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Abstract—The High-Performance Computing (HPC) landscape
is undergoing profound changes with developments in fast-
growing domains such as Artificial Intelligence (AI), cloud, edge
computing, and quantum computing. The growth of AI has
particularly impacted the relatively isolated HPC realm, bringing
in new user communities like start-ups that don’t want to fall
behind and are increasingly dependent on foundational models
trained by a handful of companies. However, the rapidly growing
AI technology landscape introduces security vulnerabilities to the
HPC world, which hesitates to install and maintain potentially
unstable software. This paper is a first step towards enabling
secure AI workloads on HPC systems by investigating AI security
vulnerabilities using the AI Lifecycle. We then organize the
challenges for HPC centres through the lens of the Technology-
Organization-Environment (TOE) framework. Lastly, we discuss
the differences between AI security concerns and mitigation
strategies on HPC and other systems, and outline future work
towards secure AI workloads on HPC systems.

Keywords-High-Performance Computing (HPC), Artificial Intel-
ligence (AI), AI Security Vulnerabilities, TOE Framework

I. INTRODUCTION

Supercomputers are the fastest computers of their time,
and have long been geared towards solving complex, time-
intensive problems. As Strohmaier et al. [1] notes, the tradi-
tional focus on floating-point intensive technical applications
is no longer sufficient to survive in the market. The HPC
landscape is undergoing profound changes with the emergence
of Machine Learning (ML) and Deep Learning (DL), cloud
and edge computing, and quantum computing. This paper
looks at the growth of AI and the need for HPC to embrace
these technologies and attract new user communities while
ensuring a high level of security. This is crucial to remain an
attractive computing platform for Small and Medium-Sized
Enterprise (SMEs), start-ups, and industry.

Why is the growth in AI relevant for supercomputing?
There are actually two sides to the coin: First, AI needs the
processing power of HPC, which is, after tackling technical
barriers, a straightforward task. Second, HPC should leverage
AI to improve classical simulations and system operation. This
task is quite challenging because it predominantly requires
expertise in both, AI and HPC.

Updating most of today’s HPC systems to support AI
workflows is a challenge, as it opens up the relatively isolated
HPC realm, bringing it out of its secure bubble to a higher,
and still relatively unknown, level of security risks. Moreover,

many HPC system administrators focus on traditional HPC
application areas like engineering and chemistry, which makes
it difficult for them to fully understand the specific needs of
emerging user communities, such as those in AI. This is espe-
cially true for widely used AI frameworks (e.g., TensorFlow
and PyTorch) that are part of the rapidly evolving ecosystem
of AI software and libraries, and are in stark contrast to
the limited legacy software that administrators maintain on
traditional HPC systems, over which they have much greater
control and experience. Therefore, there is some resistance in
installing and maintaining software from the AI realm that
is potentially unstable or may have security vulnerabilities, as
well as allowing such software to train and execute potentially
malicious or exploitable AI models.

Nevertheless, ways must be found to enable AI workloads
on HPC systems. If not, there is a growing risk that the
academic world, along with start-ups and SMEs, will continue
to fall behind and become increasingly dependent on the
foundational models, or their powered-down versions, pro-
vided by bigger companies [2]. It is not possible for SMEs
to build up and train their own counterparts to foundational
models, without access to federal or academic supercomputing
resources. To this end, HPC experts and AI experts must
jointly develop solutions that allow using pure AI applica-
tions and workflows on HPC and thus enabling seamless,
hybrid HPC/AI workflows. The technical obstacles include,
for example, making the entire AI software stack available
for HPC systems (e.g., via containerisation), evaluating AI-
specific usage patterns, and cybersecurity aspects. This paper
focuses on the cybersecurity concerns for running large-scale
AI applications on HPC systems.

