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Abstract—Fast and efficient beam management mechanism is
the key enabler in 5G (millimeter wave) to achieve low latency
and high data rate requirements. Recent advances in Artificial
Intelligence (AI) have shown that Machine Learning (ML) and
Deep Learning (DL) based techniques can play a significant
role in efficient beam management. These techniques can
continuously learn and adapt themselves based on the highly
varying traffic and channel conditions. For effective operation,
it is essential that the ML and DL based beam management
algorithm should be deployed at the place in network where all
the relevant input parameters needed for beam management
are available continuously, as well as the output of the beam
management can be applied instantly. In this paper,
advantages along with challenges of deploying ML and DL
based beam management techniques at the wireless edge of SG
networks are explored.
Keywords-mmWave; beam
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L INTRODUCTION

The millimeter wave (mmWave) frequencies offer the
availability of huge bandwidths to provide unprecedented
data rates to meet the demand for Fifth Generation (5G)
applications. However, mmWave links are highly susceptible
to rapid channel variations and suffer from severe free space
pathloss and atmospheric absorption. To address these
challenges, base stations and mobile terminals use highly
directional antennas to achieve enough link budget in wide
area networks. Directional links, however, require fine
alignment of the transmitter and receiver beams, achieved
through a set of operations known as beam management.
They are fundamental to the performance of a variety of
control tasks including (i) Initial Access (IA) for idle users,
which allows a mobile User Equipment (UE) to establish a
physical link connection with a gNB (5G base station), and
(ii) Beam tracking, for connected users, which enables
beam adaptation schemes, or handover, path selection and
radio link failure recovery procedures [1][2]. Figure 1
captures the details of the beam management procedure for
5G Stand Alone (SA) scheme. In existing Long-Term
Evolution (LTE) systems (using spectrum in 3-5 GHz), these
control procedures are performed using omnidirectional
signals, and beamforming or other directional transmissions
can only be performed after a physical link is established, for
data plane transmissions. On the other hand, in the mmWave
bands, it is essential to exploit the antenna gains even during
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initial access and, in general, for control operations. Hence,
there is a need for precise alignment of the transmitter and
the receiver beams.
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Figure 1. 5G Stand Alone beam management procedure

The initial access in 5G millimeter wave is a time-
consuming search to determine suitable directions of
transmission and reception. In the cell discovery phase, one
approach is sequential beam sweeping by the base station
that requires a brute force search through many beam-pair
combinations between UE and gNB to find the optimum
beam-pair i.e., the one with the highest Reference Received
Signal Power (RSRP) level, as shown in Figure 2. The
sequential search may result in a large access delay and low
initial access efficiency. It also consumes a fair amount of
energy in the receiver, which makes it unsuitable for energy
constrained receivers, such as Internet of Things (IoT)
endpoints.
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Figure 2. Sequential Beam Sweeping
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In existing LTE systems, DL channel quality is estimated
from an omnidirectional signal called the Cell Reference
Signal (CRS) [3] for beam alignment and selection in
connected state. CRS is regularly monitored by each UE in
connected state to create a wideband channel estimate that
can be used both for demodulating downlink transmissions
and for estimating the channel quality [4]. In 5G mmWave
networks, in addition to the rapid variations of the channel,
CRS-based estimation is challenging due to the directional
nature of the communication, thus requiring the network and
the UE to constantly monitor the direction of transmission of
each potential link. Tracking changing directions can
decrease the rate at which the network can adapt and can be a
major obstacle in providing robust and ubiquitous service in
the face of variable link quality. In addition, UE and gNB
may only be able to listen to one direction at a time, thus
making it hard to receive the control signaling necessary to
switch paths.

From the above description, it is apparent that 5G
networks should support a mechanism by which the users
and the infrastructure can quickly determine the best
directions to establish the mmWave links. These are
particularly important issues in 5G networks and motivate
the need to extend current LTE control procedures with
innovative mmWave-aware beam management algorithms
and methods.

