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Abstract—The paper addresses the critical need for a faster
and more efficient approach to Patient-Specific Quality Assurance
(PSQA) in radiation therapy. The accuracy of PSQA is crucial
for the safety of radiation therapy, particularly with complex
procedures like Intensity-Modulated Radiation Therapy (IMRT)
and Volumetric-Arc Radiation Therapy (VMAT). Traditional
phantom-based methods, while effective, are time-consuming
and fail to account for patient-specific variability and real-time
treatment adjustment. To address these limitations, alternative
strategies leveraging trajectory log files—automatically recorded
during treatment—have emerged as promising tools for PSQA. In
recent years, the application of machine learning and deep learning
algorithms to trajectory log files has been increasingly studied
in literature. These algorithms have shown notable progress in
predicting PSQA outcomes and detecting errors, though further
development is required before they can be fully integrated into
clinical practice. By surveying key studies, the paper highlights
the potential of algorithms such as support vector machines, tree-
based methods, and convolutional neural networks to enhance
the efficiency and accuracy of log file-based PSQA. The findings
underscore the promise of these techniques in replacing traditional
methods while addressing current challenges to pave the way for
clinical integration.

Keywords-deep learning; machine learning; quality assurance;
volumetric-arc radiation therapy; intensity-modulated radiation
therapy.

The American Cancer Society has estimated over 2 million
new cases of cancer in 2024 [1]. About 50% of all cancer
patients are expected to receive radiotherapy at some point
during treatment [2]. The proportion of radiotherapy patients
receiving Intensity-Modulated Radiotherapy (IMRT) and Volu-
metric Modulated Arc Therapy (VMAT) has steadily increased
over time from 22% in 2004 to 57.8% in 2017 [3]. IMRT and
VMAT are routine but complex cancer treatment modalities

that require time-consuming Quality Assurance (QA) measures.
Log file-based Patient-Specific Quality Assurance (PSQA) has
been proposed as an alternative method that can be performed
in real-time on a fraction-by-fraction basis [4][5][6]. Studies
comparing log file-based PSQA have identified differences
between log file recordings and actual behavior of machines
during treatment, however, several mitigation strategies have
been proposed [4][7][8]. These studies have given new insights
into the potential for more efficient PSQA, however, they have
been limited by small cohort size.

Machine learning, and by extension deep learning, have
rapidly gained traction as essential tools for advancing health-
care [9][10][11]. Machine learning can process and analyze
large, complex datasets to identify patterns and make predic-
tions that can be implemented to improve patient outcomes,
increase treatment efficiency, and aid in clinical decision-
making. Machine learning algorithms can automate time-
consuming tasks. This can reduce the workload on medical
professionals, reduce waiting times, and mitigate the risks
of human error. Unlike traditional strategies for automation
that are static after their implementation, these algorithms
can evolve over time with additional data. Updates are made
constantly to maintain or improve accuracy [12]. This is
specifically advantageous in fields, such as radiation therapy,
where advancements are rapid, and techniques are constantly
changing [13][14][15][16].

The following paper thus endeavors to give a brief but
comprehensive overview of the current status of machine
learning for log-file based PSQA measures. This paper is
structured as follows: Section 2 provides the theoretical context
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for log-file based PSQA. Section 3 explores the various
applications of machine learning and deep learning models
for PSQA. Section 4 discusses future directions and concludes
with final remarks.

I. BACKGROUND

We will provide an overview of the theories behind the use
of log files for PSQA and the theory for the most successful
machine learning algorithms to date.

A. Log File-Based PSQA

IMRT is of particular value when treating tumors with
complex or concave shapes, especially those located near
radiosensitive normal tissues. It uses a computer-controlled
linear accelerator (linac) that can rotate around the patient
on a gantry. This process excites electrons via microwave
technology, which then collide with a heavy metal target to
produce high-energy x-rays. These beams are shaped by the
Multileaf Collimator (MLC) as they exit the machine. The
intensity of each beam segment, MLC shaping, and gantry
rotation are all determined using 3D imaging prior to treatment.
The precision in dose delivery provided by IMRT allows for the
irradiation of the tumor while sparing nearby healthy tissues,
making it especially useful for tumors located near critical
organs [17].