In order to acquaint the reader with the foundations, the
paper first leads into a quick review of each of the main
concepts, namely, HPC, AI on HPC, and cybersecurity on
HPC. Then a thorough investigation is carried out on the
technical areas of concern that threaten or undermine the usage
of ML workflows on HPC, followed by potential challenges
at an organisational level for HPC centres, through the lens
of the TOE framework [3]. Finally, we review the potential
problems and solutions presented in the paper, and discuss
how our findings relate to research in the state of the art, and
what future work could lead on from this paper.
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II. LITERATURE REVIEW

The literature review explores the role of HPC systems, their
integration with AI, and cybersecurity considerations, while
identifying related work and existing knowledge gaps.
A. HPC

1) The Importance of HPC for Diverse User Communities:
HPC is utilized across industry [4] and academia, with use
cases as diverse as simulating fluid flows in the turbulence
around aeroplanes to the fluid flow of blood through the
human heart [5], from carrying out genome sequencing in
biology to molecular simulations in nuclear fusion [6], and
from predictions ranging from weather forecasts, financial
markets, and the spread of diseases and pandemics [7] [8].
Most of these diverse use cases can be classified into two basic
classes of problems, tracking and simulating the interactions
of a large system of individual particles, and solving forms
of partial differential equations. Often, solving these problems
results in solving a Linear Algebraic system [9].

2) An overview of an HPC system: A supercomputer, or
HPC cluster, derives its processing power from aggregating
and coordinating huge number of individual computational
systems. It not only orchestrates the parallel execution of
users’ programs, called codes, over these systems, but also
handles many users and their codes simultaneously [9]. These
individual systems, or nodes, of an HPC system vary according
to their tasks. Login nodes provide initial access to the system,
as well as basic storage and standardised interfaces, such as
to the scheduling system (sometimes running on dedicated
scheduler or head nodes) [10]. The Scheduler allocates users
the access to compute (or worker) nodes. These are resource
heavy nodes equipped to do the heavy lifting of executing
application codes, and themselves come in different flavours,
such as pure Central Processing Unit (CPU) nodes, mixed CPU
and Graphics Processing Unit (GPU) nodes, pure General-
Purpose Graphics Processing Unit (GPGPU) nodes, and data
transfer nodes [11]. All the nodes making up an HPC cluster
use a choice of high-performance interconnect to distribute
data and instructions amongst themselves, such as InfiniBand
or Gigabit Ethernet [12].

The user must design their program keeping in mind the
parallel architecture of a supercomputer, from the level of
multiple cores in a single processor, to multiple processors in
a single node, and finally scaling up to the nodes required
or available on the HPC system [11]. The design of the
program must also understand and make use of the memory
architecture of the system, with hybrid models of shared
memory and distributed memory paradigms available on most
HPC systems. Ultimately, it is the design of the application
code, including the exploitation of parallel frameworks such as
Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP), that determines how efficiently it can harness the
power of the HPC system [13].
B. AI on HPC

The rise in the level of AI model complexity and size to
exponential levels poses an unprecedented computational re-

quirement, thus the adoption of HPC resources [14] [15]. Mod-
ern AI models, especially Large Language Models (LLMs),
contain hundreds of billions of parameters that far exceed the
memory capacity of a single GPU [15] [16]. This growth,
coupled with expansion in training datasets, creates a number
of technical challenges that only HPC is well-poised to tackle.

The driving technical requirements of AI’s need for HPC
are many. First, the model size already far exceeds single
GPU memory capability and requires distributed computing
approaches [16] [17]. Second, very large data sets already used
for training exceed single machine memory and storage capa-
bility [14] [17]. Third, this computational intensity of training
resulted in prohibitively long training times on conventional
hardware [16] [17].

Moreover, research on AI does require long hyperparameter
tuning and thus many training runs with different settings are
needed. HPC clusters, therefore, provide the best environment
for these parallel experiments due to their high functionality in
job scheduling and resource management systems [16] [17].