In this paper, we explore various traditional as well as
upcoming ML and DL based techniques for minimizing the
latency and the overhead of the initial communication
process. It has been observed that online DL based
techniques give better performance than offline DL based
techniques. Online DL techniques efficiently adapt
themselves to support high mobility in mmWave systems.
Deployment strategies for the training of these deep learning
algorithms are explored in this paper and we propose that the
wireless edge is the appropriate place for the deployment of
these DL based algorithm for beam management.

The remainder of this paper is organized as follows.
Section II discusses the literature survey of traditional (non-
ML/DL) beam management techniques, as well as ML/DL
based mean management techniques. Section III discusses in
detail different ML/DL based beam management techniques.
Section IV discusses the deployment strategy of the deep
learning-based beam forming algorithm and Section V
presents the conclusions.

II. LITERATURE SURVEY

In this section, work related to traditional (Non-ML/DL)
and ML/DL based beam management is presented.

Traditional (Non-ML/DL) based beam management:
Several approaches for directional based schemes have been
proposed in the literature to enable efficient control
procedures for both the idle and the connected mobile
terminals. Most literature on Initial Access and tracking
refers to challenges that have been analyzed in the past at
lower frequencies in ad hoc wireless network scenarios or,
more recently, referred to the 60 GHz IEEE 802.11ad
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WLAN and WPAN scenarios (e.g., [5]-[7]). However, most
of the proposed solutions are unsuitable for next-generation
cellular network requirements and present many limitations
(e.g., they are appropriate for short range, static and indoor
scenarios, which do not match well the requirements of 5G
systems). In [8][9], the authors propose an exhaustive
method that performs directional communication over
mmWave frequencies by periodically transmitting
synchronization signals to scan the angular space. The result
of this approach is that the growth of the number of antenna
elements at either the transmitter or the receiver provides a
large performance gain compared to the case of an
omnidirectional antenna. However, this solution leads to a
long duration of the Initial Access with respect to LTE, and
poorly reactive tracking.

Similarly, in [10], measurement reporting design options
are compared, considering different scanning and signaling
procedures, to evaluate access delay and system overhead.
The channel structure and multiple access issues are also
considered. The analysis demonstrates significant benefits of
low-resolution fully digital architectures in comparison to
single stream analog beamforming. More sophisticated
discovery techniques are reported in [11][12] to alleviate the
exhaustive search delay through the implementation of a
multi-phase hierarchical procedure based on the access
signals being initially sent in few directions over wide
beams, which are iteratively refined until the communication
is sufficiently directional. In [13], a low-complexity beam
selection method by low-cost analog beamforming is derived
by exploiting a certain sparsity of mmWave channels. It is
shown that beam selection can be carried out without explicit
channel estimation, using the notion of compressive sensing.
The issue of designing efficient beam management solutions
for mmWave networks is addressed in [14], where the author
designs a mobility-aware user association strategy to
overcome the limitations of the conventional power-based
association schemes in a mobile 5G scenario.

Other relevant papers on this topic include [15], in which
the authors propose smart beam tracking strategies for fast
mmWave link establishment. The algorithm proposed in [16]
takes into account the spatial distribution of nodes to allocate
the beam width of each antenna pattern in an adaptive
fashion and satisfy the required link budget criterion. Since
the proposed algorithm minimizes the collisions, it also
minimizes the average time required to transmit a data
packet from the source to the destination through a specific
direction. In 5G scenarios, papers [8][9][11] give some
insights on trade-offs among different beamforming
architectures in terms of user communication quality.
Articles [17][18] evaluate the mmWave cellular network
performance while accounting for the beam training,
association overhead and beamforming architecture. The
results show that, although employing wide beams, initial
beam training with full pilot reuse is nearly as good as
perfect beam alignment.

ML/DL based beam management: The recent progress
in Machine learning and Deep Learning has raised interest in
applying these techniques to communication system related
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problem [19] — [25]. On the same line of thought as
traditional beam management approaches, data-driven Deep
Learning-based approaches have been used for efficient
beam management. The key idea is that ML/DL is used to
make recommendations of promising beam pairs based on
the various system parameters as well as past beam
measurements.

