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Abstract—Multiple-Input and Multiple-Output (MIMO) is ex-
pected to be one of the most crucial technologies towards the 5G
mobile communication systems and beyond. The understanding
of the performance and limits of MIMO detectors is essential in
order to transmit signals at high rates and with high reliability.
In this paper, we present an evaluation of MIMO detectors over
non-gaussian impulsive noise. The traditional MIMO detectors
are designed assuming noise modeled as gaussian second-order
statistics. However, many works have presented non-gaussian
impulsive noise in different MIMO scenarios degrading the
detector performance. Also, we investigate an alternative to
symmetric α-stable distribution to model impulsive noise called
the gaussian mixture model. The simulation results show that the
Symbol Error Rate (SER) performance depends on not only the
quality of the signal but also the impulsiveness level of the noise.

Keywords—Impulsive noise, non-gaussian model, alpha-stable
distribution, GMM.

I. INTRODUCTION

Multiple-Input and Multiple-Output (MIMO) technology
has been receiving considerable attention recently from the
wireless communication field. Nowadays, wireless systems are
demanding higher data rates with reliability, being efficient in
terms of bandwidth. In this context, MIMO plays a key role
in achieving highly efficient spectrum usage with a relatively
small number of antennas involving large amounts of data.
Thus, MIMO techniques have been investigated by researchers
and engineers in several contexts, such as 4G and 5G networks,
distributed antennas, heterogeneous network, IEEE 802.11ac
and millimeter-wave impacts due to its high frequency [1].

Authors argue that the performance of wireless commu-
nication systems is mainly governed by wireless channel
characteristics [2]. Measurement and environmental condi-
tions, such as multipath and noise create additional difficulty
within already existing detection challenges faced by MIMO
systems. Especially for classical MIMO detectors, which rely
on second-order statistical noise assumptions, they may suffer
severe impact via meaningful degradation in non-gaussian sce-
narios [3]. Thus, one way to improve the reliability of MIMO
systems is by analyzing undesirable effects of channel and
noise, thereby evaluating MIMO detectors while considering
realistic models. Notably, characteristics of impulsive noise
have been modelled accurately by non-gaussian processes [4],
demonstrating better fitting than gaussian model in several
scenarios due to man-made and electromagnetic interference
noises. Also, studies have investigated the presence of non-
gaussian noise components in millimeter wave scenarios [5]–
[7] at high frequencies.

Several statistical models have been proposed to describe
non-gaussian impulsive noise. In particular, stable distributions
is one of the most used ones for this purpose [4]. They offer
more freedom degrees than the gaussian model by adjusting
free distribution parameters, allowing us to describe how
impulsive the noise is. This model has been explored in many
different communication scenarios, such as acoustic chan-
nels [8], wireless communication solutions [9], and satellite
communications [10]. Moreover, the α-stable model presents
relevant properties for noise modelling such as generalized
central limit, stability property, and heavy tails [4].

Additionally, many approaches have been studied modelling
impulsive noise by Gaussian Mixture Models (GMM) [8],
[11]. They claim that the GMM is capable of represent-
ing heavy tailed impulsive noise by an arbitrary addi-
tive, independent and identically distributed (i.i.d.), symmet-
ric, non-gaussian GMM noise. Moreover, the expectation-
maximization (EM) algorithm for estimating the distribution
parameters is a well-known tool based on maximum likeli-
hood. Thus, we purpose the GMM as a beneficial comple-
mentary alternative to α-stable distribution to model noise in
MIMO systems.

MIMO detectors based on exhaustive searching and channel
estimation have been proposed with high performance if com-
pared to traditional detectors in non-gaussian environments [3].
However, those detectors usually have too high computational
complexity, making them infeasible in practical scenarios.
On the other hand, the classical detectors have unknown
performance in non-gaussian noise environments depending on
the impulsiveness level. Therefore, the comprehension of the
relationship between impulsiveness levels and the performance
of detectors is crucial in the making decisions about the choice
of methods.

