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Abstract—The Joint Viterbi detector decoder (JVDD) has been
proposed as an alternative to the iterative detector, performing
both detection and decoding in two stages on a trellis. The
first stage estimates and retains a set of survivors, while the
second stage performs a parity check on these to compute the
minimum metric legal codeword (MMLC). With this structure,
near optimal maximum-likelihood decoding (MLD) performance
can be achieved but at the cost of complexity especially at long
codeword lengths (CWL). JVDD codes have been introduced with
the explicit target of reducing this complexity. Further, lower
rate codes with more parity checks leads to reduced number
of survivors in the JVDD trellis resulting in lower complexity.
However, it has been observed that JVDD code performance
degrades at low-rates while operating in the low SNR region
through an error-floor. This aspect is analyzed in this paper and
this performance can be attributed to the JVDD code structure
where a constant number of ones are placed to the left of the
main diagonal. This results in a dense region of ones at the top
left corner where the entire rows are filled with ones. In this
paper, a modification to the JVDD code construction is proposed
by adjusting the number of ones placed in those rows where the
row weight of JVDD codes is less than the available row width. It
has been found that such sparse construction results in reducing
JVDD complexity, as well as eliminates the error-floor problem.
This has been verified through extensive simulation studies.

Keywords–JVDD; Iterative detector; ISI Channel; Sparse con-
struction of JVDD Codes.

I. INTRODUCTION

Iterative detectors and decoders have been a subject of
intense research due to their outstanding error correcting
capabilities with performance very close to the Shannon limit.
Although iterative decoding can achieve channel capacity as
the block size goes to infinity, there is still a gap with the
optimal maximum-likelihood (ML) decoder for any code-
structure [1]. ML decoders have been analyzed over differ-
ent communication channels - additive white Gaussian noise
(AWGN) [2] [3], binary symmetric channel (BSC) [3], binary
erasure channel (BEC) [4] among others. These have also been
employed for two broad classes of codes namely block codes
and convolutional codes. With convolutional codes, efficient
trellis based algorithm known as Viterbi algorithm (VA) can
be employed to perform ML decoding and return the most
probable transmitted codeword [5]. However, optimal ML
decoding of linear block codes has been proven to be an NP-
hard problem [6], whose complexity grows exponentially as
the code length increases. There have been many research
efforts in this direction to develop optimal or suboptimal
decoding algorithms with moderate complexity [7]–[11].

In [11], they introduce the joint Viterbi detector decoder
(JVDD) as an alternative optimal ML detection and decoding
scheme that attempts to return the minimum metric legal
codeword (MMLC) . It operates on a trellis and has a two-stage
decoding structure - metric thresholding and parity checking.
The first stage executes the normal VA by computing metrics
for every possible path to a node. However, the JVDD retains
the minimum metric survivor along with a certain number of
competing paths in the trellis constrained by a threshold pa-
rameter. Thus only survivors with metrics within the threshold
of the minimum metric for a particular node are retained. This

would typically mean setting a larger threshold to minimize
the probability of discarding the MMLC. However, this leads
to a larger number of survivors resulting in an increased
complexity. The second stage, aims at reducing the complexity
by performing parity checking on each incoming survivor
path and discarding those which fail the syndrome check,
i.e., cHT = 0, where c is the codeword and H is the parity
check matrix. This parity checking section provides a system
tradeoff design between complexity and code-rate. Thus JVDD
performance complexity can be reduced by increasing the
number of parity checks per bit, i.e., by operating at low
code-rates. However, it is found that JVDD codes exhibits an
error-floor at low code-rates while operating in the low SNR
region. This is the focus of the present paper. The error floor
is characterized by a more gradual decrease in error rate as
code-rate decreases and can be attributed to the JVDD code
structure.

JVDD codes are currently designed with a parity check
matrix that has constant number of ones in a row (row weight)
placed according to a Gaussian distribution to the left of the
diagonal. However, this construction results in a dense region
of ones towards the top left corner where the entire row gets
filled with ones where the length of the row (row width) is
lower than the row weight as observed in Figure 1 (In this
figure, the 1’s in the parity check matrix are represented as
black dots while white spaces represent the 0’s). This paper
analyses the impact of this dense region through a modification
of this construction by adjusting the row weight in this region
of the parity check matrix. The results indicate that the error-
floor can be mitigated by eliminating this dense region of ones.

 

Figure 1. Pictorial depiction of the parity check matrix H of JVDD codes
for codeword length of 1024 and 0.5 rate.

