressing initial clauses by the

equivalent transformation process.

As future work, we think the answer of the QA

problem can be more quickly obtained in a smaller search

space by simplifying process of clauses obtained from the

QA problem before clauses being used to update the pre-

model.

REFERENCES

[1] G. Brewka: Well-founded semantics for extended logic programs

with dynamic preference, Journal of Artificial Intelligence

Research, 4, pp. 19-36 (1996).

[2] C. Zheng, K. Akama, and T. Tsuchida: SOLVING “ALL-

SOLUTION” PROBLEMS BY ET-BASED GENERATION OF

PROGRAMS, International Journal of Innovative Computing,

Information and Control, Volume 5, Number 12(A), pp. 4583-

4595, 2009.

[3] R. Manthey and F. Bry: SATCHMO: a theorem prover

implemented in Prolog. Proc. of the 9th Int. Conf. on Automated

Deduction, LNCS 310, pp. 415-434 (1988).

[4] M. Koshimura, H. Fujita, and R. Hasegawa, MGTP: A Model

Generation Theorem Prover -Its Implementation and Application-,

Kyoto University Research Information Repository, 1125, PP. 65-

80 (2000).

[5] F. Bry and A. Yahya, Minimal model generation with positive unit

hyper-resolution tableaux, Lecture Notes in Computer Science,

1996, Volume 1071/1996, pp. 143-159.

[6] F. Baader and D. Calvanese et al. The Description Logic

Handbook. Cambridge Univ Press, 2001.

[7] S. H. He and K. Akama, Generation of Smaller Programs For

Efficient Solution of Query-Answering Problems, The 5th

International Conference on Computer Sciences and Convergence

Information Technology (ICCIT2010), Proceeding: pp. 665-670,

Seoul, Korea, Nov 30-Dec 2, 2010.

[8] S. H. He and K. Akama, Speed-up of the Solution of Query-

Answering Problem, The 2010 International Congress on

Computer Applications and Computational Science (CACS 2010),

Proceeding: pp. 852-855, Singapore, Dec 4-6, 2010.

[9] T. Kawamura and T. Kanamori, Preservation of stronger

equivalence in unfold/fold logic program transformation

Theoretical Computer Science, Volume 75, Issues 1-2, 1990, pp.

139-156.

[10] K. Akama and E. Nantajeewarawat. Meaning-preserving
skolemization on logical structure. Proceedings of the 9th
International Conference on Intelligent Technologies
(InTech’08), pp. 123-132, 2008.

[11] K. Akama, E. Nantajeewarawat, and H. Koike. Program
generation in the equivalent transformation computation
model using the squeeze method. In Proc. Of PSI2006,
LNCS4378, Springer-Verlag Berlin Heidelberg, pp. 41-54,
2007.

119

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