The high computational demands of AI are challenging ex-
isting computing platforms. AI workloads are already driving
the architecture of new HPC hardware, particularly in the
construction of higher-end, more powerful, and more efficient
GPUs and dedicated AI accelerators [16] [17]. Software
frameworks evolve to better cope with distributed AI training
and inference on HPC clusters, with innovation in techniques
such as model parallelism and pipeline parallelism [16] [17].
This convergence pushes the frontiers of both AI and HPC to
handle the ever-increasing scale and complexity of AI models
and datasets [18], also raising significant concerns, such as
cybersecurity.

C. Cybersecurity on HPC

Similar to the general purpose Information Technology (IT)
systems, HPC systems face a variety of threats that can affect
their confidentiality, integrity, and availability. Some examples
are stealing of compute cycles, unauthorized access, Denial of
Service (DoS), data breaches and leakage, misuse of compute
power, and alteration of code. When comparing HPC with
general purpose IT systems, there are differences in their
functions, software and hardware stack, the user community
and the workflow.

Peisert [19] considers these differences and presents the
challenges and opportunities in implementing cybersecurity
for HPC. A single ingress and egress point between the cluster
and the external world makes it easy to monitor and restrict
the traffic. Not all nodes in the cluster are directly accessible
by the users. The users connect to the login nodes to submit
the jobs and data transfer nodes to pull the data from external
sources. The login nodes and data transfer nodes are placed
behind firewalls or protected by Access Control Lists in the
routers or switches. They might be accessible only through
secure protocols like SSH for login and GridFTP for data
transfer [20].

The compute nodes can only be used by submitting a job
to the resource manager and are not directly accessible by

13Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services



TABLE I: AI VULNERABILITIES IN SECONDARY STUDIES

Study Identified Vulnerabilities
Huq et al. [26] Training data poisoning, trojaning, LeftOverLocals
Familoni [27] Adversarial attacks, data breaches, deepfakes, dis-

tributed DoS, phishing, cyber conflicts, evolving mal-
ware, data poisoning

Roshanaei et
al. [28]

Adversarial attacks, data poisoning, model stealing,
model inversion, infrastructure attacks

Blowers and
Williams [29]

Steganographic attack, evolving malware, deep fakes

Kaloudi and
Li [30]

Evasive malware, evolving malware, voice synthesis,
social bots, adversarial training

Muñoz-
González
and Lupu [31]

Data poisoning, exploratory attacks, evasive attacks,
availability violation, data stealing

Hu et al. [32] Data breach, data biases/fake data, sensor spoofing
attack, image scaling attack, data poisoning attack,
adversarial attacks, availability attack, data stealing,
model stealing, AI framework backdoors

the user. The resource manager that allocates the nodes and
schedules the jobs can use its own authentication mechanism.
A simple example of such an authentication mechanism is
Munge used by Slurm to encode the user credentials of a
calling process and decode them in a remote node [21]. Multi-
tenancy in HPC enables jobs from multiple users to run at
the same time in the cluster. Even if a given node remains
exclusive to a particular user’s job, all the nodes in the cluster
will be connected to the same network. Prout et al. [22] offers
a solution for this problem by implementing network policies
based on user and group IDs of the application processes.
Since the HPC providers can support users from various
institutions and SMEs in the same cluster, the need for proper
configuration of file-system access control is crucial. Discre-
tionary Access Control is configured by the owners of the
file to restrict permissions to their file and Mandatory Access
Control is configured by the system administrators [23].

Since the primary goal of HPC systems is to offer very
high compute power, the overheads from security tools are not
acceptable. This presents a challenge in directly using security
tools available from the general-purpose web/software devel-
opment ecosystem. However, the world of HPC is witnessing
serious change due to requirements emerging from diverse
user communities. One such trend is the increased adoption of
containers that provide reproducibility, flexibility, and porta-
bility in shipping applications. The usage of containers can
provide extra attack surface and can be risky in multi-tenant
HPC clusters [24]. Keller Tesser and Borin [25] stress on the
importance of unprivileged user containers to reduce the risks
associated with using containers in multi-tenant systems. The
following sections review such vulnerabilities, focusing on the
AI domain’s requirements.

