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Abstract—Climate change poses significant challenges to en-
vironmental sustainability and human well-being, necessitating
advanced tools for effective mitigation and adaptation strategies.
Traditional methods for addressing issues like urban solar
exposure and wildfire management often fall short due to limited
predictive capabilities and inefficiencies in processing large-scale
data. This paper addresses these gaps by employing Artificial
Intelligence (AI) and High-Performance Data Analytics (HPDA)
to enhance predictive accuracy and data handling in two critical
areas: predicting shading effects between buildings for sustainable
urban planning, and improving wildfire management through pre-
computed simulations. Our approach utilizes neural networks to
model urban shading accurately and leverages HPDA to process
extensive wildfire data for better preventive measures and response
strategies. The main conclusion is that integrating AI and HPDA
significantly enhances our ability to tackle complex climate-related
challenges, providing valuable insights and tools for policymakers
and urban planners.
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I. INTRODUCTION

Climate change is a significant global challenge that impacts
many aspects of human life and environmental health. It’s
evident in the increasing alterations in climate patterns across
the world, affecting human health, safety, and environmental
sustainability and necessitating prompt and innovative actions.
The World Health Organization indicates that nearly all people
globally are exposed to air quality levels that exceed safety
standards, leading to about seven million deaths annually
from outdoor air pollution [1]. Notably, vehicle emissions,
which contribute significantly to air pollution with substances
like nitrogen dioxide, account for over 40% of some harmful
emissions from traffic, underscoring the need for policy and
technological improvements [2][3].

The need to address global challenges is further underscored
by the inefficiencies within the European Union’s building
sector, responsible for a substantial portion of energy use and
greenhouse gas emissions. Approximately 75% of the EU’s
building stock is deemed energy-inefficient, presenting a critical
opportunity to enhance energy performance in line with the
goals of the European Green Deal [4]. Additionally, the ongoing
dependence on fossil fuels intensifies these challenges, pressing
the shift towards renewable energy sources like wind and solar
power, which is especially crucial amidst the recent geopolitical
tensions in Eastern Europe.

Moreover, global challenges extend to natural disasters,
with an alarming increase in the frequency and severity of
events such as wildfires and floods. Wildfires are particu-
larly concerning, not only due to direct exposure but also
because of the extensive reach of smoke pollution, which can
have profound health implications on vulnerable populations
across vast distances. Similarly, floods have emerged as the
most frequent natural disaster, with significant human and
economic losses. Modeling these phenomena numerically is
an immensely complex and computationally intensive task.
Computational Fluid Dynamics (CFD) [5][6][7] models, which
rely on detailed three-dimensional grids and the calculations
of movement within small cells, are employed. These models
are highly parallelizable and scalable, making them well-suited
for application on HPC architectures [8]. Despite the techno-
logical advancements, using these simulations operationally
on HPC systems presents considerable challenges, including
data capture, pre-processing, and computation, which can take
several hours even on the most advanced systems.

This paper explores how advancements in Artificial Intel-
ligence (AI) and High-Performance Data Analytics (HPDA)
could serve as crucial tools in addressing global challenges.
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More specifically, we examine how HPDA and AI can be
successfully applied to two distinct use cases: assessing solar
exposure in urban buildings and mitigating wildfire evolution.
We will discuss how these technologies can help address related
issues and provide viable solutions.

This paper is organized as follows: Section II reviews the
related work. Section III introduces the formulation of the two
problems investigated in this paper, namely solar exposure and
wildfire management. Section IV presents the experimental
results for these two use cases. Finally, Section V summarizes
the conclusions of this study.

II. RELATED WORK | METHODS

Artificial Intelligence (AI) has increasingly been employed to
address various environmental challenges, including pollution
control and renewable energy optimization. Ye et al. [9]
conducted a comprehensive survey analyzing AI applications
in environmental pollution control, highlighting the role of
machine learning models in monitoring and predicting pollution
levels. Kumar et al. [10] explored AI techniques in solar
power analysis, focusing on the optimization and control of
photovoltaic systems. In urban settings, AI technologies have
been utilized to monitor air pollution levels, identify sources,
and develop mitigation strategies [11], while machine learning
models have been applied to predict future pollution trends
based on historical data [12].

