AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

Security Methods Implementation and Quality of Experience (QoE) for Web
Applications Performance

Ustijana Rechkoska-Shikoska
University for Information Science and Technology UIST “St. Paul the Apostle”
Ohrid, Macedonia
e-mail: ustijana@gmail.com

Abstract— Web apps have a big impact in most of our activities
nowadays. Unfortunately, they are also a target for illegal
actions. When attacking Web apps, a hacker will try several
means of compromising the applications, paying special
attention to the database driven Web apps. The Structured
Query Language (SQL) Injection Attacks (SQLIAS) are one of
the most common methods of data theft on Web apps. SQLIA
is a hacking technique that attackers use to compromise the
database in most of Web apps, by manipulating SQL queries to
change their behavior. Concomitantly, the attackers get full
access harvesting sensitive information and taking control over
the application for their personal benefit. The aim of this work
is to acknowledge multiple security methods, such as
parameterized statements, parameterized stored procedures,
customized error messages and input validation type as
efficient means for preventing SQLIA simulated on an online-
based database application, MoviesBox. The successful
prevention of the attack was confirmed through conducting a
series of performance tests after the injection of malicious
codes and Quality of experience (QoE) methods
implementation.

Keywords-Web Application; SQL Injection; Cyber Security;
Defense; Database Security.

1. INTRODUCTION

The growth of corporate Web applications (Web apps)
provides many opportunities for e-businesses to grow faster.
These have become a significant communication channel
among different kinds of service providers and clients over
the Internet. However, the beneficial opportunities of Web
apps also increased the security issues of a third party
interfering. Even though there are many approaches for us to
test the flaws and vulnerabilities, Web apps demand a more
technology-independent solution.

Web apps are frequently vulnerable to attacks due to time
and financial constraints, poor programming skills and lack
of security awareness. These flaws provide opportunities for
accessing sensitive information data that can lead to serious
consequences and great damage. Therefore, an attacker can
compromise this configuration faults and gain a full illegal
access to user sensitive data. For this reason, governments, as
well as many corporations and research communities, are
paying increased attention to this issue in order to prevent its
progression [1].

One of the top ten most dangerous attacks on Open Web
Application Security Project (OWASP) is the SQL Injection
Attack. This type of attack can do serious damage to

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

database-driven applications, such as manipulation of the
user input data, silent spying and monitoring, even corrupt
and delete an entire database and gain unauthorized access to
other network servers. Normally, this attack is done by
injecting some malicious SQL code to the actual query
driven by the application program in order to traverse, insert,
update or delete the data. Even though there are number of
mechanisms to detect the SQL injection attack, serious
research has to be carried out to reveal the hidden and
unexploited paths of these mechanisms, which may
strengthen the defense against SQLIA. Based on literature
review, our research did not find sufficiently favorable
results concerning coding flaws level. Thus, there is a solid
need to provide additional “rules” to the developers to secure
Web apps from attacks. Numerous organizations have spent
a great deal of money on antivirus programs, data leakage
prevention systems and network firewalls on the off chance
that software engineers follow the appropriate guidelines,
hopefully saving a considerable amount of cash on cyber-
attack prevention. As mentioned earlier, the coding flaws are
crucial and they can lead to serious vulnerabilities in Web
apps simply because they are easy to discover and abuse [2].
Therefore, the purpose of this work is to serve as basic
guidelines to programmers to write code in a more secure
manner, with the end goal of shielding Web apps from
cyber-attacks.

The rest of the paper is structured as follows. In Section
I1, there is a detailed overview of the latest studies published
regarding the SQLIA and the preventive approach that will
be established in contrast to the already proposed methods.
Section III gives a general idea and benefits of using Web
apps, a detailed description of security, as well as types of
malicious attacks and a background detail of SQLIA. In
Sections IV, V, VI and VII, a vulnerable Web app made for
SQLIA testing is presented and a method is proposed for
protection of the aforementioned attack, execution of the
proposed method and a penetration testing [3] that will prove
the effectiveness of the implemented prevention techniques.
Section VIII includes a test of the performance of the
proposed Web app conducted on thirteen people. Sections IX
and X present the conclusions and future work.

