
Improvement of an Existing Microservices Architecture for an E-learning Platform

 in STEM Education

David Alessandro Bauer, Benjamin Penz, Juho Mäkiö, Manal Assaad

Department of Informatics and Electronics

University of Applied Sciences Emden/Leer

Emden, Germany

Email: david.bauer@hs-emden-leer.de, benjamin.penz@hs-emden-leer.de, juho.maekioe@hs-emden-leer.de,

manal.assaad@hs-emden-leer.de

Abstract— This paper demonstrates and evaluates the

technical improvement of an existing prototype of the STIMEY

e-learning platform based on a microservices architectural

pattern. The first approach is using our page fragments

technology that allows to integrate contents of other

microservices in a superordinate context but lead to difficulties

regarding maintenance. The second approach holds all page

fragments in one microservice, and the specific data is

provided separately by domain-specific microservices which

makes it easier to work with them, in case of the STIMEY

platform, because domain-specific designers can now be

assigned to just one respective microservice. Additionally, a

conception to migrate the platform to Amazon Web Services

(AWS) in the future is shown. A novel three-dimensional

architecture model is introduced to visualize the used

microservices’ architectural pattern. Three patterns are shown

for the data access of the individual microservices and for their

interconnectedness. At the end, it is discussed how the database

design can be implemented.

Keywords-STEM Education; E-learning; Web platform;

Microservices; Architecture; Page fragments; Data Access;

Database Design.

I. INTRODUCTION

As modern IT-technologies, like cloud computing and
mobile computing, get more and more complex, difficulties
with development and maintenance increase as well, thus
driving innovation and research pressure to cope with these
problems. This led to the construction of concepts like
Domain-Driven Design, Continuous Integration, scalable
systems and Software as a Service, which form the base of
the idea of microservices. Microservices are applications that
consist of a set of small, independent services in contrast to
the large, monolithic kind of software systems [1]. Each
microservice follows its own task but works together with
other microservices to fulfill a more general purpose. This
approach has several advantages such as [1]:

• the use of different technologies. Because every
microservice is isolated, they can run on different
platforms, and can even be implemented in different
programming languages.

• that it is highly scalable. In contrast to monolithic
architectures, the different parts of an architecture

based on microservices can be scaled
independently.

• a better exchangeability. Microservices can be
exchanged independently, instead of the need to
exchange the whole system, as it is the case with
monolithic architectures

• a more convenient deployment. Each microservice
can be deployed separately. With the monolithic
approach, the whole system needs to be deployed in
one, even if only small amounts of code have been
changed.

Although the importance of microservices continually
increases, research about this topic is mainly limited on the
theoretical concept of microservices itself. [1] Therefore, this
paper focuses on the applied architecture of a practical use-
case. The explained architecture in this article has been
developed for a project to research and create a Science,
Technology, Engineering and Mathematics (STEM) related
e-learning platform called Science, Technology, Engineering
and Mathematics for the Young (STIMEY). The STIMEY
[2] project is funded by the European Union and started in
September 2016. The purpose of the platform is to interest
young people to STEM and to bring teachers, students and
their parents together to support STEM related learning and
to increase the continent's international competitiveness in
that regard.

This paper aims at:

• a concrete use-case of an microservice
architecture, the STIMEY platform,

• a conception for migrating to Amazon Web
Services (PaaS) is shown,

• a novel visualization of the microservice
architecture is illustrated,

• a novel page fragments technology will be
introduced, and

• an overview of database implementation in
context of microservices is given.

The paper is divided in five sections, starting with a brief
description of the STIMEY platform in Section 2. The
following section proffers a literature review on
microservices is provided in related works. The fourth
section presents and discusses the architecture of the
STIMEY platform that uses microservices as a basic
building block. The section covers mainly the above listed

101Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

mailto:david.bauer@hs-emden-leer.de
mailto:benjamin.penz@hs-emden-leer.de
mailto:juho.maekioe@hs-emden-leer.de

contributions. The paper then concludes with a conclusion in
the last section.

II. THE STIMEY PLATFORM

This section first motivates and then gives a brief
overview of the STIMEY platform.

The international competitiveness of Europe strongly
depends on the availability of good educated engineers [3].
To get good educated engineers, the STEM education must
be more relatable to European youths to raise their interests
and involvement in STEM careers. This interest needs to be
awoken already at the school. This is the aim of the STIMEY
project. To reach this overall goal, STIMEY project proposes
a multichannel hybrid e-learning platform for STEM-
Education. The platform provides e-learning components
that are designed and developed on the base of a well-
researched pedagogical framework [4] that is to be
developed in the STIMEY project. By doing so, STIMEY
aims to lower the barrier of young people to consider a
STEM career as an attractive career alternative.

The participation of multiple parties is needed, unified in
the STIMEY platform to reach the overall goal of the
STIMEY project. Consequently, within the STIMEY
platform not only students come together with their teachers.
Additionally, other stakeholders, like universities, schools,
parents, business and media partners need to join together to
reach the common goal and to make STEM a natural part of
the daily life of youths. By doing so we hope to give students
the feeling that what they do is important and valuable, and
we open all stakeholders an ability to demonstrate their
engagement for the STEM education [5].

One of the central ideas of the STIMEY project is to get
close to the interests and social identity of the students. For
this, the STIMEY is constructed to be a socially motivational
platform that supports and motivates students towards STEM
subjects.

