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Abstract—This paper continues previous explorations in the
area of deep learning applications in the field of cellular wireless
networks, specifically the problem of identifying optimal beams
in a highly directional urban environment, using topographical
data. In our previous work, we have studied the problem
and demonstrated how deep-learning can be used on static
topographical data for prediction of optimal beams. In this
paper, we show a potential architecture for realization of the
same for a network of nodes in a given area, taking into account
challenges of computational complexity, response time andthe
inherent architecture of the next generation RAN. This is
achieved by usingdeep transfer learningas a way of translating
between a global feature space inherent to the coverage area
and local variations thereof, specific to the location of each
radio-unit.
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I. I NTRODUCTION

It is well recognized that Deep Learning (DL) is one
of the foundational technologies for 5th generation cellular
networks, especially in the problem of beam selection and
channel estimation in higher frequency bands (mmwave) for
urban environments where the radio-environment is highly
directional. The problem of urban canyons and shadowing
due to buildings is well known [1]. One of the most promising
technologies to deal with this problem is the use of machine
learning; in this approach, we use Light Detection and Rang-
ing (LIDAR) or Global Positioning System (GPS) maps of a
given urban topology to determine the wireless propagation
capabilities of the coverage area. It is premised that using
deep-learning, we can radically speeden up the process of
optimal beam selection for any given User Terminal (UT), if
we know its position. To this end, the International Telecom-
munications Union (ITU) organized a competition in 2020
[2] to explore deep-learning approaches on a multitude of
real-world data. The authors participated in this competition
and our approach was recognized as achieving 70% accurate
prediction of the top-5 beams for a UT in any position in
the coverage region. Other competitors showcased solutions,
which yielded more than 90% accuracy.

Given that we are already achieving good results using
deep learning, it is time to consider the next step of practical
deployment of these technologies in the field. It is here
that we come up against the biggest engineering challenges.
Deep learning algorithms are well known to be prodigious
consumers of both computing power and energy; further vast

amounts of training data are required to adequately “train”the
neural networks (NN). Running a multi-layer neural network
in each individual radio unit (RU) for an urban geometry
with multiple RHs per sq.km. of coverage area is clearly
wasteful (both in terms of computing power as well as
energy consumption) and furthermore, very expensive. What
is required is to use the combined resources of multiple nodes
operating in a common environment, in order to maximally
utilize the expensive computing resources in the radio front-
end. This is what we shall explore further in this article.

The rest of this paper is organized as follows. In Section II
we review the problem in further detail, with a survey of the
relevant literature. In Section III, we review the technologies
of transfer learningandmultiview learningas modifications
introduced in the standard deep-learning methodologies and
show how they are relevant to our environment. In Section
IV, we present our analysis of the ITU-R dataset and show
how it is relevant to the problem at hand. The simulations
and corresponding results are work-in-progress and we hope
to report our results in a subsequent revision of this paper.

II. PROBLEM DESCRIPTION

In Figure 1, we show the conceptual layout of a 5G cellular
network in an urban environment. As we know, the 5G
network architecture utilizes thecloud Radio Access Network
(RAN) concept, where the RAN is disaggregated into the
Radio Unit (RU), the Distributed Unit (DU) and the Core
Unit (CU). The RUs are placed in diverse locations within the
coverage region and are configured to create multiple radio-
beams, focusing on specific hotspots. The RUs are connected
to a smaller number of DUs, which provide the baseband
processing. Finally, the CUs are deployed as a cloud and
are designed to provide core signaling and control func-
tions, including the radio-resource management and beam
processing functions. ML algorithms can be hosted in various
ways within the architecture, most notably within the RAN
intelligent controllers (RIC). Some of these schemes have
been explored in [3]. There are many possible configurations
of this basic architecture, each pertaining to a different use
case. A good overview is given in [4].

A. Network Operation

This system works as follows. When a user terminal enters
the system, it detects a common signaling channel (low
bandwidth, blind detectable) and then signals its position
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Figure 1. Conceptual View of Distributed RAN covering an urban location

to the network. The network responds to it by identifying
a list of predicted top-N beams for it to use. The UT
then successively attempts to setup a high-bandwidth data
connection with the RU servicing each beam in the list
till it achieves success. A beam corresponds to a precoding
filter f on the transmitter side and a post-coding vectorw

on the receiver side. For a given channel matrixW (p, i)
corresponding to the channel experienced between the UT
at positionp and the base-station/RUi the received signal is
given by (1).

r = ‖wTW (p, i)f‖ (1)

Obviously, the optimum beam is the one which maximizes
the signal strength. We assume a large number of fixed
beams, each identified by a tuple ofB → 〈b, w, f〉, where
b is the beam-id. Each beam is serviced by a given RU
(this is invisible to the UT, but important for the beam
allocation problem, as we shall see later). The creation and
configuration of the individual beams is done externally and
available to the network as a database.