II. RELATED WORK

Because of the significant impact of Web apps in modern
networking, attempts must be made for ensuring their safety.
Following this prospect, many computer engineers are

122

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

constantly trying to establish new and improve the already
used techniques for prevention of SQLIA. A detailed
overview of the studies published concerning these attacks
has shown that, so far, promising efforts have been made in
these fields, which guarantee the safety of Web apps and
serve as tools for decreasing the rates of data theft.

A. Input validation attack including SQLIAs and Cross Side
Scrpting (XSS)
An application is considered vulnerable when it does not
properly filter or validate the entered data by a user on a Web

page [4].
B. Static analysys and automated reasoning

Static analysis is one of the most often used techniques
for analyzing the code [5] [6]. These techniques are used to
detect the vulnerable code by scanning the Web app with the
use of heuristic or information flow analysis. Moreover, they
can also produce a false positive and false negative result
because of the conversion of suspicious input. A
combination of static analysis and automated reasoning
techniques is the most suitable for detection of queries that
contain tautologies by the Web app.

C. Encryption of confidential data

Encryption of confidential data stored in a database will
not allow an unauthorized user to read confidential data
even if it gets access by employing any kind of malicious
technique [7].

In contrast to other published papers regarding
investigations of SQLIA techniques and concisely
describing each one of them, in this paper, SQLIA will be
described in detail supported by appropriate examples.
Additionally, the exploited vulnerabilities used for injection
of malicious queries will provide knowledge to Web
developers about the most exploited vulnerabilities, at the
same time briefly describing the impact of SQL Injection.
As opposed to [8]-[12], this paper will also propose useful
guidelines and will illustrate a different approach to
differentiate types, techniques and tools of SQLIA.

III. 'WEB APPLICATION AND SECURITY

Web development is generally associated with building
Web sites for the Internet. It includes the development of a
wide range of applications from simple plain text Web pages
to complex Internet applications, mostly intended for
electronic businesses and social networks. In scientific terms,
a Web application is any computer program which uses Web
browsers or technology as means for performing various
tasks on the Internet.

The security of Web apps is the most important
component of any e-commerce corporation, but, when
deployed online, it is in the Internet’s nature to expose
properties for attacking Web apps from various locations
using different levels of scale and complexity. Therefore,
Web application security is essential and it deals specifically
with security surrounding Websites, Web apps and Web

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

l

services. Common methods of attacks, or "vectors", range
from targeted database exploitation to large-scale network
disruption. Such methods are:

. Cross Site Scripting (XSS) — attack where the
hacker attaches code at the end of the Websites
URL or it posts directly onto a page with user
content and that attack will mostly execute when the
victim loads the Website. Moreover, XSS is a
client-side code injection attack.

. SQL Injections Attacks (SQLIAs) — typically occur
by sending malicious SQL queries to an Application
Programming Interface (API) endpoint provided by
a Website or service, allowing the attacker to gain
root access to a machine.

. Denial-of-Service (DoS) and Distributed Denial-of-
Service (DDoS) — type of cyberattack where the
hacker is able to perform traffic attack on a targeted
server. The server then will no longer process
incoming requests effectively and eventually deny
service to legitimate users’ incoming requests.

. Memory Corruption- this happens when a memory
location is unintentionally changed and attackers
take advantage of it to perform code injections or
buffer overflow attacks.

. Buffer Overflow — by injecting malicious code into
the memory, the buffer's ability to overflow can be
exploited, potentially creating faults in the target
machine.

. Cross-Site Request Forgery (CSRF) — type of attack
that accidently tricks a user to change passwords,
emails or transfer funds, which allows attackers to
take control of the Web application.

IVv.

In this paper, more details will be given about SQLIA.
Right now, SQLIA stands among the most dangerous
threats to databases and Web apps. It typically includes
malicious updates, modification of the user SQL input,
either by changing the structure of existing conditions or by
including additional conditions. Figure 1 demonstrates how
an SQL Injection Attack is performed.