To do so, the STIMEY contains components that the
students are familiar with, like social media and games to
stimulate the emotional and educational engagement. There
also exists a gamification-oriented [6] reward system that
enables students to earn badges. These components are there
to help with the intrinsic motivation of the students towards
STEM subjects.

For example, the integrated social media tools enable the
students to communicate about the STEM topics or to help
each other in making exercises. The integrated games in turn
are constructed such that the students can learn during
gaming. The STIMEY-robot is a socially-assistive learning
buddy that supports students and gives them feedback. The
idea is to effectively use robot fellow artefacts for pupils’
emotional engagement, community bonding, efficient
learning and motivation. Additionally, within the platform it
will be possible to program the STIMEY-robot using a
simple command set that is integrated in the STIMEY
platform. The STIMEY-radio allows students to get on
demand broadcasting programs about STEM subjects [7].
The integrated STIMEY e-portfolio provides the possibility
for the students individually to collect information about
courses and activities the student has participated in.

Additionally, the STIMEY platform will contain
entrepreneurial tools for engaging schoolchildren in
innovations and stimulating their creative thinking. In order
to integrate a wide array of existing educational tools, we
have created in cooperation with SCIENTIX a mechanism to
integrate existing tools such as solutions provided from
SCIENTIX (Community for science education in Europe) in
the STIMEY-platform.

The platform is constructed gender-neutral, so that boys
and girls alike can identify with the components contained
therein. The challenge of STIMEY is to reach even those
students who are not enthusiastic about STEM. Especially
girls are underrepresented in the STEM-sector. To be
gender-inclusive means for STIMEY means that it supports a
wide range of user behavior to provide low-threshold access
to the platform.

The second central idea of the STIMEY project is to
provide teachers the necessary modern tools to teach STEM
in an attractive and engaging manner in-class or remotely,
while also following up on students’ progress. For this, the
platform allows teachers to create their own courses and
curse materials, to reuse the materials when creating new
courses. Whether the content is more theoretical, or more
practical and interactive, is determined by the teacher. The
teachers are also able to reuse their created materials when
creating new courses. Additionally, teachers may share their
courses and course materials with other teachers. This
supports the community building among teachers for
example to share experiences in using the STIMEY in
classes.

Other stakeholders, like parents and companies, are
supported in suitable way. For example, parents are able to
get information about the current state of the studies of their
children or to communicate with their teachers and
companies are able to add educational material into the
platform.

For security reasons, it is considered to store personal
data on different servers, to prevent developers and
administrators who work on the platform, and possible
attackers, to link data which is stored on the platform to
personal information. Every user can determine who has
access to his/her shared data.

The STIMEY components are based on a thorough
research. The fundamental research focuses among others
the following questions:

• Why STEM education is an issue today?

• Why STEM careers are not popular among
young people?

• How to motivate and encourage young people to
go for STEM careers? and

• What makes STEM unattractive or uninteresting
and how positive aspects can be emphasized
more?

To answer these questions, we are currently creating and
implementing a novel pedagogical framework that exploits
the full potentials of Social Media for STEM subjects in
formal and informal contexts. Therefore, the major target
groups and stakeholders are integrated into the development
process. Additionally, to track the students’ performance

102Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

progress, suitable measurements methods, algorithms and
tool are under development

All components integrated in the STIMEY-platform
serve the goal to raise the attractiveness of STEM subjects
among European youth. From the European perspective, it is
important that the STIMEY-platform harmonizes with the
STEM education in European schools. This is important to
reach a critical mass of end users who will be motivated for a
STEM career.

III. RELATED WORK

Microservices is a young architectural pattern, which
follows the idea of service-oriented computing (SOA). SOA
started as an attempt to overcome the drawbacks of
monolithic software architectures. It provides loosely
coupled services, each usually focused on one specific
business process. The services are reusable and could be put
together dynamically to address issues in continually
changing business environments [8]. Although software that
follows SOA architecture can consist of several internal
services, the whole product has to be deployed as one unit,
leaving it still monolithic, as [9] point out. To maintain
scalability, copies of the whole application have to be used,
which is not efficient regarding memory consumption. While
such architecture makes it easy to develop and deploy large
software, it also makes it costly to modify and maintain these
applications, because they are difficult to understand. [9]

These problems lead to the development of alternative
architectures that aim to conform to modern needs by
breaking down the application into smaller independent
services [9]. In 2012, a group of software architects chose the
term microservices as the most fitting one for the common
architectures they had been examining in recent time [1].
Before that, the concept of microservices has been known
under different names, e.g. Adrian Cockcroft at Netflix
called it “Fine grained SOA” [11]. Dragoni et al. say that
there is no common definition of microservices, and
therefore the concept is still in its infancy [12]. However,
principal features of microservices have been defined by M.
Fowler and J. Lewis [11]. For instance, microservices based
architectures consist of small independently upgradable,
replaceable and reusable components that can be deployed
separately. If the code of one microservice is altered, only
the microservice itself is affected and must be redeployed,
instead of needing the whole application to be deployed
again. Another feature of microservices is decentralized
governance. The used technology for implementing a
specific microservice can be chosen independently.
Therefore, different Microservices can use different kinds of
databases. The code of microservices can also be written in
different programming languages, as long as a common
interface is used to handle the communication between the
microservices [1]. Other authors like S. Newman, E. Wolff
and A. Gupta built on the work of M. Fowler and J. Lewis to
make concrete suggestions for conceptions and designs of
architectures based on microservices [14][15][16][17].
Villamizar et al. [10] show a slight cost reduction by using
microservices instead of a monolithic architecture. The
average response time does not differ so much for the

microservice architecture (although there is an overhead,
through additional server instances). [10] Microservices were
introduced in a lot of large companies, to overcome their
growing needs of more scalability. For example, Google,
Amazon, Microsoft, Netflix and Zalando have successfully
introduced microservices for their business [10][13].

