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Abstract—Successive interference cancellation (SIC) is a phys-
ical layer mechanism, which eases packet collisions. It can
decode simultaneously transmitted packets from multiple stations
with different transmitting power levels, and hence raises the
throughput of wireless networks. In an earlier work, the optimal
throughput of an IEEE 802.11 network with SIC for a given
initial contention window (W ) is investigated. In this paper, we
suggest that an optimal W can be chosen to further improve
the optimal throughput. We re-visit the throughput optimization
problem with W being another degree of freedom, and propose
an efficient way to obtain the optimal W and the corresponding
probability mass function of power levels. Numerical results have
verified that the optimal throughput can be further increased by
allowing W to be an optimal variable.

Keywords—multiple-packet reception; successive interference
cancellation; power randomization; 802.11.

I. INTRODUCTION

An IEEE 802.11 wireless local area networks (WLAN) is a
shared medium network. When operated in the infrastructure
mode, it comprises an access point (AP) and a number of
stations. Each station communicates with each other or external
networks via the AP. When stations transmit packets to the
AP, they need to contend for the channel. How each station
accesses the channel is governed by the contention-based
distributed coordinated function (DCF) [1]. Because of the
shared medium, if more than one station transmits packets
at the same time, a collision happens and no packet can get
through the channel. It results in packet retransmissions and
hence throughput degradation.

To improve such a situation, multiple packet reception
(MPR) techniques can be used at the physical layer. They
enable an AP to resolve collisions and successfully decode
multiple packets. Early MPR techniques are based on single-
user-detection approaches [2], which can only achieve low in-
formation rate. On the other hand, various multi-user-detection
approaches [3] have been proposed, including zero-forcing,
maximum likelihood, parallel interference cancellation and
successive interference cancellation (SIC). These approaches
can support high information rate.

Recently, an in-depth study of using SIC for MPR is
reported in [4]. The authors propose that, when transmitting a
packet, each station randomly chooses a power level so that
the probability of recovering the signals during a collision can
be increased. Hereafter, this scheme is referred to as SIC with
power randomization (SPR). More importantly, they derive a
discrete set of optimal power levels which only depends on the
target information rate. In other words, the set of optimal power
levels is applicable to any shared-medium wireless networks,
irrespective of their medium access control (MAC) protocols.
On the other hand, the MAC layer throughput depends on the
probability mass function of the optimal power levels and the
MAC protocols.

In [5], the throughput performance of an IEEE 802.11
WLAN using SPR is evaluated. Analytical expressions relating
the probability mass function and throughput are obtained. Fur-
thermore, an optimization problem is formulated to determine
the probability mass function which maximizes the throughput.
When solving the optimization problem, the authors of [5]
assume that the initial contention window, W , is fixed and
given. This limits the achievable optimal throughput. In this
paper, we relax this assumption and treat W as one of the
optimizing variables. As will be shown in the results, this
allows an IEEE 802.11 WLAN based on SPR to achieve a
higher optimal throughput.

The remainder of the paper is organized as follow. Section
II briefly reviews SPR. Section III summarizes the throughput
model developed in [5] for DCF with SPR. The formulation
of throughput optimization is given in Section IV. Then,
Section V presents our solution approach and Section VI
provides some numerical results. Finally, conclusions are given
in Section VII.

II. REVIEW OF SPR

First, let us consider the case of Gaussian channel. Assume
that the mean and variance of the channel noise power are 0
and N0, respectively. Let Ei be a positive real value recursively
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defined below,

Ei =

{
0 i = 0,

(2R − 1)(Ei−1 +N0) i = 1, 2, 3, . . .
(1)

A set E of discrete power levels can be formed as follows,

E =

{
{E1, · · · , EQ} R < 1,

{E1, · · · , Ei, · · · } R ≥ 1,
(2)

where R is the target information rate, and EQ is the solution
of the equation EQ = (2R − 1)(EQ +N0).