D. Related Work and Gaps

Before discussing the cybersecurity concerns of large-scale
AI applications on HPC systems, we should discuss the
secondary studies with similar objectives (Table I). Huq et
al. [26] survey the cloud-based GPU threats and their impact
on AI, HPC, and Cloud Computing. The report explores po-
tential attacks against AI using GPUs. Familoni [27] reviews

the cybersecurity concerns in AI systems. After presenting
the vulnerabilities, the paper points out the challenges in
securing AI systems, including human factors and the lack
of explainability and transparency in AI systems. Roshanaei
et al. [28] identify the defensive mechanisms and frame-
works after specifying the potential threats to AI systems.
Following an introduction to potential vulnerabilities, Blowers
and Williams [29] emphasize the design considerations for
secure AI/ML architectures. Kaloudi and Li [30] focus on
the intentional use of AI for harmful purposes, classifying
the attack stages and objectives in a cyber threat framework
with defensive approaches. Muñoz-González and Lupu [31]
introduce a threat model that organizes the ML vulnerabilities
by attacker’s capability, goal, and knowledge. Hu et al. [32]
map the attacks on AI systems to the AI lifecycle comprising
data collection, data preprocessing, training, inference, and
integration phases.

As AI systems become larger, driven by competition among
a handful of large companies, it is critical that start-ups and
SMEs also have access to the computational power needed
to train and deploy foundational models [33]. Furthermore,
researchers also need the computational capability to evaluate
these large models [34]. Therefore, we need secure HPC
infrastructures to train, evaluate, and deploy large-scale AI
systems. To the best of our knowledge, the literature lacks
studies that organize large-scale AI vulnerabilities into an ML
lifecycle framework from the HPC perspective, and map the
challenges HPC centres face in solving AI system vulner-
abilities. The next section organizes large-scale AI system
vulnerabilities on HPC and classifies the challenges for HPC
centres.

III. AI CYBERSECURITY FOR HPC SYSTEMS

This section examines the cybersecurity risks in the ML
lifecycle on HPC systems and the challenges of addressing AI
vulnerabilities using the TOE framework.
A. Potential Risks in the ML Lifecycle on HPC

Since the ML lifecycle involves multiple steps and use-
cases, multiple points of attack can be exploited by potential
bad actors. This subsection briefly details a non-exhaustive
list of security risks associated with ML pipelines, with an
emphasis on how HPC is particularly exposed to such risks.
• Problem Definition: The first vulnerability that must be

addressed, even before looking into technical security risks,
is that of the usage of HPC resources for malicious use-
cases or ill-posed applications. Blauth et al. [35] mention
various categories of malicious uses of AI, such as social
engineering models, misinformation and fake news, hacking,
and warfare-related AI. These risks are significant because
detecting the development of these models requires manual
oversight. This necessitates a more stringent review of
projects and code on HPC systems at computing centres,
along with periodic checks to ensure only relevant tasks are
performed.

• Data Exploration: Development of ML systems usually
begins with an Exploratory Data Analysis (EDA) phase [36],
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where the users and developers understand the composition
of the data and problem that needs to be solved. Since HPC
is a component of the pipeline, and not the only available
infrastructure during the development lifecycle, most ML
development takes place in a heterogeneous computing
environment [37]. In such scenarios, a mixture of traditional
HPC, cloud, and edge computing is used to distribute differ-
ent phases of the lifecycle. Because EDA is an iterative and
experimental phase, it often requires developers to connect
their local systems to HPC or cloud systems outside the
normal job-based scheduling environment. With the steady
increase in model size and training requirements [38], HPC
environments have become more relevant for EDA.
Security risks during EDA on cloud systems has also become
equally relevant [39], and as such, also extends to the HPC
environment. Since EDA on HPC requires opening ports to
the outside world, this presents a unique challenge where
security vulnerabilities throughout the chain of connections
may affect the source HPC system. Where most cloud
providers deploy their EDA environments through container-
ization, these methods become difficult to implement in a
batch-scheduling system. The most famous containerization
engine, Docker, requires root-access, which presents a secu-
rity risk when provided within a shared, HPC environment.
On the other hand, development of rootless containers, such
as Singularity/Apptainer [40], are not well integrated with
other systems. We further discuss the security issues with
container runtimes in HPC environments in the next section,
under technological challenges. As such, EDA on HPC
systems is usually more time-consuming task, in order to
maintain security.