Clearly, our algorithm for predicting beams based on UT
position has a local (RU specific) as well as a global element
to it. Each RU sees an individual view of the environment
based on the static topographical features relative to its
position, as well as the position of the UT. These static
features include high buildings, wide streets, overpassesand
other similar features which could potentially either obstruct
the signal or provide new reflective paths for it. On the other
hand, the system as a whole has to take into account the
alignment for all the RUs relative to a given position to
determine the optimal beam list.

Matching the tiered nature of the problem, within the
network as well, there are tiered layers of control. The
near realtime RAN intelligent controller (rt-RIC)is typically
placed in the DU and theNon-Realtime RAN Intelligent
Controller (nrt-RIC) is typically placed in the core (Figure
2). The rt-RIC provides closed loop control at very tight
latencies, typically focusing on local, high-speed control. The
rt-RIC algorithms operate within tight constraints of compute

Figure 2. Conceptual View of GnodeB in ORAN

power and latency, in order to fit within the constraints
of the DU environment. The nrt-RIC, on the other hand,
provides slower control to the DUs using a relatively higher
latency link. It has substantially larger compute and memory
resources at its disposal, and can afford to take a global
view of the network, due to its ability to store and process
data from multiple DUs and RUs. This will subsequently
play a role in the actual deployment of our ML based beam
prediction solution, as we shall discuss in Section IV.

We now consider the ML algorithm. The input to the ML
is the topographical information about the coverage region
and labelled data corresponding to specific locations within
the region and the beam/RU to which it maps. The format of
the topographical data can take many forms, such as LIDAR
scans [5] from the perspective of individual positions within
the coverage area, with the reflections identifying local ob-
stacles, along with GPS topographical data and images taken
by wide-angle cameras. In other literature, topographicaldata
is in the form of 3-d maps (for example, as provided by
OpenStreetMaps) or in the form of GPS contour data [6][7].
The labelled data comprises of actual measurements from
specific UTs at specific positions identifying the UT location
and the empirically measured optimal beam id (or topN

beams). This will be used to train the DL model.
The problem thus can be summarized as follows. Assum-

ing that we have topographical information for the network
coverage area, how do we build an RU specific view, as
well as a global view of the propagation characteristics, and
subsequently map this to optimal beam positions.

B. Literature Survey

There is a lot of recent literature in beam identification for
mmwave communication. In [5], the problem is presented
from the perspective of the UT attempting to compute the
optimal beam list, based on LIDAR data. In [8], the authors
present the problem in a vehicular perspective, using realtime
LIDAR measurements to fingerprint a position relative to
other vehicles in a given highway. In [9], the authors present
a network oriented approach using coordinated beams and a
centralized deep-learning model, similar to the problem we
are addressing. However, the authors use directly measured
signal strengths as the input. Each BS individuallylearns
the system and the coordination is purely on the basis of
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selection, not in the model itself. In [10], the authors focus
on the beam sweeping pattern itself as the output to the ML,
as opposed to the beam prediction itself.

For our particular problem, we shall use the technology
of transfer learning(TL). The area of transfer learning is an
active field in DL theory; comprehensive surveys are given
in [11][12]. The success of transfer learning is predicated
on the ability to extract features in the preliminary part of
the DL model; this problem is surveyed in [13][14]. The
authors in [15][16] analyze the transferability of the extracted
features, by selectively migrating some layers of a pre-trained
DL model and comparing it to the performance of the same
with randomized starting weights. This is extended in [17]
into a concept of aJoint Adaptation Network, which will be
used in the rest of our paper.

The problem ofmultiview learningis also an area of active
research; see the surveys in [18]-[20]. The advantage of
multi-view learning is that it enables significant simplification
of the input data to be processed at individual nodes, by using
commonality to remove redundancies and noise. Multi-view
learning seems to be peculiarly applicable to a network node
scenario as we have presented in Section II. However, there
doesn’t seem to be much published research in this domain.

III. A DAPTATIONS OFDEEPLEARNING TO A

DISTRIBUTED/HIERARCHICAL ENVIRONMENT

If we analyze our problem from the TL angle, we see
that we have a large number of independently operating
nodes, each of which has to learn variations of the same data,
i.e., the topography of the coverage region independently.It
has been pointed out that we can make substantial savings
by coordinating the learning procedure in some way. The
two major technologies that we have considered aretransfer
learning and multiview learning, which are summarized in
the following Subsections.

