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Abstract—The concept of self-evolving botnets, where computing
resources of infected hosts are exploited to discover unknown
vulnerabilities and the botnets evolve autonomously, has been
introduced and their threats have been shown in the literature.
In order to protect networks from the self-evolving botnets,
this paper provides an epidemic model taking into account
the infection routes in infection control environments to which
countermeasures against the self-evolving botnets are applied. We
show the behaviors of the epidemic model through simulation
experiments.
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continuous-time Markov chain.

I. INTRODUCTION

Recently, machine learning techniques have been widely
used and achieved significant results in various research areas.
In addition, some researchers have proposed vulnerability
discovery methods that discover bugs and vulnerabilities with
machine learning techniques [5][6]. Although the main purpose
of these methods is to protect software, they can be used for
discovering unknown security holes and exploited for illegal
attacks by malicious attackers. To perform illegal attacks,
malicious attackers often control botnets, which consist of
many infected hosts named zombie computers. The malicious
attackers can discover unknown vulnerabilities with distributed
machine learning using the computing resources of the zombie
computers.

Based on these facts, in [4], Kudo et al. have introduced a
new concept named self-evolving botnets. Self-evolving bot-
nets discover vulnerabilities by performing distributed machine
learning with computing resources of zombie computers and
evolve autonomously based on the vulnerabilities. Accord-
ingly, they infect other hosts and make themselves bigger. The
authors have shown that the infectivity of self-evolving botnets
is very high, compared with conventional botnets. In response,
in [2], Hongyo et al. have proposed some epidemic models
that consider countermeasures against self-evolving botnets
and shown their effectiveness.

In this paper, we propose an epidemic model for self-
evolving botnets taking into account the infection routes of
the botnets in infection control environments to which some
countermeasure methods are applied. Because the infectivity
of the botnets often depends on infection routes, the proposed
epidemic model expresses the infection routes by overlay
networks that are constructed according to relationships among
hosts. The proposed epidemic model makes continuous-time
Markov chains with the overlay networks and show the be-
havior of the self-evolving botnets in infection control environ-
ments. The rest of this paper is organized as follows. Section II
explains our proposed epidemic model. We then evaluate it in
Section III.

II. EPIDEMIC MODEL FOR SELF-EVOLVING BOTNETS

We use an Susceptible-Infected-Recovered-Susceptible
(SIRS) model to represent the state of each host in a network.
In the SIRS model, “S” means that the host has vulnerabilities,
“I” means that the host is infected, and “R” means that the host
has no known vulnerabilities. Each host belongs to one of the
states. We assume that hosts in the state R can get infected
by unknown vulnerabilities which are discovered by a self-
evolving botnet. Hosts in the state S move to the state I when
they get infected by attacks of a botnet. Then, the hosts are
embedded in the botnet. Hosts in the state S and the state I
move to the state R when known vulnerabilities and the botnet
malware, respectively, are removed from the hosts by suitable
means, such as OS updates and anti-virus software. Note that
we assume that all vulnerabilities are simultaneously removed
in these cases. When the botnet discovers a new vulnerability,
all hosts in the state R move to the state S because the botnet
can infect the hosts by using the discovered vulnerability.

The proposed epidemic model considers relationships
among hosts in the above SIRS model because infection routes
of the self-evolving botnets depend on the relationships, e.g.,
their friendships, frequently accessed web sites, and physical
network environments. To express the relationships, we use an
overlay network consisting of hosts. Hosts in state I can infect
only adjacent susceptible hosts on the overlay network. Under
this assumption, the proposed epidemic model formulates the
infection process of the self-evolving botnet as a continuous-
time Markov chain, where the occurrence of each event a)-d)
described below in the SIRS model follows a Poisson process.

(a) A new vulnerability is discovered by the self-evolving
botnet according to a Poisson process with the discovery rate
η(v + 1), where v denotes the number of infected hosts and
η denotes the discovery rate of a new vulnerability by each
infected host. The discovery rate is proportional to the number
of infected hosts, which means that the self-evolving botnet
performs distributed machine learning with the computing
resources of the infected hosts. When this event occurs, all
the hosts in the state R moves to the state S.