The rest of the paper is organized as follows. Section II
describes the JVDD algorithm along with sparse construction
of JVDD codes. Simulation results are presented in Section
III, followed by concluding remarks in Section IV.

II. SPARSE CONSTRUCTION OF JVDD CODES
In this paper, binary linear block coding for BPSK sig-

nalling over an inter-symbol interference (ISI) channel is
considered. Then, the received signal yk at time k is given
as

yk =
L

∑
l=0

flxk−l +wk (1)
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where fl is the channel impulse response of order L, xk is
the transmitted encoded bit sequence and wk corresponds to
AWGN with zero mean and variance N0.
A. JVDD Codes

The receiver is implemented based on the JVDD algorithm,
which operates on a trellis where the paths through the trellis
correspond to the codewords c that satisfy the parity check
condition: cHT = 0. However, the received sequence yk may
not correspond to a codeword due to the channel and the
JVDD finds the path through the trellis which is the closest to
the received sequence yk that is also a legal codeword. This
corresponds to the maximum likelihood criteria represented as

max
c∈C

N−1

∑
k=0

ln Pr(yk|ck) = min
c∈C

N−1

∑
k=0

γ(yk|ck) (2)

where γ(yk|ck) is the branch metric. The branch metrics
corresponds to the weights of the trellis transitions and the
calculation for each possible transition from state i to l at time
step k is given as

γi,l
k,k+1 = ckyk =

{
yk if i ̸= l
0 otherwise (3)

For each state sk+1 at time k+1, the state metric αl,k+1 =

min(αl,k,αi,k + γi,l
k,k+1) are calculated and correspond to the

survivor paths. In the usual Viterbi algorithm, the metrics for
each incoming survivor to a node are computed and the larger-
metric survivors are discarded. However, this might result in
discarding the MMLC and deteriorate the result of subsequent
detections. To resolve this problem, the JVDD adjusts the
number of surviving paths through metric thresholding, which
computes the path metrics but discards survivors with metrics
larger than the threshold. Let τ denote the threshold, which
determines the number of competing paths that are retained
for each state to enhance the information update process.
Accordingly, the survivors with state metric αl,k+1 < τ+αmin
(where αmin is the minimum metric) are retained. This would
typically mean setting a larger threshold for minimizing the
probability of discarding the MMLC. However, this leads
to a larger number of survivors resulting in an increased
complexity.

The complexity of the JVDD by retaining survivors in
the metric thresholding section can be reduced through the
parity checking stage that follows. Parity checking occurs on
specific nodes corresponding to the last one of a given row

of the parity check matrix. At these particular nodes, all bits
required to perform the check are detected and the syndrome
can be computed. In this stage, the JVDD performs parity
checks on each incoming survivor path to the parity check
node and discards paths which fail the syndrome check, i.e.,
chT

i = 0 where c is the detected codeword and hT
i is the

transpose of the ith row of the parity check matrix H. The
parity check matrix H, is an M ×N matrix where M is the
number of parity checks and N is the number of coded bits,
with each row corresponding to one of the M parity checks. In
this context, JVDD codes were designed to evenly space the
parity checking functionality throughout the trellis resulting in
fewer number of survivors especially as the codeword length
(CWL) increases. This is achieved by designing the parity
check matrix with a constant number of ones in a row (row
weight) placed according to a Gaussian distribution to the left
of the main diagonal. However, this construction results in a
dense region of ones towards the top left corner where the
entire row gets filled with ones as the length of the row (row
width) is lower than the row weight as observed in Figure 1.
This paper analyses the impact of this dense region through a
modification of this construction as described in the following
section.
B. Sparse JVDD Codes

Since the JVDD codes are generated using a parity check
matrix with a fixed row weight, traditional JVDD code con-
struction results in a dense region of ones when the row width
is less than the row weight. This aspect is addressed in this
paper through the sparse JVDD code construction by adjusting
the row weight in this region of the parity check matrix H. In
sparse JVDD code construction, instead of having a constant
row weight, the number of 1’s placed in H is varied according
to the width of the row. This paper considers two levels of
depth for sparseness - region where the row width is less than
or equal to the row weight and region where the row width is
equal to 1.5 times the row weight. The number of 1’s in these
rows is placed randomly based on Gaussian distribution to the
left of main diagonal and is a factor of the row width. This
results in a less dense H matrix where the rows till the depth
of sparseness is filled with only a specified percentage of 1’s
based on the row width and is referred to hereby as the level
of sparseness. Figure 2 is a pictorial representation of a parity
check matrix generated through such a construction with 50%
sparseness, i.e., filling 50% of the row width with 1’s.