• Data Ingestion: Similar to providing an environment for
EDA, HPC infrastructure must also allow for transportation
and ingestion of vast amounts of data, especially for AI/ML
development. This risk is mitigated in the cloud using en-
cryption at rest, transmission and source, along with lifecycle
features. Since most ML development in the cloud uses
object storage [41], this differs from the traditional HPC
approach. Connecting these systems is challenging because
higher bandwidth data transmission requires multiple steps
between the source and destination, increasing vulnerabili-
ties [42], [43], including man-in-the-middle attacks [44].

• Data Engineering: Even when the data can be securely
moved around different storage resources throughout the
pipeline, further risks exists that can be exploited by bad
actors. Once the data is at rest, engineering and utilizing this
data for further processing becomes even more important.
Kumar et al. [45] show that there are various security
risks involved with data pipelines, specifically in cloud
systems, such as risks involving confidentiality (access to the
data), integrity (tampering with the data), availability (DoS),
risks involving authentication and access-control (since most
cloud data pipelines are built with a singular authentication
mechanism), and other minor risks such as data location,
multi-tenancy and backup of data. These risks also extend
to HPC storage systems, where the storage system must

also deal with these security risks. Adversarial attacks via
malicious actors, such as poisoning attacks [46] can cause
loss of data integrity, both for cloud and HPC systems.

• Model Training: Another attack vector is the training and
code execution of models. ML pipelines either train a model
from scratch using multiple libraries, such as TensorFlow,
PyTorch, and Scikit-learn. Although these libraries have ac-
tive development teams to patch discovered vulnerabilities,
they still possess a variety of security risks. [47]. When
these libraries are used to train a model, there may be
open back-doors that allow bad actors to execute malicious
code. Apart from pre-training models, pre-trained models
hosted on various repositories may also contain malicious
code embedded into the model file itself, such as backdoor
code, weight poisoning attacks, and falsified model descrip-
tion [48]. Although root privileges are generally unavailable
on HPC systems, any cloud-HPC ML pipeline may have
privileged steps that allow such spillover.

• Model Evaluation: Another major step in the ML pipeline
is the evaluation of pre-trained models. In this step, the
developers usually look at evaluating the model against a
test or live dataset, and predict the performance of such
models. Major security issues posed during this step are
evasion attacks and model inversion attacks [46], where the
bad actor might poison the dataset for evaluation, in order
to falsify the final output, or simply switch the model output
entirely. These attacks can cause falsified information to be
used when using these models in the real world. This is a
particularly difficult problem within the HPC environment
since HPC resources are expensive, and falsified evaluation
results from ML training may cause excessive usage of
resources.

• Model Deployment: Toward the end of an ML pipeline,
before monitoring and maintenance, is usually the deploy-
ment of the model in a production environment. Here,
the usual security risks of any cloud environment [45]
become automatically relevant. Apart from these, model
ML specific attacks that are relevant at these steps are
surveyed by Chen et al. [49], where they mention attacks
such as distributed DoS attacks on deployed models, model
inversion and extraction attacks (where the output of the
model is used to replicate the model by prompting it with
different datasets), membership inversion attacks [46] (where
the attacker can generate the underlying dataset of the model,
along with other parameters, by repeatedly querying the
model), as well as injecting malicious code during batch
inferencing of ML models. There may be threats present
if any attacker gains access to a GPU session, even after
the GPU session has ended, by extracting the information
execution on GPUs [26]. In case these models are being
hosted within the HPC environment, this may lead to a
loss of confidential information and other secrets. Lastly,
as models get larger and more complex, it becomes harder
and more computationally expensive to thoroughly evaluate
them before deploying to production. Large-scale models
bring many opportunities, but additional care is necessary
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for critical domains such as law [2].
• Monitoring and Maintenance: The production ML mod-