Despite these advancements, gaps remain in applying AI
to predict urban shading effects, where traditional methods
often rely on computationally intensive simulations that fail
to scale or capture complex interactions effectively, hindering
sustainable urban planning.

In wildfire management, traditional methods, dependent on
historical and empirical data, lack the necessary spatial and tem-
poral resolution for accurate forecasts, leading to outdated and
non-responsive models [13]. Integration challenges with diverse
data sources, such as weather indices and vegetation moisture
levels, persist, reducing model adaptability [14]. Leveraging AI
to enhance data processing and utilize real-time environmental
data [15] has shown promise in improving decision-making
accuracy [16][17], but computational constraints remain a
significant hurdle.

The wish-list in both domains includes developing AI models
capable of handling complex, large-scale data efficiently and
providing accurate, real-time predictions to inform decision-
making processes. Our contribution addresses these gaps by
employing neural networks to predict urban shading effects,
facilitating sustainable urban planning, and utilizing pre-
computed wildfire simulations processed through HPDA to
enhance wildfire management strategies. This approach aims to
overcome current limitations by improving scalability, accuracy,
and responsiveness in tackling climate-related challenges.

III. PROBLEM FORMULATION

This section outlines the problem formulation for the
addressed problems.

A. Solar exposure

In this use case, we investigate the dynamic interplay between
urban development and solar exposure. Specifically, the focus
is on understanding how shading from surrounding buildings in-
fluences the solar energy received by a target construction. Such
shading effects can significantly alter temperature, humidity,
and incident light levels within an area. The primary objective
here is to quantify how new constructions modify solar intake
and create solar masks that affect the surrounding environment.
This analysis is crucial for urban planning and sustainability
efforts, ensuring that new developments harmonize with their
natural and built environments to optimize energy efficiency
and living conditions. HPC plays a crucial role in this task,
as this analysis will be conducted on a pre-calculated set of
simulations of solar masks for an area before and after new
construction.

B. Wildfire Management

In this use case, we explore the integration of High-
Performance Computing (HPC) and Artificial Intelligence (AI)
in managing severe forest fires. Simulating fires based on real-
time field data is crucial for informed responses. To achieve this,
we utilize a set of pre-calculated fires, employing CFD models
that consider various scenarios, such as ignition points, wind
speed, direction, and moisture conditions of forest fuels. These
simulations could be invaluable in both designing strategies
to identify vulnerable points by analyzing simulations and
responding to new fires. Since simulating a new fire in real-time
is impractical, we reformulate this problem as a search through
a vast database of pre-computed fire simulations. Specifically,
when a real-world fire is detected, its characteristics—captured
through satellite or aerial imagery—are input into an AI engine
that conducts a shape similarity analysis with stored simulations.
This process is essential for rapidly identifying the most relevant
simulations that match the current fire conditions. If no suitable
matches are found, the system must swiftly compute and
integrate a new simulation to aid firefighting efforts.

IV. RESULTS

This section details findings for each problem investigated.

A. Solar exposure

To tackle the use case of predicting shading relationships
between buildings, a neural network is trained using a custom
dataset corresponding to the building topology of a section of
Strasbourg. The dataset consists of 1,343 samples of buildings
and their solar masks, accompanied by the solar masks of
affected surrounding buildings which are computed in the
absence of that particular building. These masks only include
values that change due to the building’s absence or presence.
The neural network’s training focuses on how solar masks
evolve when new buildings are introduced, though current
experiments do not consider additional factors like vegetation.

In order to predict shading relationships between buildings
in a cityscape, a graph is constructed where nodes represent
buildings and edges represent shading interactions. The graph
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Figure 1. The affected buildings network using the proposed
threshold on solar mask difference between buildings.

focuses on visualizing the topological arrangement of buildings,
highlighting how they are interconnected based on their
proximity and the shading they cast on each other.

