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Abstract—Alzheimer’s is a brain disorder that disproportion-
ately affects older adults with its primary symptom being severe
dementia. Worldwide, over 55 million people have Alzheimer’s,
with 6.7 million affected individuals living in the USA. Current
methods to mitigate the effects of Alzheimer’s are insufficient
with most drugs (e.g., Memantine, Donepezil, Rivastigmine, etc.)
being inconsistent while also causing heavy side effects. In
order to address these issues, more drugs need to be tested
for viability. To speed up the process, this research proposes
AI-based models that can potentially detect which drugs will be
able to effectively inhibit the crux of the Alzheimer’s pathway,
an enzyme named Beta Secretase 1. This study documented the
investigation of four AI models—K-Nearest Neighbors (KNN),
Random Forest, ChemBERTa, and PubChem10M—and their
ability to predict drug efficacy for inhibiting BACE1, a vital
target in the Alzheimer’s Disease (AD) pathway. These models
were trained on the ChEMBL4822 database. The KNN and
RandomForest models were traditional descriptor-based models
whereas the ChemBERTa and PubChem10M models were fine-
tuned transformers. The KNN model showed a strong training
performance of (R² = 0.6092); this score stayed consistent in
the testing phase (R² = 0.6210). While having a lower score, the
RandomForest model displayed similar consistency in the training
(R² = 0.5651) and testing phase (R² = 0.5605). The ChemBERTa
model showed significant improvement from the training phase
(R² = 0.2641) to the testing one (R² = 0.6433), indicating high
generalization potential. Similarly, the PubChem10M model
exhibited large growth from the training (R² = 0.2641) to the
testing phase (R² = 0.6194). These results highlight the unique
strengths of each model and underscore the promising role of
AI in AD drug discovery. Future work on the refinement and
integration of these models could lead to more effective therapeutic
agents for AD.
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I. INTRODUCTION

Alzheimer’s Disease (AD) is a neurodegenerative brain
disorder, a type of brain disorder where cells in the central
nervous system either fail to work or exist at all [1]. AD has
debilitating symptoms (see Figure 1). In the USA alone, nearly
7 million individuals suffer from Alzheimer’s; this number is
projected to rise to 13 million by 2050. Worldwide, Alzheimer’s
and similar dementia are presumed to affect over 55 million
individuals and this number does not seem to be going away
anytime soon [2].

Currently, most drugs in the market are unable to inhibit the
progression of AD, rather they aim to cope with the effects that
come with AD (donepezil [3], rivastigmine [4], memantine [5],
etc.). The drugs that are able to inhibit the pathway are often

controversial, expensive, and come with heavy side effects like
brain swelling and microhemorrhages (memantine, lecanemab
[6], etc.). With an unfortunate assortment of drugs that aren’t
able to completely eradicate the disease nor its effects, it is
pivotal to find a drug that can effectively inhibit the spread of
AD.

It is known that an overexposure/overproduction of Amyloid
Plaques in the brain is synonymous with AD [7]; symptoms
such as memory loss, poor judgment, lack of spontaneity,
reduced cognitive ability, etc. occur when a plaque buildup is
formed. Amyloid plaques are abnormal deposits of amino acid
chains known as beta-amyloid peptides (Aβ). These are caused
by the incorrect cleavage of the Amyloid Precursor Protein (a
type 1 transmembrane protein), powered by Beta-Secretase 1
(BACE1) [8]—see Figure 2.

It is predicted that machine learning models trained on
molecular descriptors and protein structural features will
effectively predict IC50 scores for candidate drugs, aiding
in identifying compounds with high efficacy in inhibiting
Beta-Secretase 1 (BACE1). This predictive capability directly
influences the progression of Alzheimer’s disease by enabling
the discovery of potent inhibitors targeting the formation of
Beta-Amyloid Peptides.