Due to the complexity of IMRT and VMAT treatment plans,
each patient’s treatment plan requires inversely optimized
planning. Before treatment begins, these plans are often
measured on the linac using detector arrays. The added
complexity necessitates additional QA measures to ensure
patient safety in clinical settings [18][19]. Confirmations of
machine performance and patient treatment plan accuracy
are essential. These verifications include assessing patient
positioning, machine mechanical accuracy, dose distribution,
and beam geometry. Given the complex and highly variable
nature of each treatment plan, PSQA is required [20].

Currently, IMRT and VMAT treatment plans undergo phys-
ical measurements of the plan parameters before treatment
begins to ensure the machine delivers the intended dose.
However, these measurements are often done in advance and
may not account for real-time deviations that may occur before
the treatment begins. As such, the potential for mechani-
cal changes resulting in dose discrepancies between PSQA
and actual treatment remains a concern. The most common
procedure involves recalculating the dose distribution of a
patient’s treatment plan onto a suitable phantom. The dose
distribution is then measured using various devices, such
as film, ion chambers, diode arrays, or Electronic Portal
Imaging Devices (EPIDs). Differences between the measured
and planned dose distributions are quantified using gamma
analysis, as outlined in American Association of Physicists in
Medicine Task Groups (AAPM TGs) 119 and 218. These
guidelines recommend that over 90% of measured points
should fall within a 3% dose difference and a 2mm distance-
to-agreement (DTA) [21][22]. However, this process is time
and labor-intensive, often requiring after-hours work to avoid

interrupting treatment schedules. Additionally, there is ongoing
debate over the efficacy of these methods, particularly regarding
their robustness and ability to detect potential failure modes
[6][23][24].

Log file-based PSQA offers an alternative to traditional
methods by utilizing automatically generated log files from
radiation treatment machines to verify the accuracy of treatment
plans. These log files capture data such as radiation output,
MLC positions, gantry and couch positions, beam angles,
and timing information. This data can then be compared
to the treatment plan to identify potential errors [25]. Log
files, TPS files, and Mean Complexity Scores (MCS) have
been used to develop prediction models for Gamma Passing
Rate (GPR), a key metric in PSQA [26]. Recent studies have
indicated discrepancies between the recorded data and the actual
performance of the machine, particularly in terms of MLC
positioning [26][27][28]. However, since log files are generated
by the linac, they do not detect mechanical miscalibrations, such
as incorrect leaf positioning. Moreover, they cannot account
for low plan quality or errors originating from the treatment
planning system (TPS). To mitigate these limitations, enhanced
QA procedures specifically for the linac, combined with more
sensitive machine QA tools, are recommended to ensure MLC
accuracy [26].

B. Machine Learning and IMRT/VMAT

Treatment log files record various parameters of radiation
delivery, such as MLC position, dose rates, beam angles, and
gantry positions in real-time during the course with recordings
taken every few milliseconds [29]. As highly structured,
real-time, and extensive data capture, these files would be
particularly difficult to analyze manually. Log files are thus
particularly well-suited to machine learning algorithms for
pattern recognition and error prediction. Models range from
simple classification techniques to complex deep learning
algorithms. The most successful models in the literature include
Support Vector Machines (SVMs), tree-based algorithms , and
Artificial Neural Networks (ANNs).

SVMs are effective for classification tasks for log file-based
PSQA. They can distinguish between compliant and non-
compliant treatment sessions by setting predefined acceptable
ranges for discrepancies between planned and delivered values
for parameters within the log file, such as dose rate, MLC
positions, and beam angles. This allows for quick identification
of errors as they occur so that a clinician can be alerted.
However, SVM is limited to cases where there are clear
distinctions between compliant and non-compliant values. SVM
is also sensitive to noise and outliers and is not well suited for
multi-class tasks [30].

Tree-based algorithms are non-parametric and based on
hierarchical, tree-like structures. Each tree is made up of
nodes that represent decisions based on feature values. The
branches represent possible outcomes or decisions. They are
well-suited for non-linear relationships between features and
can partition the feature space in more complex ways than
linear models. Tree-based machine learning models include
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Random Forest (RF), Gradient Boosting, and Extreme Gradient
Boosting (XGBoost) algorithms [31][32][33].