Papers [26] - [28] propose beam alignment techniques
using Machine Learning. Position-aided beam prediction was
proposed in [26][27]. Decision tree learning was used in
[26], and a learning to rank method was used in [27]. The
work in [26] - [28] shows that machine learning is valuable
for mmWave beam prediction. A more exhaustive survey is
provided in the next section.

III. INSIGHT OF ML/DL BASED BEAM MANAGEMENT
TECHNIQUES

This section captures the detailed analysis of challenges
related to Beam sweeping, Beam alignment and Beam
selection using ML/DL based techniques.

A.  Beam Sweeping

There are various papers which focus on predicting the
proposed Beam sweeping pattern based on the dynamic
distribution of user traffic. In [29], a form of Recurrent
Neural Networks (RNNs) called a Gated Recurrent Unit
(GRU) has been proposed. In this paper, the spatial
distribution of users is inferred from data in Call Detail
Records (CDRs) of the cellular network. Results show that
the user’s spatial distribution and their approximate location
(direction) can be accurately predicted based on CDRs data
using Gated Recurrent Unit (GRU), which is then used to
calculate the sweeping pattern in the angular domain during
cell search. In [30] beam sweeping pattern based on GRU is
compared with random starting point sweeping to measure
the synchronization delay distribution. Results shows that
this deep learning beam sweeping pattern prediction enables
the UE to initially assess the gNB in approximately 0.41 of a
complete scanning cycle with probability 0.9 in a sparsely
distributed UE scenario.

Figure 3 shows that, in the sparsely distributed UE
scenario, DL based techniques can help to reduce the number
of beams to be traversed during beam sweeping. As a result,
it will reduce the sweeping time drastically.

(a) (b)

Figure 3. Beam Sweeping in Sparsely distributed UE Scenario
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B.  Beam Alignment and Selection

Position-Aided: Position information may be leveraged
for fast beam alignment in mmWave systems. Inverse
fingerprinting is one approach to exploit position
information [31], which works in Non-Line-of-Sight
(NLOS) channels. There are multiple research papers [32]-
[34] which focus on using machine learning to propose
beam pairs based on the location of the UE position relative
to the gNB and past beam measurements. The UE location
and past beam measurements can be input into a learning
algorithm that learns to rank promising beam directions. By
prioritizing beam training in top-ranked directions, the
training overhead can be reduced. Figure 4 shows the steps of
beam management based on Position Information.

Recommended
Beam Pairs

Beam Pair

Position Info ) .
Selection

Figure 4. Beam Management based on Position Information

Paper [34] proposes UE positions-based beam alignment
in the context of vehicular communication. The authors state
that this inverse fingerprinting method is efficient. However,
these approaches have some limitations. First, the approach
is offline, which means its use is delayed until the database
is collected. Second, also due to being offline, its
performance depends entirely on the accuracy of the
collected database, which may become stale over time. To
overcome these shortcoming, online approaches have been
proposed. In the online approaches, it has been proposed to
keep collecting new observations during operation, making
it possible to improve the database.

Situational Awareness: Machine learning tools
combined with awareness of the proximity situation have
been proposed in [35] to learn the beam information (power,
optimal beam index, etc.) from past observations. In this
paper, situational awareness that is specific to the vehicular
setting including the locations of the receiver and the
surrounding vehicles has been considered. The result shows
that situational awareness along with machine learning can
largely improve the prediction accuracy and the model can
achieve throughput with little performance loss and almost
zero overhead.

Coordinated Beamforming: A coordinated
beamforming solution using deep learning was proposed in
[36]. In this paper, the received training signals via omni
reception at a set of coordinating Base Stations (BSs) are
used as the input to a deep learning model that predicts the
beamforming vectors at those BSs to serve a single user.
These coordinated beamforming deep learning techniques
are based on supervised learning techniques, which assume
an offline learning setting and require a separate training
data collection phase. However, there are papers which
focus on online learning algorithms using the Multi Armed
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Bandit (MAB) framework, which is a special class of
Reinforcement Learning (RL).