Amyloid plaques do not paint the complete story, however.
Tau, an abundant protein in nerve cells, gives neurodegenerative
properties to AD [9]. In a healthy organism (without AD), Tau
proteins are primarily responsible for stabilizing microtubules.
Tau binds to microtubules, ensuring their stability. It assists
in nutrient transport within neurons and plays a role in cell
division. Aβ and tau interact early in AD pathogenesis, even
before the formation of plaques and tangles. Aβ modulates
protein kinases and phosphatases, so an overproduction leads
to tau misfolding and hyperphosphorylation. Neurofibrillary
tangles form within neurons. These tangles consist of aggre-
gated and hyperphosphorylated tau proteins. The accumulation
of neurofibrillary tangles disrupts normal neuronal function.
Tau tangles b lock communication between neurons, altering
memory, cognition, and other brain functions. Tau-induced
damage occurs at the synaptic level, where synapses (connec-
tions between neurons) are lost. This contributes to cognitive
decline in AD. Acetylcholine, a neurotransmitter that plays
a vital role in memory, learning, etc [1], is often unable to
reach the brain in the presence of a toxic Tau protein therefore
causing an acetylcholine deficiency in the brain and propagates
the effects of Alzheimer’s. Toxic tau enhances Aβ toxicity via
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Figure 1. Alzheimer’s Disease Symptoms

a feedback loop, therefore enhancing the symptoms of AD.
This leads to a self-propagation of Tau and Aβ (see Figure 2)
[10].

Inhibition of BACE1 would cause the suppression of AD due
to the absence of Aβ and therefore prevent the formation of a
toxic Tau protein. BACE1 is a critical target for the AD pathway
as it has an early role in Beta-Amyloid protein production, and
produces mild phenotype reactions when deleted, suggesting
that inhibiting this enzyme might not have severe side effects
and has a well-documented history due to aspartic protease
identity. In recent years, there has been a surge in the use
of Artificial Intelligence (AI) technology in the medical field.
[11]. Various models and architectures have been utilized in
biomedical research to enhance its scope and effectiveness.
One prominent model that has garnered a lot of attention in
recent years is the transformer model. The idea is based on
an attention mechanism: a mechanism that allows computers
to weigh and understand the context behind different words
[12]. This type of model is extremely diverse; it can be used
in classification tasks, generative tasks, and even regression
tasks [13]. This research does not only focus on the use of
transformers; It is important to evaluate multiple models as
different models work best for different use cases.

This research is no exception to the use of AI: the goal is
to create deep learning models to predict whether drugs can
inhibit BACE1 and subsequently find drugs that can disrupt
Alzheimer’s. For this reason, this project will likely result in an
AI model that can accurately identify drugs to inhibit BACE1,
as well as find drugs that show large promise to suppress
Alzheimer’s [14]. This study explores AI models, including
transformers, to predict drugs capable of inhibiting BACE1
and, by extension, tackling Alzheimer’s while recognizing that
IC50 values are part of a more comprehensive evaluation of
drug efficacy. The aim is to develop AI models to identify
potential drugs that can effectively inhibit BACE1 and explore
promising candidates to mitigate AD progression.

In the related work and methods section, we discuss the
related work and methodologies that underpin this study. The
methodology section details the datasets and preprocessing
techniques employed to prepare our data for analysis. In results,

Figure 2. Alzheimer’s Pathway with Tau and BACE1 Inhibition

Figure 3. Research Methodology Flowchart

we present the results of our model evaluations, highlighting
the performance of each approach. The implications of these
results are discussed in the discussion and evaluation portions
of this paper, where we also evaluate their significance in
the context of Alzheimer’s drug discovery. The conclusion
concludes the paper, offering insights into future work and
potential improvements to the models.

II. RELATED WORK | METHODS

The fundamental idea this research draws upon is that BACE1
is an effective inhibition target for Alzheimer’s reduction.
This idea was drawn upon by a previous paper. Gosh et al.
proved BACE1 as a potential inhibition target by expressing its
numerous advantages: BACE1 is a key target for Alzheimer’s
disease (AD) treatment due to its early role in amyloid-β (Aβ)
production; the gene deletion of BACE1 produces only mild
phenotypes, suggesting that inhibiting this enzyme might not
have severe side effects; BACE1 is an aspartic protease, so the
mechanism and inhibition of BACE1 are well-documented and
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researched, etc [14].
This research also fine-tunes and evaluates transformers

that are trained upon molecular properties. Chithrananda et al.
built such a model, ChemBERTa [15]. This model takes the
well-known RoBERTa transformer [16] and fine-tunes it such
that it can predict certain molecular properties. This research
takes this model one step further and fine-tunes ChemBERTa
to predict whether drugs can effectively inhibit BACE1. The
RoBERTa transformer is indeed based on another transformer,
BERT [17], which is based on the transformer architecture.