Consider that two stations are transmitting packets simul-
taneously, with randomly chosen power Ei and Ej from E ,
respectively. When receiving the combined signal due to the
two packets, the AP can first decode the stronger signal while
treating the weaker signal as noise. Subsequently, the AP can
subtract the stronger signal from the combined signal, and then
decode the weaker signal. In other words, as long as Ei ̸= Ej ,
both packets can always be decoded successfully. This is
because, for any Ei and Ej where Ei ̸= Ej , (1) guarantees
that the following conditions for reliable communication [6]
are always satisfied:

Condition for first decoding step:

log2

(
1 +

Ei

Ej +N0

)
≥ R. (3)

Condition for second decoding step:

log2

(
1 +

Ej

N0

)
≥ R. (4)

It has been proved in [4] that (2) gives an optimal set of
power levels in that sense that the achieved throughput is not
worse than any other power profiles while less average power
is consumed.

For the case of fading channel, each station only needs to
ensure that the power levels received by the AP fall into E .
Assuming that the instantaneous channel gain g is known and
that the channel is reciprocal. Then, the optimal power levels
for each station are {E1/g, E2/g, . . . Ei/g, . . . ,}.

III. THROUGHPUT OF DCF WITH SPR

Consider an IEEE 802.11 WLAN with N stations deploy-
ing SPR with M available power levels. When transmitting a
packet, each station chooses power level Ei, i = 1, . . . ,M ,
with probability pi. Assuming that, for each station, packets
arrive at the MAC layer from the upper layer with rate λ
(packet/second), and that each station has an infinite buffer.
Let τ be the attempt rate per slot of each station. In [5], a
fixed point equation relating τ to λ, W , {pi, i = 1, . . . ,M} is
derived, and is denoted in here as

τ = F(τ, λ,W, {pi}) (5)

In other words, τ is determined by a given λ, W and {pi}.

Packets can be successfully received by the AP if no more
than two stations are transmitting simultaneously. Therefore,
the average throughput T is given by

T =
LP1 + 2LP2

Tv
, (6)

where L is the payload size of a packet, P1 is the probability
that only one station transmits, P2 is the probability that two
stations are transmitting simultaneously, and Tv is the mean
slot duration after taking into account the deferment process
in DCF.

Clearly, we have

P1 =

(
N

1

)
τ(1− τ)N−1, (7)

and

P2 =

(
N

2

)
τ2(1− τ)N−2(1−

M∑
i=1

p2i ), (8)

where 1−
∑M

i=1 p
2
i is the probability that the power levels of

the two simultaneously transmitted packets are different.

From [1], Tv is given by

Tv = (1− Pb)σ + PbPs(Ts + σ) + Pb(1− Ps)(Ts + σ), (9)

where Pb = 1 − (1 − τ)N , Ps = P1+P2

Pb
, and both Ts and σ

are system parameters. Since Tv is effectively a function of τ ,
it is thus denoted as Tv(τ). Then, overall, T is given by

T = LN

τ(1− τ)N−1 + (N − 1)τ2(1− τ)N−2(1−
M∑
i=1

p2i )

Tv(τ)
.

(10)

This analytical model for throughput of IEEE 802.11 net-
works operating in DCF mode with SPR has been extensively
validated by simulations. Its accuracy is demonstrated by the
results reported in [5]. In this paper, this model is used to
evaluate the throughput for a given set of network parameters.

IV. FORMULATION OF THROUGHPUT OPTIMIZATION

To optimize the throughput, the following formulations are
given in [5].

A. Gaussian Channel

max T

subject to
M∑
i=1

pi = 1

M∑
i=1

piτEi ≤ Eav

0 ≤ pi ≤ 1, i = 1, . . . ,M.

(11)

where Eav is the average power limit.

B. Fading Channel

For the case of fading channels, a channel gain g is
associated with {pi(g), i = 1, 2, . . . ,M}, where pi(g) denotes
the probability that a station transmits with power Ei

g . In
order to optimize the throughput, the optimal {pi(g)} for
each channel gain g need to be found. Since, in general,
g is continuously distributed, this makes finding the exact
optimal solution extremely difficult. To simplify the problem,
the continuous distribution is approximated by a discrete
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distribution as follows. The range of g, [0,∞), is divided into
H intervals according to H+1 thresholds {gh|h = 0, . . . , H} ,
and uniform distribution within each interval is assumed. That
is

pi(g) = phi , g ∈ [gh−1, gh), h = 1, 2, . . . , H i = 1, 2, . . .M.
(12)

Clearly,
∑M

i=1 p
h
i = 1, ∀h. Let Ψ(g) is the probability

density function of g. Then,

pi =

H∑
h=1

phi q
h, (13)

where qh =
∫
g∈[gh−1,gh)

Ψ(g)dg.