SQL INJECTION ATTACK

Web Server

Inject SQL
Code.

Web Page 1 2
Web Page 2

— |

———————— 3

Web Page n. | Result based
tected

1
on Inj;

www.victim.com
1
; ; -

Attacker

Result based on Database

Injectd code.

Figure 1. SQL Injection Attack
a) A user is accessing a Web application by typing the
address in the URL.
b) The attacker injects malicious code to the Web
application.

¢) The malicious SQL-query is passed to the database
server from the Web server.

123

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

d) The database management system sends the results
based on the injected code back to the Web server. The
results can be some data or error message or confirmation,
depending on the injection type.

e) The Web server sends/shows the same result back
to the attacker.

V. WEB APPLICATION AND SQLIA IMPLEMENTATION

MoviesBox is developed as an online database Web app,
which is later used for SQLIA simulation. It contains three
pages front-end written in Hypertext Markup Language 5
(HTMLYS), Cascading Style Sheet 3 (CSS3), Java Script and
Bootstrap framework. For the server-side functionality, we
used Hypertext Preprocessor (PHP) Language, MySQL-an
Oracle-backed open source relational database management
system (RDBMS) based on Structured Query Language
(SQL), MySQL database and The Movie Database 3
(TMDb3) API. The application uses three types of
authentication such as guest session, user and admin
authentication.

In Figure 2, the Back End (Server side) and the Front
End (Client Side) are presented.

Figure 2. Back End (Server side) and Front End (Client Side)

A. Types of SOLIA

In order to prevent SQLIA, it is necessary to know the
various techniques by which the attackers explore the
vulnerabilities of the code and find the way to attack. They
can be executed in the following ways:

1) Boolean-Based Blind: SQL injection technique that
relies on statements that are always true. It is based on
Boolean values (true or false), as suggested by the name, so
the queries always give results by evaluating the condition
WHERE.

SELECT * FROM users WHERE username = 'john' AND
password ="'1234';

In this scenario, it was assumed that the user had John as
username and 1234 as password. This code can be exploited
by adding a condition that is always true and just comment
out the password part. By inputting the following, the
attacker can easily gain access as user: xxx@xxx.xxx'

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

OR 1=1 LIMIT -- 'l for the username field; xxx as
password. The new dynamic statement will be:

SELECT * FROM wusers WHERE username =
'xxx@xxx.xxx' OR 1=1 LIMIT -- 7" AND password = 'xxx';

. xxx' ends with a single quote, which is a character
limiter in SQL. With ' we delimit strings and we
can test if the strings are properly escaped in the
application or not.

. OR 1=1 LIMIT is a condition that is always true
and limits the returned results to only one record.

. --'l is an SQL comment that removes the password
part.

2) Union- Based Blind: type of attack that attackers use
to obtain information from the database by extending the
original query results. In other words, the attacker takes
advantage of the UNION operator, which is used in SQLIA
to join a query to the original, intentionally forged by the
tester. The tester can access the values of columns of other
tables by joining the results of the forged and original query.
This means, the attackers are using this technique because
they are not able to edit the original query to obtain what
they want and this is the only way of running two or more
SELECT statements into a single result.

SELECT username FROM userdata WHERE id="23";
The injected query will look as follows:

SELECT username FROM userdata WHERE id=""
UNION
SELECT * FROM userdata.

This code will return all the detailed information of the
table userdata.