Similar research has been conducted; for example, Baressi et
al., conducted research attempting to create models to predict
the efficacy of medication on COVID-19 [18]. This research
takes that idea further through the evaluation of drugs’ efficacy
on Alzheimer’s while simultaneously comparing traditional
models with newer transformer-based models. This therefore
allowed for the evaluation of the difference in efficacy of the
two types of models, opening the window for generalizations
in this sphere of research.

A. Dataset

To conduct this research, data was collected from the
CHEMBL4822 database (Figure 3—input data) that contained
different drugs’ Simplified Molecular Input Line Entry System
(SMILES) notations - simple text-based representations of the
drugs molecular structure [19] - paired with their half maximal
inhibitory concentration (IC50) scores - a value indicating the
dosage needed for a drug to effectively inhibit a certain protein,
in this case BACE1. The dataset contains 10619 different drugs
(including duplicates) and 46 additional descriptors with the
focus being their IC50 scores.

B. Prepossessing

In the preprocessing stage, we first acquired data from
the CHEML dataset and filtered it to retain entries where
IC50 was specified as the standard type. Null values were
addressed with mean imputation, replacing any null values
with the dataset’s average values, as cited in [20]. We also
eliminated duplicate entries, resulting in a refined dataset
comprising 7,353 distinct drugs. The data was then narrowed
down to the ’canonical_smiles’ and ’standard_value’ columns.
Here, ’canonical_smiles’ represents the SMILES notation, and
’standard_value’ corresponds to the IC50 value for each drug.
To facilitate easier calculations and comparisons, IC50 scores
were transformed into pIC50 [18], by taking the negative
logarithm of IC50 in molar form. At this stage, our dataset
contained two columns: SMILES and pIC50.

Subsequently, we extracted 210 Lipinski features for each
SMILES notation entry, thereby expanding the dataset to
include 211 columns while maintaining the 7,353 rows. This
dataset was then divided into training and test subsets using an
8:2 ratio. For traditional machine learning models, we utilized
the dataset with Lipinski features, whereas for transformer-
based models, we retained only the SMILES and pIC50 values.
This resulted in four distinct data files comprising training and
test sets with Lipinski descriptors as well as training and test

sets with SMILES notation. The training sets were employed to
develop models using a 5-fold cross-validation approach, while
the test sets were reserved to evaluate the models’ predictive
performance. This careful splitting was important to evaluate
how good each model is thoroughly at making predictions.

C. Why Feature Extraction?
This research used two methods to analyze molecular

structures: traditional models (KNN and RandomForest) and
transformer models (ChemBERTa and PubChem10M). Tradi-
tional models cannot directly process SMILES notation, which
represents molecules, transformer models were also used as
they can handle SMILES values directly and may provide
better results. For the traditional method, numerical values that
describe the drug’s properties were needed. 210 descriptors
were extracted (such as HeavyAtomMolWt, ExactMolWt,
NumValenceElectrons, NumRadicalElectrons, MolWt, etc.),
referred to as Lipinski Descriptors [21], from the SMILES
strings using the RDKit tool (see Figure 3 to see the data
was processed) [22]. This allowed the traditional models to
effectively analyze the molecules using these numerical values.

D. Training
After the dataset was both preprocessed and split, AI models

were developed to predict drug effectiveness using PIC50
values: two descriptor-based models, KNN [23] and Random
Forest [24], and two transformer models, ChemBERTa and
PubChem10M [25]).

We selected K-Nearest Neighbors (KNN), Random Forest,
ChemBERTa, and PubChem10M models to leverage diverse
analytical strengths. KNN and Random Forest are reliable,
traditional models ideal for structured data and feature inter-
pretability, providing a solid baseline with molecular descrip-
tors. ChemBERTa and PubChem10M, as transformer-based
models, excel in processing sequence data like SMILES strings,
capturing complex molecular interactions more holistically.
This combination of models allows us to comprehensively
evaluate drug efficacy in inhibiting Beta-Secretase 1 (BACE1),
balancing robustness with innovative pattern recognition capa-
bilities.