A. Transfer Learning

TL is a method whereby the information acquired by
particular DL model can betransferred in suitably adapted
form to another DL model. The transfer can be cross-domain
or (as in our case), intra-domain. In our particular situation,
we can have a central system whichlearnsabout the topology
by processing all the path specific data available to the system
and then transfers the learned model to individual RUs for
their use. To implement the transfer scheme, we need to
decide two things. First is what exactly to transfer and the
second is how to accomplish it.

While there are many variants of transfer learning, one of
the most appealing is that offeature basedtransfer learning.
In this mode, thefeaturesof the data are extracted and learnt
by the main ML and then transferred to the subsequent MLs;
these MLs take this feature knowledge and further refine it.
Features are fairly intuitive (especially when geographical
data is involved) and it is possible to extract them efficiently
from raw data. In our case, a feature could be a large building
or other artefact that significantly impacts the propagation

characterestics within the environment. It is well known that
a DL based learning engine learns features in all its layers,
starting with the most generic and moving towards the more
specific; the problem then becomes selecting the layer within
which the features are learnt at the optimal level of specificity.
A second problem is the applicability of the features and how
to use them in the target inference engine. In our particular
environment, it is not just a matter of weighting the feature
set, but rather of determining the applicability of a feature
and its impact on the inference problem as a whole.

B. Multiview Learning

When we have multiple data sets from a single common
environment (for example, RSSI readings for different UT
positions from the perspective of multiple base-stations/RUs),
a primary problem is the risk of over-fitting, especially if the
data is simply concatenated together and fed into a single DL
engine. This is the problem that multiview learning tries to
avoid. On the other hand, simply separating out the data and
treating them completely independent data-sets leads to insuf-
ficient training, especially if individual data-sets are small, or
uneven. There are many different ways to implement multi-
view training, each of which focusses on a different aspect of
the problem. Co-training looks at maximizing the agreement
between different views, whereas multi-kernel learning and
subspace learning operate by implementing a certain structure
on the underlying data-space.

IV. A RCHITECTURE FORDEEPADAPTATION LEARNING

FOR THERAN BEAM SELECTION PROBLEM

We now come to the realization of the beam-selection
algorithm. In our earlier work [21], we described a generic
realization as a single centralized inference engine as a Deep
Neural Network (DNN) of 11 layers, using UT position
as the index, in conjunction with the angles of arrival and
departure and signal strength as labels to match optimal
beams with UTs in other, unlabelled positions within the
coverage area. As shown in the ITU-R challenge referenced
above, it is possible to augment the data set with other
parametric information. For example, LIDAR/image data is
highly perspectival; by providing LIDAR based ranging data
from individual BS locations, we can augment the empirical
wireless information and get better training of individual
inference engines.

In Figure 3, we show conceptually how the beam selection
algorithm works. The algorithm is broken up into two tiers.
The central algorithm learns the common features of the
urban environment and transfers the DNN with pre-trained
layers to the RU specific tier. This tier then augments the
DNN with local data and computes the final inference engine.
For global data, we use the GPS data indexed by position
with labelled information about UTs which were able to
acquire beams (with associated signal quality). Based on this,
we can form a top level view of the predicted coverage
for beams which is learned by the engine. In the local
tier, we augment this information by using signal strength
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Figure 3. Hierarchical implementation of beam prediction DL engine

measurements (and LOS/NLOS computation ) for individual
UTs with respect to the position of the associated RU. This
allows the RUs to create shortlists of predicted beams, which
are then consolidated to form an overall list for advertising to
the UTs. To improve the performance of the DNN at the RU,
we can augment the central model by using local data specific
to the RU. In our case, we use images of the horizon from the
RU position. These images can highlight the presence of tall
buildings or other obstructions in the surrounding area, which
can be utilized to predict the possibility of LOS paths from
different UT positions. Using self-supervised auto-encoders,
we can identify the key feature-sets of each image and then
match the endoded version to beam directions. By adding this
information to the feature level data derived from the top level
model, we hope to build accurate, but computationally simple
local DNNs, which can be implemented relatively cheaply at
the RU.

V. CONCLUSIONS

We have taken the baseline of the ITU-R data-set as
described in [5] as the starting point as one of the few
available empirical data-sets available in the field of wireless.
The data-set provides GPS, LIDAR and imagery based data.
As described above, we must start with the GPS based data
as the global data-base. Primary analysis at the global level
will be targetted at learning the features of the data-set. Once
we have a good understanding of where these features are
captured, we will consider the problem of moving the pre-
trained DNNs to the RU and adding image data analysis to
the same. This shall be explored in the final version of this
article.
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