(b) Each host in the state S removes its own vulnerabilities
according to a Poisson process with the recovery rate δS , and
then moves to the state R.

(c) Each host in the state I infects an adjacent host in the
state S on the overlay network according to a Poisson process
with the infection rate α. In this case, the adjacent host moves
to the state I.

(d) Each host in the state I removes the botnet malware
according to a Poisson process with the removal rate δI, and
then moves to the state R.
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Figure 1. Botnet survival ratio.

We then consider countermeasures against the self-evolving
botnet. As the countermeasures, we adopt a Kill-Signal (KS)
model and a volunteer model. The KS model proposed in [3]
uses a warning signal called Kill-Signal having information
on known vulnerabilities. In the KS model, the hosts in the
state R send a Kill-Signal to susceptible hosts. The hosts
receiving the Kill-Signal can know their vulnerabilities due to
the Kill-Signal and repair them. The volunteer model aims to
discover and repair unknown vulnerabilities with computing
resources of volunteer hosts before the self-evolving botnet
discover the vulnerabilities, so that it suppresses the evolution
of the self-evolving botnet. In this paper, for simplicity, we
assume that all uninfected hosts (i.e., hosts in the states S or
R) belong to a volunteer group and a network administrator
can use their computing resources to discover vulnerabilities.
The information on discovered vulnerabilities are shared by all
uninfected hosts. These models add or replace the events in
the Markov chain as follows.

(e) Each host in the state R sends a Kill-Signal to an
adjacent susceptible host on the overlay network according
to a Poisson process with the sending rate βS. In this case, the
adjacent host moves to the state R.

(f) A new vulnerability is discovered by the volunteer
group according to a Poisson process. Accordingly, the infec-
tivity of the self-evolving botnet is weakened. To represent
this behavior, the volunteer model replaces the discovery
rate of the self-evolving botnet described in event (a) with
η(v + 1)/(σ(N − v) + 1), where σ denotes the vulnerability
discovery rate of a volunteer host.

III. EVALUATION

To examine the behavior of the proposed epidemic model,
we conduct simulation experiments. We assume that there are
N = 1, 000 hosts in a network and the overlay network is
constructed based on the Barabasi-Albert model [1], where
the average degree of hosts is 20. One host is infected and all
the other hosts are in the susceptible state at time t = 0. We
refer to the infected host at time t = 0 as the initial infected
host. The parameters are set to be η = 0.05, δS = βS = 0.1,
δI = 0.1, α = 0.1, and σ = 0.3.

Figure 1 shows the botnet survival ratio as a function of
the elapsed time. The botnet survival ratio means the ratio of
the number of samples in which one or more infected hosts
still exist at time t to the total number of samples. In this
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Figure 2. Average number of infected hosts.

figure, “Top” (resp. “Bottom”) indicates the result in the case
where a host with the maximum (resp. minimum) closeness
centrality is selected as the initial infected host. Furthermore,
“default” represents the result of the self-evolving botnets
without countermeasures, “KS” represents the result of the KS
model, “volunteer” represents the result of the volunteer model,
and “KS-volunteer” represents the result of the mixed model of
the KS and volunteer models. As we can see from this figure,
the botnet survival ratio is large when selecting a host with the
maximum closeness centrality as the initial infected host. We
also observe that the botnet survival ratio of “default” is very
high. “KS” decreases the botnet survival ratio at early stage,
but does not decrease with the time elapsed. On the other hand,
“volunteer” first does not decrease the botnet survival ratio, but
gradually decreases it. This result implies that the volunteer
model can weaken the capability of the self-evolving botnet
even though the self-evolving botnet spreads. Furthermore,
“KS-volunteer” eliminates the self-evolving botnet early in all
samples.

Figure 2 shows the average number of infected hosts of
samples in which there exist infected hosts at time t as a
function of the elapsed time t. As shown in this figure, the
average numbers of infected hosts of “default” and “KS” in-
crease and converge to a high value, regardless of the closeness
centrality of the initial infected hosts. On the other hand,
“volunteer” can reduce the the average number of infected
hosts constantly. Furthermore, “KS-volunteer” can eliminate
completely the self-evolving botnet.
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