3) Time-Based Blind: If there is a possibility when the
hacker has no other way to retrieve information from the
database server, the time-based blind method is used. The
attacker uses an SQL statement which contains a particular
database function to cause a time delay. The possibility of
obtaining some information depends on the time it takes to
get the server response. This kind of attack is not only used
for determining the vulnerabilities, but also for extracting
data from the server by integrating a time delay in a
conditional statement. Consider the followin SQL
statement:

SELECT * FROM users WHERE 1d=2;

By using time-based blind technique, the new injected
query will be:

SELECT * FROM users WHERE id=2-SLEEP(20);

124

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

With the injected query, the attacker can only identify if
the parameter is vulnerable to SQLIA. As mentioned before,
time-based blind technique can not only check Web app’s
vulnerability, but also verify its database version and extract
data from it. If the server responds in 20s, it can be
concluded that the database is running on MySQL 5.0
server. This is done by using the malicious query:

SELECT * FROM users WHERE
IF(MID(VERSION(),1,1) = '5', SLEEP(20), 0);

id=2-

4) Error-Based Blind: this technique is based on errors.
Getting these errors indicates that the Web app is connected
to a database and it is vulnerable to SQLIA. The injection of
malicious code in the query that produces errors is done by
sending or typing additional text to the server by Uniform
Resource Locator (URL). After getting the error, it can be
assumed what target is going to be next. To test whether the
Web app is vulnerable, we can just put a single quote at the
end.

VL

1) Parameterized Queries

The use of parameterized statements, also known as
prepared statements, can reduce the SQLIA by constructing
the SQL-queries in a more secure way. If used exclusively,
these statements completely remove the risk of all the
SQLIA types such as tautology, timing attack, end of line
comment and piggy backed attacks. Besides securing the
Web app, prepared statements have another advantage
because they help increase the work speed when executing
the same or similar statements repeatedly.

SQL INJECTION PREVENTION TECHNIQUES

$q = $conn->prepare(“SELECT * FROM userdata WHERE
Username = ? && Password = ?”);

$->bind_param(“ss”, $Susername, $password);
$q->execute();

In this code, implemented in MoviesBox, it is obvious
that for the prepared statement we use a question mark (?) to
substitute the parameters (integer, string, double or blob
value). The second function binds the parameters and it is
sending information to the database about what the
parameters are. The “ss” informs the database server that the
parameter is a string. The last function executes the
parameters, where a dangerous SQL string will look as
follows:

$q = "SELECT * FROM userdata WHERE Username =
'$username' && Pass = '$password'";

The main difference is the $q->execute(); method
where the data is being passed. In the code with prepared
statements, the parameterized string and parameters are
passed to the database separately, enabling the driver to read

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

them correctly, while the SQL statement in the second code
is created before invoking the driver, meaning it is
vulnerable to malicious parameters. This method can be
very useful against SQLIA.

It is safe to say that these methods are currently the only
and fundamental way to defend Web apps from this attack.

2) Parameterized Stored Procedures

Another prevention technique is using parameterized
stored procedures. This includes a prepared SQL code that
can be saved and reused as many times as needed without
having to duplicate. Furthermore, they help reduce the
network traffic between the database server and Web server
just by sending the name of the stored procedure without
having to send the SQL statement. As far as the security of
the Web app is concerned, these procedures write the query
in advance by placing parameter markers, so that data can
be collected later.

/*¥150003 CREATE DEFINER="root’ @ localhost’
PROCEDURE "validate login’(
IN _username varchar(20),

_pass VARCHAR(50)

)

BEGIN

SELECT * FROM userdata WHERE Username =
_username && Pass = pass;

END */$$

DELIMITER ;

Second, in order to execute the stored procedure, a call
function is used in the php code.

$q = $conn->prepare("CALL validate login(?,7)");
$q->bind param("ss", $username, $password);
$q->execute();

The main idea on how parameterized stored procedures
work concerning security is that we can allow access to a
stored procedure that updates a table, but forbid access to
the table itself. This means, users would not have direct
access to the database tables, but can only execute particular
stored procedures.