A systematic literature research has been conducted by
Pahl and Jamshidi to collect and review the existing research
on microservices. They discovered that a great amount of
research about microservices is only theoretical and just a
minor part of studies deals with actual technological
solutions [18], leaving a research gap in that department.

One possible use case of microservices is web-based e-
learning platforms like the STIMEY platform. D. Chandran
and S. Kempegowda [17] state that irrespective of free or
commercial products, the implementation of the hardware
and software infrastructure are highly cost intensive.
Although free e-learning software like Moodle is free to use,
the high cost of installation, maintenance, as well as the high
learning curve, could make them even more expensive then
commercial products. In addition, existing e-learning
solutions are often unable to collaborate with other
educational facilities or dynamically scale the application.
Also, the integration with other systems is expensive due to
the proprietary nature of the existing e-learning solutions.
Another issue is that in many cases the available hardware is
not suitable for web 2.0 applications. D. Chandran and S.
Kempegowda therefore propose a cloud-based solution for
three defined scenarios to overcome these disadvantages
[19]. With cloud-computing free resources can be allocated
efficiently, thus providing reduced energy consumption and
less costs.

Fazakas et al. [20] propose a technical solution for a
collaborative e-learning platform based on microservices.
The platform aims at making teaching and learning
objectives easier by implementing loosely-coupled software
modules. These modules provide synchronous learning
functionalities like video communication or text-based chats,
and asynchronous functionalities like multimedia authoring.

Martin et al. [21] describe and compare the two different
approaches virtual machines and containers for the
realization of cloud-based computing. Virtual machines are
therefore fully functional operating systems that are running
on top of a virtual hardware layer. The advantages of virtual
machines are that they can be installed very quickly and
booted within a few seconds. They also can be cloned and
stacked with centralized tools. Disadvantages are that the
additional layers for emulated hardware and operating
system come with a significant overhead in performance. In
contrast, containers come with performance near that of
single-tenant physical servers. In addition, with containers,
multiple instances of applications can be run on one single
machine. Containers are also very lightweight, because of the
absence of system libraries, which makes the boot-process
very fast, and makes it possible to create and move
containers almost instantly. This enables high scalability
[21][22]. Docker is the most used container technology.
Based on that it exists also a Kubernetes [23] (orchestrator of
containers) solution, former provided by Google (see also

103Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

Borg [24], predecessor to Kubernetes). An alternative to
Kubernetes is Docker Swarm.

Another paradigm that supports large-scale cloud
computing applications is serverless computing or function
as a service (FaaS) that is an event-driven approach, utilizing
lightweight processes that react to an event. The first service
that follows serverless computing is AWS Lambda by
Amazon Web Services [25]. For example, Google and
Microsoft provide serverless computing services. [26][27]

An evaluation of different cloud computing services has
been made by McGrath et al., showing the potential of the
underlying technology on two use cases. For instance,
systems using serverless computing are more scalable and
flexible than previous technologies. [28] Using of AWS
Lambda can reduce costs significantly, by 50-60% instead of
using microservices [29].

IV. ARCHITECTURE OF THE STIMEY PLATFORM

It was decided to use microservices for the entire
platform, which allows for development to take place in
small separate teams. Microservices are autonomous,
isolated services that are loosely coupled with other services.
In general, every microservice has its own data storage (i.e.,
database, so redundancies are accepted). However, sharing
the database may be appropriate for simplification. The data
models must be kept separate from each other. Microservices
can, for example, communicate via REST or WebSockets
but they can also have a web interface. Furthermore,
microservices are easily scalable, if they are stateless (no use
of sessions). All required data must be loaded from the cache
or the database directly.

Figure 1. Microservice Architecture Model.

In Figure 1 a novel visualization of the microservice
architecture model is presented. In this model microservices
may implement multiple layers. Normally, a microservice
includes the business logic layer (inclusively offering of
services to the outside) and the data access logic to the
database (persistence). The communication layer as
described above can be implemented using web protocols. In
addition, a presentation layer may be included (HTML,
JSON and XML). DDD stands for Domain Driven Design by
Eric Evans ([30][31]). A concept is the smallest unit within a
subdomain (categorization of related concepts). A bounded
context is a subset that can be spanned in multiple
subdomains. A domain can contain several functional
subdomains. The life cycle consists of steps that a
microservice goes through: the beginning design,

development, testing and production. Maintenance and
support are the last stage, or the microservice will be
replaced by a better solution and the life cycle starts again.
The Reference Architecture Model Industry 4.0 (RAMI4.0)
[32] had significant influence in creating Figure 1, which
depicts the Microservice architecture model.