In this article, we examine the performance of MIMO
detectors in non-gaussian impulsive noise, highlighting the
noise models in such technology and Monte Carlo analysis
for relevant distribution parameters. This study also describes
an alternative to model impulsive noise, called the gaussian
mixture model, and its impact for MIMO detector evaluation.
This work uses the Rayleigh fading model, which may repre-
sent realistic narrowband mmWave systems [12].

This paper is organized as follows. In Section II, we describe
the MIMO system, presenting the channel and noise model.
MIMO detectors are presented in Section III. In Section IV,
the main results are presented and discussed, comparing the
performance of the tradition MIMO detectors in non-gaussian
scenarios by simulations. In Section V, we present our final
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remarks.

II. MIMO SYSTEM

Consider a MIMO digital system with NR antennas at the
receiver and NT antennas at the transmitter. The NR antennas
are spaced, such that the received signals may be considered
independent of each other. The k-th symbol received by the
m-th antennas is given by:

ym(t) =

NT∑
n=1

sn(t)hmn(t)p(t) + wm(t), (1)

where sn(t) represents the transmitted symbol from the n-
th antenna, originated from a modulation scheme, hmn(t)
represents the channel model between the n-th transmitting
antenna and m-th receiving antenna, wm(t) corresponds to
the channel noise, and p(t) is a rectangular pulse.

We assume the time-domain channel model coefficients
hm(t) as a Rayleigh distribution, being defined by

hmn(t) = hmn,r(t) + jhmn,q(t), (2)

where hmn,r(t) and hmn,q(t) are gaussian processes with
mean zero and variance equal to 1/2. We also assume that
the differences in propagation times of the signals from the
transmitters to the receivers are small relative to the symbol
duration.

III. IMPULSIVE NOISE MODEL

The α-stable and gaussian mixture model are the most
frequently used distributions to model impulsive noise. Those
models have different characteristics presented in this section.

A. Symmetric α-Stable Model

Reasons for statistical modelling using α-stable distributions
are based on crucial properties, such as generalized central
limit theorem and stability. According to the generalized cen-
tral limit, if the sum of independent and identically distributed
random variables with or without finite variance converge,
then the limit distribution must be α-stable. Another relevant
property states that the sum of two independent random
variables with the same characteristic exponent (α value) is
also α-stable, known as stability property. Finally, we consider
that the signal exhibits heavy tails and skewness, which is well
represented by α-stable model.

There are different parametrizations of α-stable distribution
of the characteristic function. We assume the parameters θα =
(α, β, γ, δ) and the following characteristic function [4]:

ϕ(ω;θα) = exp(−γα|ω|α[1− jΘ(ω;α, β)] + jδω), (3)

with

Θ =

{
β(tan πα

2 )(sign ω), α 6= 1
−β 2

π (ln |ω|), α = 1,
(4)

where
α is the characteristic exponent such that 0 < α < 2,

β is the symmetry parameter such that −1 ≤ β ≤ 1,
γ is the dispersion parameter such that γ > 0,
δ is the location parameter such that −∞ < δ <∞.
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Figure 1. Probability distribution function of symmetrical α-stable with β =
δ = 0 and γ = 1.

We also assume a symmetric α-stable (SαS) class because it
has proved to be very useful in modelling impulsive noise [13].
For such distribution class, β = 0 and δ = 0 [14]. Figure 1
shows the α value variation representing the impulsiveness
level of the distribution, where a low value of α suggests high
impulsiveness and a non-gaussian behavior, and a high value of
α means that the distribution is close to the gaussian behavior,
which α = 2 is the gaussian case.

B. Gaussian Mixture Model

The GMM is a linear combination of gaussian functions
where the sum of all weight coefficients is equal to one. Thus,
a random variable y with GMM distribution is defined by its
probability density function as

p(y) =

M∑
i=1

ciN(xi|µi, σi), with

M∑
i

ci = 1, (5)

where ci is the weight of the i-th Gaussian distribution
function, M represents the number of Gaussian distributions
in the mixture, and N (xi|µi, σi) is a Gaussian distribution
function given by

N(xi|µi, σi) =
1√

2πσi
e
− (xi−µi)

2σ2
i , (6)

where µi and σi represents mean and variance, respectively,
of the i-th Gaussian. Figure 2 illustrates the gaussian mixture
model representing the impulsive noise, which results in a
heavy tail distribution.