When the received power is Ei, and the channel gain is g ∈
[gh−1, gh), the corresponding transmitted power is Ei/g with
probability density phi τΨ(g). The average transmitted power
is thus given by
H∑

h=1

M∑
i=1

∫
g∈[gh−1,gh)

(Ei/g)p
h
i τΨ(g)dg =

H∑
h=1

M∑
i=1

phi τEi/g
h,

(14)
where 1/gh =

∫
g∈[gh−1,gh)

1
gΨ(g)dg.

Then, the throughput optimization problem can be formu-
lated as follows,

max T

subject to 0 ≤ phi ≤ 1, i = 1, . . . ,M, h = 1, . . . , H

pi =
H∑

h=1

phi q
h, i = 1, . . . ,M

M∑
i=1

phi τ ≤ 1, h = 1, . . . ,H

M∑
i=1

H∑
h=1

phi q
h = 1

M∑
i=1

H∑
h=1

phi τ
Ei

ḡh
≤ Eav

(15)

V. OPTIMAL SOLUTIONS

Referring to the optimization problems given in (11) and
(15), it can be seen that both are non-convex. In [5], these
problems are simplified by assuming W is fixed and given.
When W is given, from (5), τ is effectively a function of {pi}.
Thus, the optimal variables in (11) and (15) are {pi} only. As
a result, the optimization problems become as follows.

Gaussian Channel:

min
M∑
i=1

p2i

subject to
M∑
i=1

pi = 1

M∑
i=1

piτEi ≤ Eav

0 ≤ pi ≤ 1, i = 1, . . . ,M.

(16)

Fading Channel:

min
M∑
i=1

p2i

subject to 0 ≤ phi ≤ 1, i = 1, . . . ,M, h = 1, . . . ,H

pi =
H∑

h=1

phi q
h, i = 1, . . . ,M

M∑
i=1

phi τ ≤ 1, h = 1, . . . ,H

M∑
i=1

H∑
h=1

phi q
h = 1

M∑
i=1

H∑
h=1

phi τ
Ei

ḡh
≤ Eav

(17)

The problems specified by (16) and (17) are convex and
can be solved readily by standard techniques. However, fixing
W limits the search space and thus the achievable optimal
throughput. We believe optimizing τ and {pi} concurrently
would further enhance the optimal throughput. By allowing τ
to be an optimal variable, it just means that W is not fixed
anymore. Instead, W is determined by the resulting optimal
τ . To this end, we propose to solve (11) and (15) exactly and
efficiently in the following two-step approach. In the first step,
for a fixed τ , we find {p∗i } and {ph∗i } , which are the solutions
of (16) and (17), respectively. In the second step, the optimal
τ , τ∗, is obtained by a full search over the range (0, 1).

Once τ∗ is obtained, the corresponding W can be obtained
by the following algorithm:

Algorithm 1 Finding W from τ∗

Require: τ∗, λ, {pi}
1: Let W=8
2: repeat
3: solve τ = F(τ∗, λ,W, {pi})
4: Set W=W + 1
5: until ( τ−τ∗

τ∗ < 0.001)
6: Obtain optimal W

Initializing W = 8 can reduce the computation time of
Algorithm 1. Since an extremely small value for W results in
many collisions, the resultant throughput would be far from
optimal. Thus, W = 8 is sufficiently large to initialize the
algorithm.

VI. NUMERICAL RESULTS

In this section, we compare the performance of our pro-
posed solution approach with that of [5]. We solve the opti-
mization problems using Matlab with the CVX optimization
toolbox for various Eav . The fixed system parameters used are
listed in Table I.