Figure 2. Inner and outer architecture of microservices. [33]

According to Olliffe [33], the platform’s internal and
external architecture is described in connection with
microservices (see Figure 2). The external architecture
includes, among other things, tools for configuration,
routing, discovery of other microservices, monitoring, and
automation (deployment). The microservices themselves are
described in the internal architecture and are developed
independently from each other. The communication among
them is best done asynchronously, while there may be
multiple instances of one microservice. A load balancer can
be connected to all individual microservices to improve the
distribution of workloads, for which the round-robin strategy
is commonly used. State changes or notifications can be
exchanged by microservices via the so-called messaging
channels.

Every microservice on STIMEY platform belongs to one

domain, whereas a domain consists of related topics. Each

microservice is assigned to one responsible team. All

microservices make use of the same technology, for better

maintenance. For one, it is easier for the small core team to

cope with only one technology. For another, there is a high

fluctuance of additional team members (internships, project

work, bachelor and master thesis), who can be trained faster

that way. One advantage of microservices is that they are

fine granular, so they can be easily scaled. There is also no

single point of failure, because there are redundant instances

for each microservice, and all microservices are not

deployed together, like it is the case with a monolithic

architecture. That way, older versions of microservices can

be replaced during runtime.

A. Use of Microservices in the STIMEY Platform

The STIMEY platform in the actual version is divided
into several independently developed domains (here: middle-
tier, see Figure 3) that are researched, identified and detailed
in previous research [4], such as:

• User profile: a visual display of the personal data
associated with a specific user in the platform [34].

104Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

• Activity stream: typically, a dashboard, where
tracked activities or events relevant to a user,
community, topic or anything in the platform it’s
built in [35].

• Community: an online space where individuals can
feel part of a group and interact on a common topic
or interest by creating posts, commenting, reading
in such interest- and niche-specific forums [36].

• Social messaging: refers to the exchange of text
messages through a chat tool in real-time [37].

• Online-Course: a supervised learning option for
web browsers or mobile applications, that consists
of a series of lessons [38].

The communication between microservices works by

either calling each other’s REST-API, or by messaging
(Publish-subscribe), whereas subscribers will be notified by
the occurrence of new messages belonging to the subscribed
topic. For instance, the gamification microservice (topic:
“gamificationstream”) must be informed by rewardable
activities from other microservices to improve the motivation
and experience of the users. Also, for the activity stream, it is
necessary to interact with other microservices to access their
data which is necessary to calculate the ranking, so that
activities or events relevant to the user can be shown in
descending order corresponding to the given rank, starting by
the highest rank for an activity or event.

The backend includes the microservices for the data
access layer (stored files, cache, messaging system, and
database for persisting data). The main microservice is part
of the frontend, especially for login and sign-up and as a
relaying layer (implemented as a proxy) to the underlying
middle-tier microservices. It also contains the superordinate
web pages of the STIMEY platform (using the technology of
page fragments) where the individual microservices are
embedded. These should be scalable for further
development. Within the microservices, no classic server-
based session data is held (data access is via the backend). It
should also be noted that a REST-API exists for the
platform/robot communication. Furthermore, the platform-
to-robot (P2R) communication can be established by an
Message Queue Telemetry Transport (MQTT) - Adapter
(robot has subscribed on specific topic), which is an
integrated part of the messaging service.

Figure 3. Actual STIMEY platform architecture.

During the login process in the main microservice, an
access token is stored as a cookie on the user’s browser,
which is used for subsequent authentication. Furthermore, a
language cookie is also stored for the purpose of multi-
language support.

The microservices are deployed in Docker containers,
running on CoreOS (Container Linux). This ensures an
increased failure safety, as the containers can be restarted
accordingly in the event of a failure. The entropy of the
system, and hence the error rate, is reduced since the same
conditions are always present for the system (in the form of
containers, operating system virtualization). There exists also
a Kubernetes solution, called Tectonic, which comes from
the CoreOS team as well.

This microservice architecture was chosen at first, to
follow a different approach for research, instead of the
classical approach (mainly over REST-API’s). The main
microservice uses the page fragments technology, which is
explained more in detail in the Section B. Different from the
classical approach the microservices provide also their own
web pages in the presentation layer. This avoids the
maintenance of all web pages in a centralistic way. The main
microservice aggregates them in a superordinate context and
sends the final web page to the client. In general, the page
fragments technology works as intended, but it has to be
extended, or further research is necessary, to find a way how
it works more smoothly. In the current situation, the whole
site will be newly rendered when the page is aggregated,
including header, footer and side-menu. A possible solution
could be to update only the changing fragment. This has to
be further considered.

At the moment, we are planning to migrate to our new
architecture model (Figure 4), that is similar to the classical
approach of a microservice architecture. The development
team recognized that it is more efficient to have the web
pages on the same place, because there is an imbalance of
developers to designers (much more developers). It is
considered as ideal to have interdisciplinary teams working
on microservices [15]. One is responsible for the frontend,
one for the backend and one for the overall design. We
currently do only server-side rendering (using Spring MVC,
Model-View-Controller pattern) and plan to switch to client-
side rendering (using Vue.js and React.js). This could at least
reduce server load. Of course, this also has the disadvantage
for the client that it has the costs of processing. One
important aspect of the future of the STIMEY platform is
also, to make it long-term production ready, as it is only a
prototype as of now. This enables the possibility to migrate
the STIMEY platform to a PaaS in the future. This reduces
the risks involved with self-realizing a microservice
architecture. PaaS from established vendors are much more
optimized in scalability, resilience, managing, efficiency and
uptime. The long-term costs can be reduced, because not so
much manpower is needed, and vendors can organize the
distribution of their service more efficiently over the world.