IV. MIMO DETECTORS

We consider three different detectors based on frequency
nonselective MIMO channel and Rayleigh fading. Those
methods are designed for recovering the data symbols with
additive gaussian noise assumptions. However, in practical
scenarios, those assumptions can mislead the real performance
of MIMO systems making them unfeasible depending on
channel estimation.

6Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-860-0

AICT 2021 : The Seventeenth Advanced International Conference on Telecommunications



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

0

0.5

1

1.5

2

2.5
D
en
si
ty

GMM
1st	Gaussian
2nd	Gaussian

1st Gaussian
c1 = 0.10
σ1 = 0.50

2nd Gaussian
c2 = 0.90
σ2 = 0.05

GMM

Figure 2. Probability distribution function of gaussian mixture model with
two gaussians with parameters µ1 = µ2 = 0, σ1 = 10, and σ2 = 1.

A. Maximum Likelihood Detector

The maximum likelihood detection is optimum in terms
of performance assuming gaussian noise model. This detec-
tor minimizes the average error probability by finding the
minimum Euclidean distance. This technique requires high
computational complexity due to the searching algorithm.

ŝMLD = arg min
s

∣∣∣∣∣ym −
NT∑
n=1

hmnsn

∣∣∣∣∣
2

, (7)

where sn is a symbol among a set of possible constellation
symbols used in the transmission.

B. Minimum Mean-Square-Error Detector

The MMSE detector estimates the transmitted symbols
based on the linear combination of the received signals. The
linear combination is given by

ŝMMSE = WHym, (8)

where W is a weighting matrix. In order to minimize the
mean square error, the weighting matrix is represented by

J(W ) = E
[
||sMMSE −WHym||2

]
. (9)

The weight vectors inside the matrix can be obtained by

wn = R−1rsny , (10)

where R is the autocorrelation matrix of the received signal
ym, and rsny = E[snym].

C. Inverse Channel Detector

The ICD detector is similar to MMSE, where the estimation
is designed using a linear combination of the received signal.
However, in ICD the interchannel interference is eliminated
due to the weighting matrix with NR = NT . Therefore, the
estimation is given by

ŝICD = H−1ym, (11)

where WH = H−1.

V. RESULTS

This section presents computer simulation results for the
performance evaluation of MIMO detectors. We examined the
Symbol Error Rates (SER) for different levels of impulsiveness
and quality of signal considering 2x2 MIMO systems. The
simulations assessed the error rate performance based on the
Monte Carlo method where each point of the SER curves
employed at least 50 errors in the estimation. All simulations
were performed considering baseband with BPSK modulated
signal and unity energy, being the antennas statistically inde-
pendent of one each other. In addition, Rayleigh flat fading was
assumed as the multipath propagation model in the wireless
channel.

The SER metric is usually computed versus the signal-
to-noise ratio (SNR). However, the infinite variance of non-
Gaussian SαS processes prevents to compute the signal-to-
noise ratio as a measurement of signal quality. In this work,
we use the geometric signal-to-noise ratio (GSNR) [R] instead
of the SNR. The GSNR is given by

GSNR =
1

2Cg

(
A

S0

)2

, (12)

where the normalization constant Cg = eCe ≈ 1.78 is the
exponential of the Euler constant (Ce), used to ensure that
GSNR corresponds to SNR when the channel is Gaussian (α =
2); S0 is the geometric power of a SαS random variable; and
A is the root-mean-square value of the signal.

For the GMM, we use two gaussians, i.e., M = 2, where
one gaussian has much higher variance than the other one in
order to represent the impulsiveness of the noise. Thus, the
variances are given by

σ2
1 = ξ · σ2

2 . (13)

where σi are the variances of the i-th gaussian, and ξ is the
relationship between them, describing how different they are.
We assume that the first variance has higher value than the
second one, i.e., ξ > 1, and their occurrences are described
by c1 = 0.1 and c2 = 0.9. In this case, the total variance is
given by the weighted sum of the variances as

σT = c1 · σ1 + c2 · σ2. (14)

A. Noise Model Analysis

First, we show in Figure 3 the MIMO performance in
the gaussian scenario as a reference scenario indicating no
presence of impulsiveness. This behavior of the detectors is
expected in environments where the gaussian model describes
well the noise model.