The graph, termed the "affected buildings network" (Figure
1), is constructed by connecting buildings only if the removal
of one affects the solar mask of another. This network can be
either directed, with edges pointing toward affected buildings,
or undirected. Initial observations showed that the network
was dense, with edges even between distant buildings. This
unexpected density was due to small changes in solar masks
during dataset creation. To refine the network, a threshold was
introduced: an edge is only created if the difference in solar
masks, measured by the mean squared error before and after a
building’s deletion, is greater than or equal to 0.01, resulting
in a more realistic depiction of the network.

After the creation of this graph, a transductive link prediction
approach is employed to predict which structures each building
shades. Link prediction involves inferring missing or potential
edges between nodes in a graph. In the transductive approach,
some edges are removed before training. The neural network
is trained on the incomplete graph to learn patterns, and after
training, it attempts to rediscover the removed edges, predicting
which buildings shade each other.

The methodology employed in this study can be summarized
as follows:

• Data Preparation: A portion of existing edges is removed
while retaining all nodes (buildings). The remaining graph
is then fed into a Graph Neural Network (GNN) for
training.

• Model Architecture: A two-layer Graph Convolutional
Network (GCN [18]) is utilized to encode the graph’s
nodes through message passing [19]. The decoder com-
ponent, which performs binary classification to determine
the existence of an edge between two nodes, is treated as
a hyperparameter.

• Experimental Settings: Various experimental settings are
explored, including:
– The structure of the graph: directed vs. undirected.
– The type of classifier: Simple Dot Product vs. Multi-

Layer Perceptron (MLP).
– Node features: Building location vs. building height.
– The threshold on solar mask difference.

Table I reports the Area Under the Curve (AUC) for
transductive Link Prediction on the affected buildings network
from the initial set of experiments. This metric, commonly
used in the field, measures edge classification performance. A
higher ROC AUC score indicates better model performance,
with a value of 1.0 representing perfect classification and 0.5
indicating a performance no better than random guessing. The
table compares outcomes from two configurations: one using
a threshold for solar masks and one without, allowing for
a direct evaluation. Higher ROC AUC scores indicate better
performance, with bolded percentages highlighting the top
results in each configuration.

The initial experiments with GNN models show strong
performance, with most configurations achieving high AUC
scores (over 70%) even before full optimization. Early trends
suggest that building location is a particularly useful feature,
and undirected graphs generally perform better. Although cases
with thresholded solar masks yield slightly lower AUC scores,
they show better alignment with proximity, indicating promising
potential for predicting affected buildings. Further optimization
of the GNNs will be pursued to refine these results.

B. Wildfires

The core idea behind this use case is the use of a dataset of
precalculated simulations for a specific area, under different
scenarios. Specifically, this dataset centers on a 3x3 km²
Wildland-Urban Interface (WUI) area in Barcelona, featuring
detailed geospatial data such as Digital Terrain Models and
fuel models, primarily derived from LiDAR data with 2-meter
resolution. The dataset includes wind simulations for eight
directions and three speeds, and 441 systematically placed
initial ignition points for wildfire scenarios, culminating in a
total of 10,584 simulations.

By analyzing the dataset, useful information can be extracted
for informed decision-making, both in designing preventative
measures against massive wildfires and in responding to
new fires. For prevention, one can utilize metrics like Burn
Probability (BP), calculated as:

BP = 100× NF

NS
(1)

Here, BP is the Burn Probability in percentage, NF
represents the number of times fire passes through a specific
point, and NS is the total number of ensemble simulations.
This BP index, along with data on buildings, roads, and
other vulnerable infrastructures in the area, helps assess
the probability of adverse impacts. This assessment can be
visualized on a risk map, as shown in Figure 2.

To make informed decisions during a new fire, it is essential
to predict the fire’s evolution in real time. However, conducting
a new simulation under real-time conditions is unfeasible.
Therefore, we propose an algorithm that employs a search
mechanism on a dataset of pre-calculated simulations. Based on
this dataset, the algorithm for real-time fire behavior projection
is illustrated in Algorithm 3.
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TABLE I. TEST AUC RESULTS FOR LINK PREDICTION (SURROUNDING AFFECTED BUILDING DISCOVERY) USING
DIFFERENT HYPERPARAMETERS.