RF models can leverage many decision trees to map the
involvement of multiple interacting features to identify more
subtle discrepancies between expected and delivered values. It
can detect complex relationships within the treatment data that
would not be as apparent with simpler methods such as SVM.
Due to the ensemble nature of the algorithm, RFs are difficult
to interpret and feature importance scores are only rough
approximations. They can show bias toward categorical features
with many levels. RFs also require a lot of optimizations for
hyperparameter tuning [31].

Gradient Boosting uses decision trees as its base and adjusts
instance weights with each iteration by fitting new predictors
to errors in the preceding iteration. Individual decision trees
are differentiated by a different subset of features to select
the best split. Each new tree accounts for the errors of the
preceding ones. This approach can be slow to train and is
prone to overfitting [32]. XGBoost builds upon the gradient
boosting algorithm by including L1 (Lasso) and L2 (Ridge)
regularization to prevent overfitting [34][35]. It also grows trees
with a depth-first approach and can train trees in parallel, which
increases the speed of training. Although these two models
are less prone to overfitting than RF, they do still pose some
risk of overfitting. They also exhibit hyperparameter sensitivity
and require careful tuning, especially for large datasets. Like
other tree-based models, they both struggle with extrapolation
beyond the training dataset [33].

ANNs are based on the McCulloch-Pitts artificial neuron
model. The model represents a neuron as a binary threshold
unit andinputs are assigned weights before being summed,
and compared against a specific threshold to determine the
neuron’s output. This effectively enables the representation
of logical functions [36]. With the advent of backpropagation
and activation functions -such as the Rectified Linear Unit
(ReLU)- Deep Neural Networks (DNNs) further built upon
the ANN model by increasing the number of hidden layers
which enabled more complex patterns and representations to be
modeled [37][38]. Deep learning models such as convolutional
neural networks (CNNs), have more recently been applied
to log file-based PSQA. CNNs are well-suited to image
classification, making them ideal for use with fluence maps
that can be generated by log file data. CNNs apply filters to
detect desired features, reduce spatial dimensions to retain the
most important features, and then perform final classification
or predictions. They circumvent the need for manual feature
selection. They are highly scalable for large datasets and have
improved computational efficiency [39]. CNN’s capabilities
for detecting highly complex and time-dependent errors make
them ideal for log file-based PSQA applications. They can
identify small misalignments in MLC positions, irregular dose
rate fluctuations, as well as other more subtle anomalies that
may be missed by more traditional machine learning models.
To prevent overfitting, large, labeled datasets are required and
can be vulnerable to being misled by small input changes.
CNN’s decision making can be extremely difficult to interpret

[40].

II. EXAMPLES OF RECENT APPLICATIONS

This section will summarize the current machine learning
applications for IMRT/VMAT PSQA within literature, including
both drawbacks and advantages.

A. Recent Models for IMRT/VMAT PSQA

Most current applications for these models in IMRT and
VMAT PSQA can be classified as either parameter prediction
studies or error detection studies (see Table 1). Most parameter
prediction studies are structured to predict GPR, with error
detection studies predominantly performed on induced error
data input. Either approach appears to struggle with similar
limitations.

B. Drawbacks and Limitations

Tomori et al.[41], Lam et al.[43], Ono et al.[44], Huang et
al.[45], Wang et al.[46], and Song et al.[47] used the parameter
prediction approach. Using a prediction approach, all studies
indicated that machine learning models could be effectively
trained using log files to predict machine parameters at the time
of treatment delivery for new treatment plans. These studies
vary in the models explored, including SVM, RF, CNNs, and
others. All models have relatively promising accuracy as seen
in Table 1. However, Tomori et al.’s scope was limited to
prostate IMRT plans, Huang et al. was limited to chest IMRT
plans, and Song et al. was similarly limited to nasopharyngeal
carcinoma and only used static gantry IMRT plans. Lam et
al. included plans for multiple anatomical sites but were still
specific to IMRT. Ono et al. and Wang et al. were specific
to VMAT plans. Ono et al. and Lam et al. both performed
their studies on multiple linear accelerators, but only Lam et
al. used data from more than one institution. All six studies
acknowledge that by using trajectory files, which are dependent
on the linear accelerator itself, there is some vulnerability to
machine-based error. As such, most log file-based PSQA is
considered an enhancement to other QA measures that ensure
the machine is calibrated appropriately, either with separate
protocols or by incorporating additional sources of data into
future models.