3) Customized Error Messages

Error messages are also flaws that attackers use to gain
access. Errors are visible when an invalid SQL statement is
performed. This means, for any invalid SQL instruction that
is identified when executing, the database will produce an
error. By getting these messages, attackers gain information
regarding the database and how to easily attack the Web
app. It should also be noted that some powerful SQLIAs are
entirely based on database errors such as unexpected quote,
incorrect table name, etc. If these errors are completely
removed, then attacking will become a difficult task. In

125

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

order to prevent this, the use of customized error messages
will reduce the possibility of SQLIA.

if ($conn->connect_error) {
die("Error: There is

>connect_error);

} else {

echo"";

}

something error".$conn-

As mentioned before, error messages are retrieved from
the SQL server as a response to any error query that is sent.
The hacker can get important information about the target
and retrieve table’s name, stored procedure’s name, etc. By
using this method, we are not giving the attacker full access.

4) Input Data Type Validation

There are two ways on how SQLIA can be performed.
The first is by injecting a command into a numeric
parameter and the second into a string parameter.
Programmers can avoid small attacks even if they do a
simple input checks. The correct validation of the input data
type such as string or numeric type plays a great role in the
prevention of getting attacked. For example, if the user
enters the input data incorrectly, then the incorrect input
would be rejected due to the declared data type.

$q->bind_param("ss", $username, $password);

In the code above "ss" specifies the variable type, which
is: “string, string”.

VII. PENETRATION TEST AND RESULTS FROM PROPOSED

TECHNIQUES

Penetration testing, also known as pen test, is an
authorized simulated cyberattack on a computer system for
its security evaluation. It identifies the weaknesses as well
as strengths.

To execute the proof of demonstration, SqlMap and
WebSpy Chrome plug-in were used for penetration testing.
SqlMap is an open source penetration testing tools that
automates the process of detecting and exploiting SQL
injection flaws and taking database servers, while WebSpy
monitors HTTP GET/POST requests of any Website and
allows them to be viewed and to be tested.

Firstly, the penetration testing was made on vulnerable
MoviesBox. After testing and analyzing the Web app
MoviesBox, it can be concluded that most of the parameters
in the pages are vulnerable to Boolean-based blind, Error-
based, Time-based and Union-based blind injections (Table
). Besides, SqlMap was able to fetch the versions and type
of the technology used. After more simulations, SqlMap
obtained information not only about the database wanted,
but all databases and tables on the server.

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

TABLE 1. SQLMAP TEST RESULTS FROM VULNERABLE WEB APP
SqlMap results on vulnerable pages of MoviesBox
#
SOL Inj 2“10" Login Form Rle,‘i T';er Request
wp Form
Error-based
! Blind v v v
Boolean-
2 based Blind v v
Time-based
3 Blind v v v
Union-based
4 Blind v

With implementing the abovementioned prevention
techniques in MoviesBox, a penetration testing in SqlMap
has been made by testing the login, register and request
parameters; it showed great success (Table II).

TABLE II. SQLMAP TEST RESULTS FROM PROTECTED WEB APP
SqlMap results on protected pages of MoviesBox
#
SOL Injection , Register
type Login Form Form Request Form

1 Error-based

Blind X X X
5 Boolean-

based Blind X X

3 Time-based

Blind X X X
4 Union-based

Blind X

The evaluation of the proposed techniques though the
penetration testing showed that our preventive approach is
effective. Table II shows that various SQLIA simulated on
the Web app after implementing parameterized queries,
stored procedures, customized error message and input
validation. The SqlMap testing tool cannot exploit the
parameters, which means that our approach is effective.
Furthermore, extended security analysis was made through
an entire Web app, not just the mentioned, and spotted a
number of injectible points, which later on were corrected
with the aforementioned techniques. Figure 3 presents
various SQLIA simulated in the penetration test on the Web
app after implementing the preventive methods. As it can be
noticed from the tables, SQL Injection type, Login form,
Register form, and Request form presented a suitable
approach for this research.

For each of these issues, Error-based blind, Boolean
based blind, Time-based blind and Union-based blind are
included for testing. SqlMap test results on vulnerable pages
of MoviesBox are performed and commented in Table I.

126

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

The SqlMap test results from the protected Web app are
presented and commented in Table II. The Error-based blind
concept enhances the Login Form, Register form and
Request form in both scenarios. Additional testing will be
done on this Web app once is in production to detect
possible server or hosting failures. The evaluation of the
proposed techniques though the penetration testing show
that our preventive approach is effective.