The main difference between the old and new
architecture (Figure 4) is that with the new architecture only
REST-API microservices are used for the communication of
the corresponding domains, without providing additional

105Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

web pages for each microservice. The REST-Service can be
called by the REST-API-Gateway that can orchestrate other
services or proxies them to the right target. Instead of a main
microservice that assembles page fragments coming from
different microservices, there is now a storage microservice
that holds all the web pages. All teams are working on this
microservice and the corresponding REST-API
microservice, for which they are responsible. Additionally,
there can be used a FaaS service [39] optionally, which is
using Vert.x (a Java alternative to Node.js) in combination
with actor4j [40] (an actor-oriented framework). The
advantage, in comparison to REST-Services, is that they are
finer granulated and light weighted. That way, thousands of
stateless functions (or actors) can be deployed easily, in
contrast to REST-API microservices, which are heavy
weighted. Normally, functions are isolated in containers [41],
for security and resilience reasons. In an own maintaining
FaaS service this is not mandatory, because the underlying
functions can be trusted. It would be otherwise, if different
contributors were involved. This results in further
performance advances. The serious games microservice is
using the Apache web server and PHP and is developed from
our partner from Belarus. The REST-API-Gateway can be
monitored for generating statistics and further analysis of
collected data.

Figure 4. Planned STIMEY platform architecture.

The above described architecture, without page

fragments technology, is very suitable to a possible

migration to Amazon Web Services (Figure 5). The storage

in Figure 4 corresponds to Amazon S3 in Figure 5. In both

architectures, there is an API-Gateway for handling

according requests sent from the client. Amazon Web

Services has an authentification service called Amazon

Cognito. This was implemented in the architecture shown in

Figure 4 as an independet REST-Service called Auth. The

API-Gateway can be monitored in both concepts (in

Amazon called CloudWatch). Underlying services can use

caching systems, also combined with data storage. It is also

possible to use a publish-subscribe system, e.g. for the

intercommunication of the services. In Amazon, there are

also the Lambda Functions that are more cost-effective than

API-calls shown by Villamizar [29]. Our REST services, as

seen in Figure 4, are deployed in Docker Containers, so they

can be easily migrated to Amazon ECS (Elastic Container

Service) later. FaaS has its advantages, but it still has to be

proven in practice, whether it is worthwhile to use it with

accompanying greater complexity (thousands of light

weighted functions) [42].

Figure 5. Conception of STIMEY platform architecture with Amazon

AWS.

From the beginning, it was not planned to use Amazon

Web Services or other PaaS, such as Microsoft Azure and

Google Cloud Platform. For some companies, for privacy

reasons and protection of intellectual property, an on-

premise solution is more preferable. One of the

requirements is to use only open-source software to keep the

costs low. We decided to use Java as a core-language,

because it is widely used and taught on universities. As

mentioned before, it is difficult to realize and to maintain an

own solution of a microservice architecture, especially in

the long-term perspective. In contrast to that, there are open-

source solutions like Serverless Framework [43], which

makes it easy to switch between different cloud-computing

providers (Azure Functions, AWS Lambda, Google Cloud

Functions). There are also different providers for container

solutions, like Google Kubernetes Engine or, like mentioned

above, Amazon ECS and Azure Container Service (also

over Kubernetes). "Kubernetes is an open-source system for

automating deployment, scaling, and management of

containerized applications." [23] At the current stage of

prototyping, an on-premise approach is for us the best

solution to fulfill the above mentioned requirements and

initial goals.

B. Use of Page Fragments Technology in the STIMEY

Platform

A microservice that uses the page fragments technology
can integrate outputs of microservices in a superordinate
defined web page.

106Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

Figure 6. Proxy-Aggregator Design Pattern for page fragments

technology, adapted from Gupta. (adapted to [44]and [16])

Here, a proxy server is used that aggregates the
individual page fragments (Proxy-Aggregator Design
Pattern, see Figure 6), that are references to a microservice
that is embedded in the superordinate web page. According
to Gupta [16][44], this pattern can be seen as a mixture of the
Proxy Microservice Design Pattern and the Aggregator
Microservice Design Pattern. It differs only in that way that
the microservices are not only REST endpoints. Instead, they
are microservices which have also their own web pages (the
so-called page fragments) in the presentation layer.

Figure 7. Illustrated example to our platform, showing an embedded

microservice.

Figure 7 displays an example based on our future

platform, whereas the content of a microservice is embedded

in the superordinate web page.

The implementation [45] of the page fragments technolgy

is a developed derivative of Smiley’s HTTP-Proxy-Servlet

(maintained by the MITRE Corporation). Zalando has a

similar concept [46] and [47], where fragments (parts of a

microservice) where developed by diverse teams (see Figure

8). The “layout service assembles the fragments and streams

them to the client” [46]; see also BigPipe [48] by Facebook

mentioned in [47].

Figure 8. Layout service for front-end microservices [46][47]

C. Use of Caching/Volatile caching and messaging in the

STIMEY platform

In the previous architecture, for caching/volatile caching
and messaging the library was divided into two parts. Either
an actor-oriented approach (Actor4j [40] comparable to
Akka), or a classic implementation could be used (Redis as
cache, NoSQL for persistence, RabbitMQ for messaging).
The patterns: “non-volatile caching”, “volatile caching”, and
“messaging”, offer the possibility to use messaging channels
(state changes and notifications) via appropriate interfaces.
The messaging pattern is a special pattern for chatting and
message-based content. Only the caching and messaging
patterns allow persistence of content.