First, we consider the case of Gaussian channel. The results
are shown in Figures 2-3. With R = 1,M = 5, N = 5,
Figure 2 plots the resulting optimal throughput (normalized)
versus Eav when the optimal W and W = 32 (an arbitrary
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TABLE I. SYSTEM PARAMETERS

Slot Time 20 us
SIFS 10 us
DIFS 50 us
Retransmission limit 7
Data rate 11 Mbps
Control bit rate 1 Mbps
Header 576 bits
ACK 272 bits
No. of nodes 5
No. of discrete power levels 5
Packet arrival rate 250
R 2
N0 1

chosen value) are used, respectively. Obviously, the optimal
throughput corresponding to the optimal W is higher than that
corresponding to an arbitrary chosen W . Since the optimal W
corresponds to the most suitable back-off time, the collisions
are resolved in a better manner. This results in a higher optimal
throughput. Note that when Eav is small, the optimal through-
put corresponding to optimal W and W = 32 are similar.
According to [5], when Eav is small, stations are forced to use
low power levels with higher probabilities so as to fulfil the
constraint of average consumed power. SPR is not effective
to resolve collisions under small number of power levels.
Therefore, it is reasonable for the low optimal throughput
occurring at small Eav. Apparently, this phenomenon also
happens in the case of optimal W .

Figure 2 shows a similar difference between optimal W and
W = 32 when R is increased to 2. This demonstrates that SPR
is applicable when the network is operated at high information
rate. Comparing with Figures 2 and 3, it can be seen that the
improvement becomes less. This is due to two reasons. First,
it should be recalled that the throughput under W = 32 is
already sub-optimal; it is obtained by solving the optimization
problem given by (11). Second, as explained below, the optimal
W increases with N , and W = 32 happens to be close to the
optimal W . Thus, the improvement that can possibly be made
becomes smaller. However, our approach guarantees that the
optimal throughput is obtained.

Table II provides more comparison results for various M
and N . It can be seen that the optimal throughput is further
enhanced by our approach. Note that the optimal W increases
with N . As the collision probability increases with N , a larger
back-off time is required to reduce the collision probability.
This leads to a larger W . Therefore, a network with larger
N needs a larger W to achieve the optimal throughput. As a
whole, we notice that more discrete power levels provided by
SPR is the ultimate key to increase the optimal throughput.

TABLE II. Comparison of optimal throughput under different network
configurations for Gaussian Channel and R = 2

Config Throughput
(W=32)

Throughput
(Variable W) % Optimal W

M=5, N=5 0.372 0.403 +8.49 14
M=3, N=5 0.362 0.378 +4.3 14
M=5, N=10 0.3912 0.3967 +1.4 17
M=3, N=10 0.372 0.374 +0.53 24

Then, we consider the case of Rayleigh fading channel
with averaged power gain equal to 1. The whole range of

Eav
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Fig. 1. Optimal throughput comparison in Gaussian channel,
R = 1,M = 5, N = 5.
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Fig. 2. Optimal throughput comparison in Gaussian channel,
R = 2,M = 5, N = 5.

g, i.e., [0,∞), is divided into 20 intervals. Figures 4-6 plot
the resulting optimal throughput versus Eav for both solution
approaches under various system parameters. The observations
are similar to that of Figures 2-3. It demonstrates the efficacy
of our solution approach for the case of fading channels.

Table III provides more comparison results for various M
and N . Again, similar observations as the case of Gaussian
channel can be made.

TABLE III. Comparison of optimal throughput under different network
configurations in fading channel with R=2

Config Throughput
(W=32)

Throughput
(Variable W) % Optimal W

M=5, N=5 0.372 0.404 +8.6 14
M=3, N=5 0.362 0.3779 +4.4 14
M=5, N=10 0.3912 0.397 +1.5 17
M=3, N=10 0.372 0.373 +0.26 24

4Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-473-2

AICT 2016 : The Twelfth Advanced International Conference on Telecommunications



Eav
0 1 2 3 4 5 6 7 8 9 10

O
pt

im
al

 th
ro

ug
hp

ut

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4
M=5, N=10, R=2, No=1

W=32
Optimal W

Fig. 3. Optimal throughput comparison in Gaussian channel,
R = 2,M = 5, N = 10.
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Fig. 4. Optimal throughput comparison in fading channel,
R = 1,M = 5, N = 5.

VII. CONCLUSION

In this paper, we have suggested that the initial contention
window can be suitably chosen to further optimize the through-
put of IEEE 802.11 network based on successive interference
cancellation with power randomization. To this end, we have
formulated the optimization problem and proposed an efficient
way to obtain the optimal initial contention window. We have
compared the resultant optimal throughput with the approach
of arbitrarily chosen window size for both Gaussian and
Rayleigh fading channels. Numerical results have shown that,
by allowing the initial window size to be suitably chosen, a
higher optimal throughput can be achieved.
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