Figure 3. Results from pen test on protected MoviesBox.

VIII. QUALITY OF EXPERIENCE (QOE) FOR WEB APPS

PERFORMANCES

Performance testing is an important aspect when running
a Web app. The main goal is to evaluate user experience on
the Web app.

Quality of Service (QoS) refers to the technical and
operational aspects of a service, such as time to support
services, capacity, and transport. Quality of Experience
(QoE) measures the difference between what users expected
and what they actually received. Using the QoE is beneficial
to estimate the perception of the user about the quality of a
particular service and it depends on the customer’s
satisfaction in terms of usability, accessibility, retaining
ability and integrity of using a specific service. QoE means
overall acceptability of an application or service, as
perceived subjectively by the end-user and represents a
multidimensional subjective concept that is not easy to
evaluate. In this work, QoE evaluation is used in order to
measure the quality of the Web apps performances.

This test establishes whether the App meets user
expectations such as: speed, usage, security, etc. Similarly, a
test has been performed among 100 users from our
university in order to evaluate the performance of the Web
app MoviesBox. The results for testing the Usability, Load
Time, GUI and Security, are presented in the following
figures. The results were obtained according to a survey sent
to university staff and students. As it can be seen later on,

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

the concept of Security gives the best results based on
Quality of Experience Analysis and tests performed.

A. Usability Test

The usability performance for MoviesBox showed that
87.0% of the people (Figure 4) answered that the Web
application is easy to use.

Figure 4. Usability Test

The instructions provided in the Web app are clear and
satisfy its purpose. As far as user task analysys is concerned,
MoviesBox showed excelent results regarding efficiency
and accuracy. The provided main menu on each page was
graded as user friendly, as well as the content. 13.0% of the
people where not satified and proposed that more content
will improve the Web app.

B. Graphic User Interface (GUI)

Figure 5. Graphic User Interface Test

GUI test showed favorable results since 90.0% of the
people answered that the font used is readable, the
alignment of the text is proper, as well as the color of the
font (Figure 5). Regarding the GUI elements such as size,
position, width, length and acceptance of characters and
numbers in the inputs fields in MoviesBox, users were
satisfied. GUI is an important concept of great interest for a
large number of users. That is why this concept was tested
for this application as well.

Interfaces are an important part of each application
performance. The graphic display of the interface is

127

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

important, especially with users’ experience of this kind of
applications.

Tests have also shown that the images used in
MoviesBox had good clarity and error messages were
displayed correctly. 10.0% of the people did not like the
font and the colors used, as well as the error messages.

C. Load Time Test

Figure 6. Load Time Test

After simultaneous usage by thirteen different accounts,
this Web app showed huge rates of success. As shown in
Figure 4, to 95.0% it took 3000 ms to load the Web page
and it showed no error. It is known that usually users wait
10s and give up. Users were also satisfied with the short
time for login (2505 ms). 5.0% were not satisfied and
suggested implementation of a cache buster parameter to the
URLSs, which will make the request to bypass any full page.

D. Security Test

Figure 7. Security Test

Besides automatic penetration testing, a manual security
test was done on MoviesBox among several people. The
security test showed unauthorized access was not permitted
and sessions were killed after prolonged user inactivity due
to the aforementioned methods that were implemented. The
threats were identified and showed that there were no
potential vulnerabilities. As shown in Figure 7, 5.5%
suggested captcha codes in the registration form and
restriction of use of special characters, as well as proxy

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-727-6

based application firewall, which is useful for detecting and
blocking anything malicious.