By exploring various hyperparameter settings, each model
was trained to find the most optimal configurations. The Mean
Squared Error (MSE) [26] and R-squared (R²) [27] metrics
were used to evaluate their performance. The model with the
best results, determined by these metrics, was further tested on
unseen data to ascertain its R² value. This process aimed to find
the most suitable model for identifying drugs that might combat
Alzheimer’s disease, contributing to the discovery of potential
treatments and benchmarking different modeling methods. The
R² metric is a statistical measure often used to assess the
accuracy of a regression task. Baressi et al. uses this metric
when evaluating the accuracy of AI models to predict pIC50
values of COVID-19 medication [18].

III. RESULTS

When evaluated, the four machine learning models—K-
Nearest Neighbors (KNN), Random Forest, ChemBERTa,
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Figure 4. KNN Training Graph - Number of Neighbors vs. R² Score

Figure 5. RandomForest Training Graph - Number of Trees and Depth vs. R²
Score

and PubChem10M—demonstrated notable differences in their
ability to predict certain drugs’ inhibition of BACE1. On
training data, the KNN model (K=5) was the most effective,
boasting the highest R² score of 0.6092 (see Figure 4). It was
closely followed by the Random Forest model, with an R² of
0.5651 (maximum depth of 7 and 60 trees) (see Figure 5).
In third place was the PubChem10M model (trained for 50
epochs with a learning rate of 0.001), achieving an R² score of
0.4672 (see Figure 6). Finally, in last place for training data,
was the ChemBERTa model, with an R² score of 0.2641 (see
Figure 7 and Table 1). However, on testing data, the models’
results demonstrated a significant shift. The ChemBERTa model
led the pack with an R² score of 0.6433, indicating strong
generalization to unseen data. This was closely followed by
the KNN model with an R² score of 0.621—a continuation of
its robust performance in training. The PubChem10M model
also showed substantial improvement, achieving an R² score
of 0.6194. Lastly, the Random Forest model displayed great
consistency, scoring an R² of 0.5605 (see Table 1).

The observed trends underscore the architectural advantages
of transformers, such as ChemBERTa and PubChem10M. These
models excel due to the attention mechanism, which enables
them to capture and generalize complex data patterns inherent

Figure 6. PubChem10M Training Graph - Learning Rate and Epochs vs. R²
Score

Figure 7. ChemBERTa Training Graph - Learning Rate and Epochs vs. R²
Score

Figure 8. Optimal Model vs. RMSE and R² Scores on Testing Data
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TABLE I
RESULT SUMMARY

Model Training R² Testing R²
KNN 0.609 0.621

Random Forest 0.565 0.560
ChemBERTa 0.264 0.643

PubChem10M 0.467 0.619

in molecular SMILES notation—even when initial training
R² scores are low. We conducted a series of experiments to
better understand these findings, analyzing cross-validation R²
scores and performance metrics across multiple data subsets.
Consistently, the results demonstrated that transformer models
achieve higher test R² scores, confirming their superior ability
to generalize under varied conditions compared to traditional
machine learning models.

The ChemBERTa model was able to perform well on testing
data among metrics boasting the lowest RMSE score of about
0.851 (see Figure 8).

IV. DISCUSSION | EVALUATION

This study contained the evaluation of the KNN, Random-
Forest, ChemBERTa and PubChem10M models in predicting
drugs’ ability to inhibit the Alzheimer’s pathway using the R²
score as a metric for the accuracy and effectiveness of each
model.

The KNN model performed the best on training data with an
R² score of 0.6092 with a parameter setting of K=5 neighbors.
This indicates the model was proficient in fitting the training
data when using K=5 neighbors. In the testing phase, this R²
score stayed relatively consistent at 0.621.