D. Design of Database Structure

As shown in Figure 9, the model is split into different
domains. The new database model is a separate model
tailored to the needs of individual microservices (largely
independent database models). A document-oriented NoSQL
database is used as a database. This ensures efficient data
processing even with large amounts of data. Known
document-oriented NoSQL databases are, for example,
MongoDB and CouchDB. A major advantage is the simple
serialization / deserialization of the data binding objects into
a database document and vice versa (document is stored in
the form of a readable JSON string). For the documentation,
it is helpful to not only display persistent data structures, but
also data structures in the cache, because the data structure of
the database is not necessarily the same as the data structure
of the cache. Furthermore, the data flow between client and
server should be shown in the superordinate context, because
the data depends on external triggers. Because of the
complexity of the microservice architecture, an extended
view is necessary that includes all data structures and the
corresponding processes. The whole system is developed in
an agile environment so the data structures (and their
underlying processes) are subject to evolutionary
development processes.

107Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

Figure 9. General database structure illustrating microservices affiliation.

V. CONCLUSION
This paper aims at contributing an example of how

microservice architecture can be used to build a web
platform in practice. This goal has been achieved by
introducing the STIMEY platform as a use-case for
microservice architecture, and how the architecture has been
structured to fulfill the requirements. In addition, the first
conception of a future architecture is shown, that builds on
the lessons the development team has learned from the work
on the current architecture.

The STIMEY platform is divided in several domains,
each focused on one specific task, such as user profile,
activity streams, and communities. With the microservices
approach, each domain is realized by its own microservice.
The current architecture of the STIMEY platform has a main
microservice as the central hub for server-client
communication.

In the current architecture, the main microservice uses
the page fragments technology to assemble the outputs of
other microservices to a resulting web page and streams
them to the client. However, it turned out to be more
efficient to have the web pages on one place. For one, the
designers can work on only one microservice. For another,
the concept of separation of concerns is followed more
strictly that way, which makes it easier for the software
developers to divide their work. Now they can work in pairs
on a domain. One developer is responsible for the REST-
API, and the other developer is responsible for the
implementation of the front-end with client-side-rendering.

No session data is stored on the server-side, but an access
token is stored as a cookie in the client-side browser. To
increase failure-safety, docker containers are used for
deployment of the microservices. The current system does
server-side rendering, using Spring MVC. To reduce server-
side cost, it is planned to use client-side rendering with the
utilization of Vue.js and React.js in the future. The current
architecture uses REST-API for the communication between
microservices.

For future-proof scalability, resilience, and efficiency, it
is also planned to use FaaS. This is going to make the
microservices more lightweight, and to increase the
performance significantly. The shift to the new architecture
is also suitable for the usage of cloud services like Amazon
Web Services that could be used in the future as an option.

The STIMEY platform supports volatile caching, non-
volatile caching, and messaging, whereas non-volatile
caching and messaging enable persistent data storage.

To fulfill the needs of particular microservices, largely
independent database models are used, each modeled
specifically to meet the requirements of their corresponding
microservice. To allow efficient processing of data, a
document-oriented NoSQL database is used.

It is planned to develop testing scenarios in the future to
cater with multiple test-cases. Also, a case study that is
focused on the research questions introduced in section II is
going to be conducted.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 Research and Innovation Program
under Grant Agreement Nº 709515 — STIMEY.

REFERENCES

[1] D. Namiot and M. Sneps-Sneppe, “On Micro-services
Architecture,” International Journal of Open Information
Technologies ISSN: 2307-8162 vol. 2, no. 9, 2014.

[2] STIMEY, “Grant Agreement,” no. 709515, 2015.

[3] European Union, "EU STEM Coalition: STEM Skills for a
Future-Proof Europe," April 2016.

[4] M. Assaad and T. Mäkelä, “Integrating Social Media
Concepts as Tools in a Pedagogical Approach for a
Technology-enhanced Learning Environment,” in K. Daimi
and S. Semenov (Eds.), AICT 2017: The Thirteenth Advanced
International Conference on Telecommunications (pp. 67-73),
IARIA, 2017, [Online]. Available from:
http://www.thinkmind.org/download.php?articleid=aict_2017
_4_30_10061 [retrieved: June, 2018]

[5] M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N.
Fachantidis, V. Dagdilelis, A. Reid, C. Rioja del Rio, E. V.
Pavlysh, and S. V. Piashkun, “Attracting European Youths to
STEM Education and Careers: A Pedagogical Approach to a
Hybrid Learning Environment,” World Academy of Science,
Engineering and Technology International Journal of
Educational and Pedagogical Sciences, vol. 11, no. 10, 2017

[6] M. Assaad and S. Shi, “Using the Thematic Approach in
Integration with Social Media and Gamification for Concept
Design in a Hybrid STEM Learning Environment,” 1st
International Conference on Educational Technology, 2017.

[7] A. Reid, J. Mäkiö, R. Serrano, and C. Rioja Del Rio,
“Conventional radio, the latest motivation to learn science
among European youth,” International Conference on
Education and New Learning Technologies, March 2017

[8] L. Ismail, D. Hagimont, and J. Mossi'ere, "Evaluation of the
mobile agents technology: Comparison with the client/server
paradigm," Information Science and Technology (IST), vol.
19, 2000.