The effect of such a sparse construction on the column
weight of parity check matrix is shown in Figure 3. It is seen

 

(a) Depth - Row width ≤ Row weight
 

(b) Depth - Row width ≤ 1.5×Row weight

Figure 2. Pictorial depiction of the parity check matrix H of Sparse JVDD codes for codeword length of 1024 and 0.5 rate at different depth of sparseness.
1’s are represented as black dots while white spaces represent 0 in these figures.
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that sparse construction results in lowering the column weight
for the depth of sparseness.
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Figure 3. Variation of column weight of parity check matrix H of Sparse
and traditional JVDD codes for codeword length of 1024.

The class of JVDD codes used in this paper is the variable-
gradient Gaussian distribution linear diagonal (VGGDLD)
codes introduced in [12], where the gradient of the diagonal
is varied through two independent shift parameters dx and
dy. As observed in [12], increasing the parameter dx leads
to increased number of survivors in the trellis as the parity
checking gets shifted in the trellis, thus the optimum value is
set to dx = 0. However, the parameter dy has to be designed
optimally, where too small a value leads to under-protected
bits at the end of the codeword, and too large a value reduces
the number of parity checks which increases the complexity
of the trellis. The impact on performance and complexity of
JVDD by implementing sparse construction on the VGGDLD
codes is studied in this paper.

III. SIMULATION RESULTS

In this section, performance results of sparse JVDD codes
are analyzed. For simulations, the codeword length (CWL) is
fixed at 1024, i.e., the number of columns N in the parity
check matrix H is 1024. The number of rows M in the parity
check matrix H is varied from 512 to 102 which correspond to
code-rates 0.5 to 0.9. The best VGGDLD codes with typical
values of dx=0% of N and dy=20% of M are employed for
the simulations. Sparse construction is implemented on such
codes and the level of sparseness is varied to determine the
optimal sparseness for such codes. JVDD performance is also
compared with iterative detector employing random codes at
the same code-rates which are used as a benchmark. The
simulation parameters are specified in Table I.

TABLE I. SIMULATION PARAMETERS

Codeword Length (CWL) 1024

Code-rate (R) [0.90, 0.85, 0.80, 0.70, 0.60, 0.50]

SNR (dB) [6, 7]

[dx (% of N), dy (% of M)] [0, 20]

Row weight 100

Iterative detector Random code (column weight - 4)

JVDD Max. No. Survivors 30000

Channel ( f ) 1√
6
[1 2 1]

Level of sparseness [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99]

A. Complexity of JVDD with sparse codes

Initially, the complexity of the JVDD algorithm employing
sparse codes is analyzed, where the complexity is measured
as the average number of survivors in the JVDD trellis. This
set of simulations are performed for a sparseness depth where
the row weight is less than or equal to the row width. Figure 4
depicts the variation of complexity with threshold for a code-
rate of 0.5 at an SNR of 6 dB. Typically JVDD performance
enhances with threshold but at the cost of increasing com-
plexity [11]. The level of sparseness is also varied and it is
observed that the complexity increases when the JVDD codes
are too sparse (1%) or highly dense (99%). This basically
means an increase in the number of survivors when JVDD is
processing that region. Thereby, it is desirable to produce codes
that minimize JVDD complexity, as analyzed in the following
section.
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Figure 4. Variation of JVDD complexity with threshold and level of
sparseness at SNR of 6 dB and 0.5 code-rate

In order to realize the optimal level of sparseness, the
complexity of JVDD is analyzed against sparseness and frame
error rate (FER) as depicted in Figure 5 and 6, respectively.
Similar to the previous observation, too sparse and highly
dense codes increases the complexity of the JVDD. However,
the complexity is found to minimize and saturate when sparse-
ness is in the range 30 - 70% as observed in Figure 5. Further,
in Figure 6 the optimal level of sparseness to achieve the lowest
FER is found to be 50%. Thereby from Figures 4, 5 and 6,
typical level of sparseness considered for further analysis is
50%.