Test AUC Test AUC (with threshold)

Height Location Height Location

Undirected Graph + Simple Classifier 79.2 80.9 71.3 71.6
Directed Graph + Simple Classifier 77.0 74.4 69.8 64.9
Undirected Graph + MLP Classifier 74.6 75.1 65.9 78.4
Directed Graph + MLP Classifier 71.6 74.9 55.6 77.5

Figure 2. An example of Burn Probability (%), visualized on
a map. The areas in red indicate a higher likelihood of fire
spread.

Figure 3. The algorithm for the real-time fire behaviour
prediction.

To perform similarity analysis (Steps 4 and 5), the following
method is suggested for deriving basic descriptors of fire spread
shapes: Extract the relevant contour from the 2D grid of the
simulation, which captures fire access time at a specific point
[20]. Determine the center of gravity and calculate the oriented
minimum bounding box using the rotating calipers method.
Identify the shape’s major and minor axes, termed Length and
Width, and ascertain the orientation of the major axis to indicate
fire propagation direction. Finally, compute the eccentricity

Figure 4. Illustrates the evolution of the six features: “Area,”
“Rotation,” “Imajor,” “Eccentricity,” “Width,” “Height,” and
“Center of Gravity of the contour” for each timestep.

Figure 5. The evolution of the “Area” feature across ten
different forest fires.

(length-to-width ratio) and the moment of inertia relative to
the major axis. Additional shape descriptors proposed for use
in similarity analysis include the total area enclosed by the
shape, the total length of the shape’s perimeter, its eccentricity,
orientation angle, and moment of inertia.

Figures 4 illustrate the evolution of features during a single
fire, aimed at evaluating the effectiveness of handcrafted
features in capturing fire progression. Figure 5 depicts the
“Area” feature across 10 different fire simulations, revealing
varying rates of fire spread—some expand rapidly, while others
progress more slowly. This comparison highlights the diverse
behaviors of wildfires under different conditions.

The distinct trajectories of handcrafted shape descriptors
across these fires demonstrate that each fire follows a unique
path. While this uniqueness aids in identifying a fire’s progres-
sion based on these features, it complicates locating similar fire
simulations for new fires. To further explore this uniqueness,
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Principal Component Analysis (PCA) was applied to reduce
the dimensionality of the fire data for visualization. Figure 6
shows the PCA results: the left panel displays PCA features
color-coded by fire simulation filenames, while the right panel
color-codes them by the timestep from which each vector was
extracted. The fire data follows a consistent linear trajectory,
indicating close relationships between features at each timestep.
However, the lower and central parts of the diagram reveal a
distinct cluster of blue points at timestep zero (as shown in
the right panel where blue points correspond to the positions
at timestep zero), seemingly unrelated to the rest of the fire’s
evolution. This poses a challenge in identifying similar wildfires
when only early-stage data is available.

Figure 6. The results of PCA for each timestep of fire
simulation.

In this pipeline, user preferences dictate the search algorithm
and its features. The key contribution is showing how pre-
calculated simulations facilitate proactive and reactive wildfire
management.

V. CONCLUSION AND FUTURE WORK

This study explores approaches for two distinct chal-
lenges—predicting solar shading effects and managing wild-
fires—using AI and HPC. Corresponding tools effectively
correlate shading relations between buildings through charac-
teristics like building proximity and height, or respectively
aid in designing preventive measures against wildfires by
analyzing the Burn Probability (BP) and supporting rapid
response strategies by matching real-time fire scenarios with
pre-calculated simulations. For wildfires, the next steps include
testing various similarity algorithms and enhancing accuracy
with visual features, terrain data, and multimodal inputs. For
solar exposure, the focus will be on tuning GNNs, node features,
and exploring shading mask evolution over time.
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