[9] D. Namiot and M. Sneps-Sneppe, "On micro-services
architecture," International Journal of Open Information
Technologies, vol. 2, no. 9, 2014.

[10] M. Villamizar et al., "Evaluating the monolithic and the
microservice architecture pattern to deploy web applications
in the cloud," 2015 10th Computing Colombian Conference
(10CCC), Bogota, pp. 583-590, 2015.

[11] M. Fowler and J. Lewis, “Microservices,” 2014, [Online].
Available from: http://martinfowler.com/articles/micro
services.html [retrieved: June, 2018]

108Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

http://www.thinkmind.org/download.php?articleid=aict_2017_4_30_10061
http://www.thinkmind.org/download.php?articleid=aict_2017_4_30_10061
http://martinfowler.com/articles/micro%0Bservices.html
http://martinfowler.com/articles/micro%0Bservices.html

[12] N. et al. Dragoni, “Microservices: Yesterday, Today, and
Tomorrow,” in M. Mazzara, B. Meyer (eds) Present and
Ulterior Software Engineering, Springer, Cham, 2017.

[13] T. Mauro, “Adopting microservices at netflix: Lessons for
team and process design,” 2015, [Online]. Available from:
http://nginx.com/blog/adopting-microservices-at-netflix-
lessons-for-team-and-process-design/ [retrieved: June, 2018]

[14] S. Newman, “Building Microservices,” O’Reilly Media, Inc,
2015.

[15] E. Wolff, “Microservices,” dpunkt.verlag GmbH, 2016.

[16] A. Gupta. "Getting Started with Microservices," DZone
refcardz, Refcard #215, Former version.

[17] V. Reynolds and A. Gupta. "Getting Started with
Microservices. Design Patterns for Decomposing the
Monolith," DZone refcardz, Refcard #215, [Online].
Available from: https://dzone.com/refcardz/getting-started-
with-microservices [retrieved: June, 2018]

[18] C. Pahl and P. Jamshidi, “Microservices: A Systematic
Mapping Study,” 2016, [Online]. Available from:
https://www.researchgate.net/publication/302973857_Microse
rvices_A_Systematic_Mapping_Study [retrieved: June,
2018]

[19] D. Chandran and S. Kempegowda, "Hybrid E-learning
platform based on cloud architecture model: A proposal,"
2010 International Conference on Signal and Image
Processing, Chennai, pp. 534-537, 2010.

[20] B. P. Fazakas, O. C. Iuonas, C. Porumb, and B. Iancu,
"Collaborative learning tools for formal and informal
engineering education," 2017 16th RoEduNet Conference:
Networking in Education and Research (RoEduNet), Targu
Mures, pp. 1-6, 2017.

[21] A. Martin, S. Raponi, T. Combe, and R. Di Pietro, “Docker
ecosystem – Vulnerability Analysis,” Computer
Communications, vol. 122, pp. 30-43, 2018.

[22] V. Singh and S. K. Peddoju, "Container-based microservice
architecture for cloud applications," 2017 International
Conference on Computing, Communication and Automation
(ICCCA), Greater Noida, pp. 847-852, 2017

[23] Kubernetes, [Online]. Available from: https://kubernetes.io/
[retrieved: June, 2018].

[24] Kubernetes, Kubernetes Blog, “Borg: The Predecessor to
Kubernetes,” 2015, [Online]. Available from:
https://kubernetes.io/blog/2015/04/borg-predecessor-to-
kubernetes [retrieved: June, 2018]

[25] Amazon, “Amazon Lambda (AWS Lambda),” [Online].
Available from: https://aws.amazon.com/lambda/ [retrieved:
June, 2018]

[26] Google, “Google Cloud Functions,” [Online]. Available from:
https://cloud.google.com/functions/ [retrieved: June, 2018].

[27] Microsoft, “Microsoft Azure Functions,” [Online]. Available
from: https://azure.microsoft.com/en-in/services/functions/
[retrieved, June, 2018].

[28] G. Mcgrath, J. Short, S. Ennis, and B. Judson, P. Brenner,
“Cloud event programming paradigms: Applications and
analysis,” in: 2016 IEEE 9th International Conference on
Cloud Computing, CLOUD, pp. 400–406, 2016.

[29] M. Villamizar et al., "Infrastructure Cost Comparison of
Running Web Applications in the Cloud Using AWS Lambda
and Monolithic and Microservice Architectures," 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), Cartagena, pp. 179-182, 2016.

[30] Eric J. Evans, “Domain-Driven Design. Tackling Complexity
in the Heart of Software,” Addison Wesley, 2003.

[31] InfoQ 2006, “Domain Driven Design Quickly. C4Media,“
[Online]. Available from: https://www.infoq.com/minibooks
/domain-driven-design-quickly [retrieved: June, 2018]

[32] DIN, "DIN SPEC 91345. Reference Architecture Model
Industrie 4.0 (RAMI4.0), " 2016.