IX. CONCLUSION

Web apps, as some of the most important “means of
modern life”, are still highly vulnerable to cyberattacks,
mostly coming from unknown sources capable of inflicting
serious damage. SQLIA is one of the most often used ways
of compromising Web apps and since it is not enabled by
technological flaws, it cannot be solved by the technology
itself. Generally it is caused by the naive coding habits of
developers, which make Web app firewalls or cloud
computing powerless in resolving the security question
against SQLIA, even though they can provide some level of
protection. Therefore, this paper provides simple
mechanisms, such as prepared statements, stored
procedures, customized error messages as well as input data
validation that showed a successful prevention of SQLIA on
Web apps. Furthermore, the separate evaluation of these
approaches showed that prepared statements are really the
ones that are protecting the Web app. Without these, using
just the rest of the methods still leaves the Web app
vulnerable to SQLIA. Therefore, it is necessary to combine
the right hardware together with multiple security
approaches and more efficient coding in order to make the
modern database systems safer.

X. FUTURE WORK

For future work, this application is planned to be
working on Cloud of Things (CoT), due to many benefits
including a small amount of disk storage, memory and
resources necessary for execution of the app itself. Also, it
can be approached by different users regardless of location
and device with full support on different platforms and
operating systems. There is independence of the app’s
upgrades from those of the machine software. Moreover,
migrating this app on CoT will contribute to the reduction of
the inconveniences (cost and other complexities) of direct
hardware management. One major concern is that the CoT
environment is susceptibility to cyberattacks. Therefore, the
implementation of the aforementioned methods for SQLIA
prevention is inevitable.

REFERENCES

[11 R. K. Knake, C.0o.F.R.I. Institutions, and G. G. Program,
Internet Governance in an Age of Cyber Insecurity. 2010:
Council on Foreign Relations.

[2] M. van Steen and A. S. Tanenbaum, Distributed Systems.
2017: CreateSpace Independent Publishing Platform.

[3] T. O'Connor, Violent Python: A Cookbook for Hackers,
Forensic Analysts, Penetration Testers and Security
Engineers. 2012: Elsevier Science.

[4] X.G. R Chaudari and M.V. Vaidya, A Survey on security and
Vulnerabilities of Web Application. 2014 IJCSIT, (IJCSIT)
International Journal of Computer Science and Information
Technologies, Vol. 5 (2) , 2014, 1856-1860.

128

AICT 2019 : The Fifteenth Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2019.

Y. Xie and A. Aiken, Static detection of security
vulnerabilities in scripting languages, in Proceedings of the
15th conference on USENIX Security Symposium - Volume
15. 2006, USENIX Association: Vancouver, B.C., Canada.

V. B. Livshits and M.S. Lam, Finding security vulnerabilities
in java applications with static analysis, in Proceedings of the
14th conference on USENIX Security Symposium - Volume
14. 2005, Jul 31, 2005 - SSYM'05 Proceedings of the 14th
conference on USENIX Security Symposium Baltimore, MD
— July 31 - August 05, 2005.

U. S. M. Agarwal and K. S. Rana, "A Survey of SQL
Injection Attacks". International Journal of Advanced
Research in Computer Science and Software Engineering.
Vol.(3): pp. 286-289, 2015.

S. Sarasan, "Detection and Prevention of Web Application
Security Attacks". International Journal of Advanced

ISBN: 978-1-61208-727-6

9]

[10]

(1]

(12]

Electrical and Electronics Engineering. Vol.(3): pp. 29-34,
2013.

R. Johari and P. Sharma, "A Survey on Web Application
Vulnerabilities (SQLIA, XSS) Exploitation and Security
Engine for SQL Injection". 2012 International Conference on
Communication Systems and Network Technologies, 2012.
pp. 453-458.

M. R. Borade and N. A. Deshpande, "Extensive Review of
SQLIA * s Detection and Prevention Techniques", 2013.

D. A. Kindy and A. S .K. Pathan, "A Detailed Survey on
Various Aspects of SQL Injection in Web Applications:
Vulnerabilities, Innovative Attacks, and Remedies". IJCNIS,
2013.

D. A. Kindy and A. K. Pathan, "A survey on SQL injection:
Vulnerabilities, attacks, and prevention techniques". 2011

IEEE 15th International Symposium on Consumer Electronics
(ISCE), 2011. pp. 468-471.

129