Error detection studies such as those by Kimura et al.[48],
Sakai et al.[49], and Nyflot et al.[50] were similarly limited
to one treatment plan type from a single institution. The only
study that incorporated both VMAT and IMRT plans into a
single study was an error detection study by Chuang et al.
However, the study was only focused on MLC errors.

C. Positive Developments

These preliminary studies have gleaned significant insights
into creating a holistic model for automating PSQA using log
file data with a clear improvement upon methods over time.
Lam et al. trained their model for predicting dosimetric effects
in lieu of GPR to overcome any discrepancies between gamma
index and errors that are clinically relevant [43]. Kimura et al.
directly compared gamma map-based CNN models with dose
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difference map-based CNN models and found dose difference
maps were more accurate [48]. Sakai et al. included radiomic
data which resulted in higher sensitivity and specificity for
MLC position and MLC modeling errors [49]. Hirashima et
al. utilized a combination of 3D dosiomic features and plan
complexity in a tree-based model [52]. Tomori et al.’s GPR
prediction-based CNN model struggled with overestimating
low GPR values and underestimating GPR in the test set
[41][42]. Song et al. developed a novel model that weighed
the MSE loss function to mitigate this class imbalance with
promising results [47]. However, as all these studies have been
limited to relatively small, single, or double institution datasets,
their results are difficult to directly compare to one another.
Additionally, most of the literature has been performed using
Varian machines [21]. Although Varian machines are widely
used in the US, Elekta machines are also used.

III. DISCUSSION

Literature has broadly indicated that CNNs and other Deep
Learning models appear to be the most successful at creating
a model that is robust against certain biases seen in SVM
and tree-based algorithms [53]. Although some studies have
utilized data augmentation, most studies have agreed that to
bring these findings to a clinically relevant standpoint, sufficient
data must be collected from multiple institutions, techniques,
treatment machines, and anatomical sites [54][55]. Additionally,
encompassing both Varian and Elekta machines is essential to
ensure this PSQA strategy is accurate on both platforms [56].

Furthermore, past work has predominantly focused on
deterministic methods, which are ideal for providing direct,
quantitative evaluations of dose delivery accuracy. While these
are incredibly important in the overall application of the model,
there are many aspects of treatment that carry uncertainty. Error
tolerance, dose assessments, and multi-criteria evaluations are
all subject to imprecision. Cilla et al. approached these aspects
by using a "traffic light" protocol [57]. The protocol leveraged
plan complexity to designate plans as acceptable (green light),
requires further verifcation (orange light), or unacceptable
(red light). Fuzzy logic follows similar reasoning and has
been successfully applied to radiation control systems and
treatment plan optimization [58][59]. Fuzzy logic uses fuzzy
sets and linguistic variables to model uncertain or imprecise
information. Desired variables can be assigned degrees of
truth rather than a yes/no value. When applied to complex
systems, this mathematical system eliminates the restriction of
binary values to create more human-like decision making. The
Fuzzy-CID3 (F-CID3) algorithm is a tree-based, hybrid method
that combines neural networks and fuzzy sets, generating its
own topology. Using a neural fuzzy number tree with a class
separation method, the F-CID3 algorithm simplifies architecture
compared to precesssors, achieving better performance with
fewer connections [60].

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Recent work has proposed log file-based PSQA as a
promising solution to the limitations of traditional phantom-

based QA methods by leveraging Machine Learning algorithms
to predict IMRT/VMAT QA outcomes and detect errors [6].
These algorithms, including SVMs, tree-based models, and
CNNs, have demonstrated substantial progress in using log
files for treatment plan verification.

While studies show the potential of log file-based PSQA,
they also highlight key limitations. These include the inability
to detect mechanical miscalibration or treatment planning errors,
and the restricted scope of available data [45][47][61]. Mechan-
ical errors can be mitigated through enhanced QA protocols for
linacs and the incorporation of more sensitive machine tools.
Moreover, issues such as insufficient training data for cancer
site stratification and the lack of multi-institutional studies with
diverse machine types remain significant barriers to widespread
implementation [47][57][61][62][63].