Figure 4 presents the MLD, MMSE, and ICD detectors
over SαS noise with parameter α = 1.9, a low impulsive
noise scenario. The SER of detectors are clearly higher than
in the gaussian case, since the impulsiveness degrades them.
However, the ML detector has low SER values at high GSNR.
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Figure 3. MIMO 2x2 over gaussian noise.
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Figure 4. MIMO 2x2 over alpha-stable noise with α = 1.9.

Figure 5 shows the detectors over SαS noise with parameter
α = 1.3. This scenario represents a severe impulsive noise
where all detectors are degraded. We also visualize that MLD
has a similar performance to other detectors in this scenario
even for high GSNR values.
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Figure 5. MIMO 2x2 over alpha-stable noise with α = 1.3.

Figures 6 and 7 present the same detectors over GMM noise
with two gaussians and means equal to zero. They have dif-
ferent variances, which one represents an usual class of noise
with weighting of c1 = 0.1, and another one represents the
impulsive component with higher variance and weighting of
c2 = 0.9. In this scenario, the impulsiveness level is given by
the relation between the variances σ1 and σ2. Figure 6 presents
the detectors over GMM with low impulsiveness level, given
by ξ = 2.
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Figure 6. MIMO 2x2 over GMM noise with ξ = 2.

Figure 7 shows the performance of detectors over GMM
with impulsiveness level given by ξ = 10. In this scenario,
the detectors have higher SER if compared to the scenario
with ξ = 2 due to the high impulsiveness level.
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Figure 7. MIMO 2x2 over GMM noise with ξ = 10.

B. Impulsiveness Analysis

A crucial analysis of detectors over impulsive noise is
the impulsiveness level. As the detectors are operating not
respecting the gaussian assumption, then we can not affirm
the exactly behavior of the system. However, we expect that
less impulsive is the noise better is the performance of the
detectors. So, we evaluate all detectors over the two models,
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SαS and GMM, evaluating their impulsiveness level. Each
model has a different parameter associated, being α for SαS
and ξ for GMM. We adopt a constant GSNR for each noise
model and compute the SER versus different values of α and
ξ.

Figure 8 presents the SER of MIMO detectors for GSNR of
10 and values of α from 1.1 (more impulsive) to 2 (gaussian
case). In high impulsiveness scenario, i.e., low value of α,
higher is the SER of the detectors, as expected. However, the
MLD is more sensitive to the impulsiveness level than the
other detectors. In addition, we can affirm that the SαS model
may represent higher impulsiveness level than the GMM, in
terms of the detectors performance.
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Figure 8. MIMO 2x2 over SαS with different impulsiveness levels.

Figure 9 shows the SER of MIMO detectors for GSNR of 10
and values of ξ from 2 to 20, representing the relation between
the variances σ1 and σ2. In high impulsiveness scenario, all
detectors have higher SER performance, where they are more
sensitive for ξ values from 2 to 10. Also, we can note that
the detectors performance degrade smoother over GMM than
over SαS model.
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Figure 9. MIMO 2x2 over GMM with different impulsiveness levels.

VI. CONCLUSION

In this paper, we evaluated traditional MIMO detectors
over non-gaussian scenarios for different impulsiveness levels.
Indeed, the traditional MIMO detectors have high error rates in
impulsive noise scenarios making them infeasible for current
wireless systems. On the other hand, depending on the noise
power (GSNR), the detectors work well for impulsiveness
levels that are not severe. Also, depending on the model
used, the detectors can be more sensitive in relation to the
impulsiveness level represented by their parameters. Therefore,
studies in impulsive noise scenarios must pay attention for
not only the GSNR value, but also for the impulsiveness level
considered and how it impacts the detectors.

Future works may investigate the Gaussian mixture model
including the number of Gaussian components and its effect
in impulsive noise fitting. Also, future studies may use these
results to produce adaptive detectors based on impulsiveness
parameters, reaching better performance than the traditional
detectors.
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