The Random Forest model had a moderate R² score of
0.5651 during training with a maximum depth of 7 and 60
estimators. Like the KNN model, it had a relatively consistent
score during testing of 0.5605. This indicates that both the KNN
and RandomForest models were relatively consistent models.
For the RandomForest model, this consistency might be due
to the ensemble nature of Random Forest, which averages
multiple decision trees to achieve a robust prediction, making
it less likely to be affected by variance in the data [28].

ChemBERTa, using 50 epochs and a learning rate of 0.001,
achieved a relatively low R² score of 0.2641 during training.
That said, the model significantly improved when evaluated on
testing data, achieving the highest R² score of 0.6433 among
all the models. The massive increase in R² score suggests
that ChemBERTa is particularly good at learning patterns
during training and by extension effectively generalizes new
data. It shows a large potential for the model to capture the
underlying data distribution regardless of initially low training
performance.

The PubChem10M model, also trained for 50 epochs with
a learning rate of 0.001, had a moderate R² score of 0.4672
during training. Like ChemBERTa, the PubChem10M model
showed a significant improvement in the testing phase with
an R² score of 0.6194. This improvement indicates that the
PubChem10M model, although not as strong as ChemBERTa,

has robust generalization properties. It has comparable testing
performance to that of KNN, despite a low initial training
score.

Each model showcased unique characteristics across the
datasets. The KNN model excelled during training but dis-
played inconsistencies in testing. The Random Forest model
maintained consistent performance across both datasets, but
it did not achieve the high levels of accuracy seen in other
models. ChemBERTa showed the most notable improvement
across the phases. The incorporation of both traditional and
newer transformer-based models allows for this research to
effectively create generalizations that are lacking in preexisting
research.

The ChemBERTa and PubChem10M models, on the other
hand, may have built robust patterns during the training phase
that were solid and applicable to the testing data. This could
be extremely powerful if refined even further.

These results offer valuable insights into the strengths
and weaknesses of each model, guiding future research and
practical applications where different models may be more
suited depending on the context and the nature of the data.

Since ensemble models are hypothesized to have provided
consistency and transformers for greater generalization, one
could experiment with combining the ensemble nature of the
RandomForest model with a transformer to obtain greater re-
sults. One could also expand the number of epochs and learning
rate values tested to see if there are model configurations that
generate better results.

It is important to note that these models do not account for
bioavailability, pharmacokinetics, or potential interactions with
other drugs, which are critical factors for clinical outcomes.
These aspects are essential for understanding how a drug
behaves in the body and how effective it will be in real-world
scenarios. Consequently, while the models offer insights into
drug potential, a more comprehensive approach that includes
these factors is necessary for enhancing clinical relevance.

V. CONCLUSION AND FUTURE WORK

This study documented the evaluation of four distinct AI-
based models—K-Nearest Neighbors (KNN), Random Forest,
ChemBERTa, and PubChem10M—in their ability to success-
fully estimate how effectively a certain drug could disrupt
the Alzhimer’s pathway. In this evaluation, results within the
testing and training phase were quite varied when evaluating
ChemBERTa and PubChem10M models: both models showed
low, unfavorable R² scores, yet, when these models got to
the testing phase, their scores increased by a large margin
boasting R² scores of 0.6433 (the highest testing score among
all the models) and 0.6194 respectively. This indicated unique
generalization prowess among the transformer-based models.
The descriptor-based models—KNN and RandomForest—on
the other hand, were pretty stable; the KNN model had an
R² score of 0.6092 during training and an R² score of 0.621
within testing—indicating powerful consistency. This same
trend applied to the RandomForrest model which had a lower R²
score of 0.5651 but it stayed pretty consistent reaching 0.5605
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during testing. These results imply that the transformer-based
models had powerful generalization capabilities whereas the
descriptor-based models boasted consistency. This highlights
the age-old accuracy vs. precision problem which is present
in our study today. The main limitation of this study is that
it only looks at IC50 values to assess drug potency. While
IC50 is important, it does not fully reflect how a drug will
work in real life because factors like how the drug is absorbed,
distributed, metabolized, and excreted (ADME), and its toxicity
also play a role. Our models do not take into account how
drugs interact with the body, which might lead to differences
between predicted results and actual effects. This study should
be seen as a starting point, and future work should include these
other factors to make the models more useful for real-world
drug development.
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