[33] G. Olliffe, “Microservices: Building Services with the Guts
on the Outside,” 2015, [Online]. Available from:
http://blogs.gartner.com/gary-olliffe/2015/01/30
/microservices-guts-on-the-outside [retrieved: June, 2018]

[34] Wikimedia Foundation Inc, “User profile,” [Online].
Available from: https://en.wikipedia.org/wiki/User_profile
[retrieved: June, 2018]

[35] Gartner IT Glossary, “Gartner IT Glossary: Activity Stream,”
2012, [Online]. Available from: http://www.gartner.com/it-
glossary/activity-stream/ [retrieved: June, 2018]

[36] H. Baxter, “An Introduction to Online Communities,”
[Online]. Available from: http://www.providersedge.com/
docs/km_articles/An_Introduction_to_Online_Communities.p
df [retrieved: June, 2018]

[37] M. Rouse, “instant messaging (IM or IM-ing or AIM)”
SearchUnifiedCommunications, [Online]. Available from:
http://searchunifiedcommunications.techtarget.com/definition/
instant-messaging [retrieved: June, 2018]

[38] M. Kerres, "Mediendidaktik. Konzeption und Entwicklung
mediengestützter Lernangebote," Oldenburg Verlag, 2016.

[39] D. A. Bauer, "Template for using Vert.x and Actor4j
(inclusiveley as FaaS)," 2017, [Online]. Available from:
https://github.com/relvaner/relvaner-vertx-template [retrived,
June, 2018]

[40] D. A. Bauer, “Actor4j an actor implementation,” 2017,
[Online]. Available from: https://github.com/relvaner/actor4j-
core [retrieved: June, 2018]

[41] G. McGrath and P. R. Brenner, "Serverless Computing:
Design, Implementation, and Performance," 2017 IEEE 37th
International Conference on Distributed Computing Systems
Workshops (ICDCSW), Atlanta, GA, pp. 405-410, 2017.

[42] M. Asay. "Why AWS Lambda and serverless computing
won't kill Docker in the enterprise. AWS Lambda and Docker
containers may be at odds, but both have a place in a modern
enterprise," in TechRepublic, 2017. [Online]. Available from:
https://www.techrepublic.com/article/why-aws-lambda-and-
serverless-computing-wont-kill-docker-in-the-enterprise/
[retrieved: June, 2018]

[43] Serverless Framework, [Online]. Available from:
https://github.com/serverless/serverless [retrieved: June,
2018]

[44] A. Gupta, “Microservice Design Patterns,” 2015, [Online].
Available from: http://blog.arungupta.me/microservice-
design-patterns/ [retrieved: June, 2018]

[45] D. A. Bauer, "Derivative of Smiley's HTTP-Proxy-Servlet,"
2017, [Online]. Available from: https://github.com/relvaner
/HTTP-Proxy-Servlet [retrived: June, 2018]

[46] R. Schaefer, "From Monolith to Microservices at Zalando", in
GOTO Conferences, 2016. [Online]. Available from:
https://www.youtube.com/watch?v=gEeHZwjwehs
[retrieved: June, 2018]

[47] Zalando, "A streaming layout service for front-end
microservices," [Online]. Available from:
https://github.com/zalando/tailor [retrieved: June, 2018]

[48] C. Jiang, "BigPipe: Pipelining web pages for high
performance," in Facebook, Facebook Engineering, 2010,
[Online]. Available from: https://www.facebook.com/notes/
facebook-engineering/bigpipe-pipelining-web-pages-for-high-
performance/389414033919/ [retrieved: June, 2018]

109Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

http://nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
http://nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
https://dzone.com/refcardz/getting-started-with-microservices
https://dzone.com/refcardz/getting-started-with-microservices
https://www.researchgate.net/publication/302973857_Microservices_A_Systematic_Mapping_Study
https://www.researchgate.net/publication/302973857_Microservices_A_Systematic_Mapping_Study
https://kubernetes.io/
https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes
https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-in/services/functions/
https://www.infoq.com/minibooks%0B/domain-driven-design-quickly
https://www.infoq.com/minibooks%0B/domain-driven-design-quickly
http://blogs.gartner.com/gary-olliffe/2015/01/30%0B/microservices-guts-on-the-outside
http://blogs.gartner.com/gary-olliffe/2015/01/30%0B/microservices-guts-on-the-outside
https://en.wikipedia.org/wiki/User_profile
http://www.gartner.com/it-glossary/activity-stream/
http://www.gartner.com/it-glossary/activity-stream/
http://www.providersedge.com/%0Bdocs/km_articles/An_Introduction_to_Online_Communities.pdf
http://www.providersedge.com/%0Bdocs/km_articles/An_Introduction_to_Online_Communities.pdf
http://www.providersedge.com/%0Bdocs/km_articles/An_Introduction_to_Online_Communities.pdf
http://searchunifiedcommunications.techtarget.com/definition/instant-messaging
http://searchunifiedcommunications.techtarget.com/definition/instant-messaging
https://github.com/relvaner/relvaner-vertx-template
https://github.com/relvaner/actor4j-core
https://github.com/relvaner/actor4j-core
https://www.techrepublic.com/article/why-aws-lambda-and-serverless-computing-wont-kill-docker-in-the-enterprise/
https://www.techrepublic.com/article/why-aws-lambda-and-serverless-computing-wont-kill-docker-in-the-enterprise/
https://github.com/serverless/serverless
http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/
https://github.com/relvaner%0B/HTTP-Proxy-Servlet
https://github.com/relvaner%0B/HTTP-Proxy-Servlet
https://www.youtube.com/watch?v=gEeHZwjwehs
https://github.com/zalando/tailor
https://www.facebook.com/notes/%0Bfacebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919/
https://www.facebook.com/notes/%0Bfacebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919/
https://www.facebook.com/notes/%0Bfacebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919/