 1000

 0  20  40  60  80  100

C
o
m

p
le

x
it

y
 (

A
v
g
. 
n
o
. 
S

u
rv

iv
o
rs

)

Sparseness (%)

Figure 5. Variation of JVDD complexity with sparseness at SNR of 6 dB
and 0.5 code-rate
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Figure 7 depicts the JVDD complexity at different depths
of sparseness and varying code-rates at an SNR of 6 dB.
The depth of sparseness refers to the number of rows where
sparseness is introduced into the JVDD codes. Two levels are
compared where sparseness is introduced in the region where
row weight is less than or equal to - the row width and 1.5
times the row width. It is observed that the complexity remains
almost the same irrespective of the depth of sparseness at
different code-rates. Further it is shown that JVDD complexity
increases with code-rate. This can be attributed to the fact
that at lower code-rates, there are more parity checks per
information bit which means that parity checking will occur
more frequently in the JVDD trellis thereby keeping the
number of survivors more manageable.
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Figure 8 shows the variation of FER with complexity of
JVDD at different rates. The operating SNRs considered for
comparison is 6 and 7 dB. It is observed that the complexity
increases with code-rate and decreases with increasing SNR.
Lowering the code-rate is expected to reduce errors in any
channel at the cost of increased coding overhead through the
increased number of parity check bits. For the JVDD, this also
results in reducing the number of survivors as parity checking
kills survivors that violate the syndrome. Further, increasing
the SNR will result in reduced distortions from the channel
and will lower the chance of deviating from the correct path
in the JVDD trellis. This results in fewer survivors and reduced

complexity. These trends indicate that operating at low code-
rates would benefit JVDD due to reduced complexity but the
original JVDD code performance is found to deteriorate in
these conditions due to the dense region of ones in the upper
left corner of the H matrix as observed in the following section.
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Figure 8. FER comparison with JVDD complexity at different rates and
SNRs.

B. FER Performance of Sparse JVDD Codes for Different
Rates

Sparse JVDD code performance is compared with tradi-
tional JVDD codes and iterative detector at various code rates
in Figure 9. It is known that JVDD code performance improves
with increasing complexity and the performance comparison
needs to be performed by normalizing the complexity. In
this work, the complexity is normalized to 1000 and 2000
survivors, respectively. It is observed that the original JVDD
code performance (with the dense region of ones) deteriorates
at low code-rates through the appearance of an error floor
which is characterized by a gradual decrease in error rate as
code-rate decreases. This performance degradation has been
mitigated through the sparse construction developed in this
paper. This confirms that the performance loss of traditional
JVDD codes can be attributed to the code construction which
results in a dense region of ones towards the top left corner
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where the entire row gets filled with ones as the length of
the row (row width) is much lower than the row weight as
observed in Figure 1.

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0.5  0.6  0.7  0.8  0.9  1

F
E

R

Rate

Iter
JVDD Norm. 1k Surv.

Sparse JVDD Norm. 1k Surv.
JVDD Norm. 2k Surv.

Sparse JVDD Norm. 2k Surv.

Figure 9. FER performance at different rates at an operating SNR of 6 dB
with complexity normalized to 1000 and 2000 survivors for JVDD codes

The sparse construction mitigates the error floor and JVDD
is found to outperform the iterative detector at all code-
rates. This is due to the fact that iterative detector becomes
more efficient for increasing codeword lengths. However, at
longer codeword lengths, JVDD becomes more computation-
ally complex. The complexity of JVDD can be controlled
through the threshold parameter and increasing the threshold
results in retaining more number of survivors in the JVDD
trellis. Conversely, this lowers the probability of discarding
the MMLC through the metric thresholding section of the
JVDD and results in enhanced performance. The performance
improvement of JVDD with increasing complexity (average
number of survivors) is also depicted in Figure 9.

IV. CONCLUSIONS

JVDD algorithm is divided into two stages and the second
stage (parity checking) substantially reduces the decoding
complexity at low code-rates owing to the increased number of
parity checks being performed. However, performance degra-
dation is observed for JVDD at these rates in the low SNR
region due an artifact of traditional JVDD code construction.
This aspect is analyzed in this paper and attributed to the JVDD
code structure where a constant number of ones are placed to
the left of the main diagonal. This results in a dense region
of ones at the top left corner where the entire rows are filled
with ones. A modification to the code construction is proposed
in this paper by adjusting the number of ones placed in those
rows where the row weight of JVDD codes is less than the
available row width. It has been found that too sparse and
highly dense region of ones will result in increased JVDD
complexity and 50% sparseness will result in optimal JVDD
performance. The analysis performed in this paper has been
verified through simulation studies.
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