Given the time-consuming nature of current PSQA protocols,
log file-based PSQA, combined with AI model predictions,
offers an efficient alternative. Future studies should focus
on creating larger, multi-institutional datasets and exploring
features within machine learning models that identify key
factors in treatment failure. As machine learning and deep
learning models evolve, their integration into clinical practice
could lead to more efficient, accurate, and real-time quality
assurance for radiation therapy.
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TABLE I. SUMMARY OF RECENT STUDIES USING MACHINE LEARNING MODELS FOR IMRT/VMAT PSQA. (AUC= AREA UNDER THE CURVE, MAE=
MEAN ABSOLUTE ERROR, RMSE= ROOT MEAN SQUARE ERROR, SR= SPEARMAN’S RANK CORRELATION COEFFICIENT)

Author/Year Plan Type Dataset Size Anatomic Sites Algorithm QA Outcome Feature
Count

Key Results

Carlson et al. 2016 [64] VMAT 74 plans (3,161,280 data points) Multiple RF Error detection 6 RMSE= 0.193mm (linear regression)
Tomori et al. 2018 [41] IMRT 60 plans Prostate CNN Parameter prediction N/A Errors within 1.10% at 3%/3mm criteria
Interian et al. 2018 [54] IMRT 498 plans Multiple CNN Parameter prediction N/A MAE= 0.70% at 3%/3mm criteria
Lam et al. 2019 [43] IMRT 1497 beams Multiple Tree-based Parameter prediction 31 Errors within 3% for 98% of predictions

at 2%/2mm criteria
Ono et al. 2019 [44] VMAT 600 plans Multiple Regression

Tree, ANN,
Other

Parameter prediction 28 Mean prediction error= -0.2% at
3%/3mm criteria (ANN)

Granville et al. 2019
[65]

VMAT 1,620 beams Multiple SVM Error detection 60 AUC=0.88 (macro-averaged)

Nyflot et al. 2019 [50] IMRT 186 beams (558 images) Multiple SVM,
Decision
Tree, Other

Error detection 145 Accuracy= 64.3% for SVM

Ma et al. 2020 [66] IMRT 180 beams (1,620 images) Multiple SVM, RF,
Other

Error detection 276 AUC=0.86 for linear SVM

Osman et al. 2020 [18] IMRT 10 plans (360,800 datapoints) Multiple ANN Error detection 14 RMSE=0.0096mm
Wall and Fontenot 2020
[67]

VMAT 500 plans Multiple SVM, Tree-
Based, ANN

Parameter prediction 241 MAE=3.75% at 3%/3mm criteria
(SVM)

Hirashima et al. 2020
[52]

VMAT 1,255 plans Multiple Tree-based Parameter prediction 875 MAE=4.2% and AUC=0.83 at 2%/2mm
criteria

Wang et al. 2020 [46] VMAT 276 Plans Multiple ANN Parameter prediction N/A Absolute prediction error=1.76% at
3%/3mm criteria

Kimura et al. 2020 [48] VMAT 161 Beams Prostate CNN Error detection 54 Accuracy=0.94
Tomori et al. 2020 [42] VMAT 147 plans Multiple CNN Parameter prediction N/A MAE=0.63% at 3%/3mm criteria
Sakai et al. 2021 [49] IMRT 38 beams (152 error plans) Multiple SVM, Tree-

based, Other
Error detection 837 AUC=1.00 for leaf transmission factor

error, 1.0 for dosimetric leaf gap error,
0.80 for leaf positional error vs. error
free (SVM)

Chuang et al. 2021 [51] IMRT/VMAT 267 IMRT and VMAT plans
(10,584,120 data points)

Multiple Tree-based,
Other

Error detection 7 RMSE=0.0085 mm (Boosted Tree
Model)

Huang et al. 2022 [45] IMRT 112 plans Chest CNN Parameter prediction 4 MAE and RMSE decreased with stricter
gamma criteria, while SR and R2 in-
creased as gamma criteria were made
stricter (3%/3mm, 3%/2mm, 2%/3mm,
and 2%/2mm)

Cilla et al. 2022 [57] VMAT 651 plans/1,302 arcs Multiple SVM, Other Parameter prediction 3 Precision of 93.1 for gamma % and
92.7% for gamma mean for the testing
dataset at 2%/2mm (SVM)

Lew et al. 2022 [68] VMAT 578 log files Multiple RF, SVM,
Other

Parameter prediction 13 Average error of less than 2% with
1%/1mm criteria.

Song et al. 2024 [47] IMRT 204 plans/2,348 fields Nasopharyngeal
Carcinoma

CNN Parameter prediction 1-8 AUC= 0.92 with 0.77 sensitivity and
0.89 specificity
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