IV. DEPLOYMENT STRATEGY AT WIRELESS EDGE

From the above studies we can see that ML/DL
leverages a large amount of data samples (e.g., radio
signals) to acquire accurate knowledge of the RF
environment to have optimum beam management. However,
the majority of the works presented above focus on
centralized ML/DL (as shown in Figure 5), whose goal is to
improve the communication performance assuming a well-
trained ML model as well as full access to a global dataset.
It also assumes massive amounts of storage and computing
power are available.

Base Base Base
Station 1 Station 2 Station 3
Mobile
Station

Figure 5. Centralized Deployment of ML/DL Algorithms

However, these approaches have overlooked the
additional latency induced by the prior training process and
the posterior inference latency. Along with that, for highly
varying channel conditions, we need to regularly provide the
updated input information to the ML/DL based model.

In this paper, we propose a deployment of ML/DL based
algorithm for optimal beam management as a distributed
solution, leveraging the Mobile Edge architecture. As we
shall show, there will be numerous advantages if we deploy
the ML/DL model in a more distributed way (i.e. at
Wireless Edge) instead of centralized ML/DL (i.e. at the
cloud), as captured in Figure 6.

In this deployment, we have assumed that the Wireless
Edge will be present near to gNB. As a result, Wireless Edge
will have immediate access to all the relevant data i.e. RF
related data, Channel specific data, Cell specific data and
User specific data. This will help to use the online learning
model which will continuously train itself based on the latest
UE and channel information received.

gNBs interact with each other and can have access to
relevant information from the neighboring gNBs. These
inputs will boost the performance of situational based and
coordinated DL/ML model deployed at the wireless edge, as
these models can make decisions based on the overall
environmental conditions i.e., interference as well as other
neighboring gNB parameters. The wireless edge can interact
with central/cloud processing unit for exchanging the
common information to all the gNBs.
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Figure 6. Deployment of ML/DL Algorithms at Wireless Edge

Based on the above description, some of the key
advantages of the deployment of a DL\ML based algorithm
at wireless edge are as follows:

(1) Performing inference at wireless edge reduces latency
and cost of sending data to the cloud for prediction.

(i1) Rather than sending all data to the cloud for performing
ML inference, inference is run directly at the wireless Edge
device, and data is sent to the cloud only when additional
processing is required.

(iii) Every wireless edge entity will have access to a fraction
of the data and training and inference are carried out
collectively. Moreover, edge devices communicate and
exchange their locally trained models, instead of exchanging
their private data.

(iv) Since inference results will be available with very low
latency, better beam management performance will be
achieved in highly mobile and dynamically changing
environment conditions.

(v) Since data is present locally at the edge and not going to
the cloud, it will enhance the overall reliability as well as
privacy.

(vi) Higher inference accuracy can be achieved by training
with a wealth of user-generated data e.g., location history,
network operational status, etc.

However, there are certain challenges in deploying the
ML/DL based algorithms at wireless edge, as follows:

(i) There is a lack of authentic set of data from real
communication systems or prototype platforms in actual
physical environments. So far, simulations results
[32][33][36] prove that the recently proposed DL-based
communication algorithms demonstrate a competitive
performance. However, due to the lack of standardized data,
benchmarking the performance is a real challenge.
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(i1) In the wireless edge-based ML/DL deployment, training
data might be distributed at different wireless edge nodes
and a given wireless edge node might have access to a
fraction of the training data. Hence, in wireless edge based
deployment, each edge device first trains the local model
using its own data samples, and then exchanges the trained
local model parameters among other wireless edges. Also, it
is difficult to characterize the convergence behavior as well
as model performance (i.e., whether the trained model is
overfitted or underfitted) due to the distributed nature of the
data. As a result, the complexity of networks and training
phases will be increased in edge-based ML/DL deployment.

CONCLUSION

From the analysis mentioned above, we can say that
emerging DL/ML based techniques can be used for efficient
beam management in 5G mmWave. These AI based
algorithms deployed at wireless edge can help in providing
high performing networks and services that can handle data
in a much more secure and faster way for 5G.
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