els are usually ephemeral because the model performance
degrades over time [50]. Continuous Integration (CI) and
Continuous Delivery (CD) have increasingly become promi-
nent methodologies to automate software development in
the industrial landscape, as well in the HPC/AI domain.
This is because CI/CD plays an important role in automated
monitoring to track the model performance in real-time,
automated retraining, and rollbacks. Since CI/CD require
multiple components, such as a central version control
repository like Git, and execution platforms such as runners,
there are multiple vectors of attack available for bad actors.
To encapsulate this pipeline, most CI/CD tools use Docker
containers, which come with their own vulnerabilities [51]
such as insecure configurations, privilege escalation, and
changing of container permissions through exploits. Apart
from this, other vulnerabilities, such as running malicious
code within the CI/CD pipeline is another risk factor, which
is compounded when HPC is involved as a component in
the pipeline. If the initial code being tested and built is
compromised, the privilege provided to the runners might
spill over the infection to the HPC system, thereby creating
a security issue for the entire-cluster.
In the next subsection, we will look at why these risks are

difficult to solve, even when they may be known.

B. Challenges in Addressing AI Vulnerabilities on HPC

To address AI vulnerabilities on HPC, we use the TOE
framework [3], which explains how three contextual fac-
tors—technology, organization, and environment—affect an
organization’s adoption and implementation of innovations.

1) Technological challenges: While AI applications bring
immense potential to HPC environments, integrating these
innovations introduces several technological challenges.
• Increasing Spectrum of Hardware Components: Modern

HPC systems are incorporating a growing variety of hard-
ware components to enhance computational power, energy
efficiency, and specialized processing capabilities. These
components can range from traditional CPUs and GPUs
to more specialized hardware like Tensor Processing Units
(TPUs) and even quantum processors. The inclusion of
such diverse and sometimes exotic hardware increases the
complexity of managing security across the entire HPC
environment. Each type of hardware component in an HPC
system may have unique security requirements. For in-
stance, GPUs and TPUs optimized for parallel processing
might have different memory management vulnerabilities
compared to CPUs. Exotic and cutting-edge hardware com-
ponents in HPC systems may have unique firmware and
micro-architectural vulnerabilities that are less well under-
stood or documented. Attackers can exploit these low-level
vulnerabilities through techniques like side-channel attacks
(exploit information gained from the physical implemen-
tation of a computer system rather than vulnerabilities in
the code itself [52]), row hammer attacks [53] (hardware

vulnerability in DRAM memory), or Spectre [54], and
Meltdown-type [55] exploits (exploit speculative execution
- a performance optimization in modern CPUs - to access
unauthorized memory). The challenge is to ensure robust and
properly managed security configurations for each hardware
type. This includes avoiding conflicts or vulnerabilities and
consistently identifying, patching, and protecting against
vulnerabilities on various devices, often requiring special-
ized knowledge.

• Performance-Security Trade-offs: HPC applications are
designed to maximize performance, as the scalability of
these systems means that any performance loss also scales
significantly. Consequently, HPC users value security mea-
sures only when they come with a tolerable performance
penalty [24]. To achieve optimal performance, HPC systems
often operate as shared environments where multiple tenants
can access shared resources, such as access nodes and certain
network layers. This is in contrast to cloud systems, which
are predominantly virtualized. In cloud environments, each
tenant or user has isolated virtualized compute and network
resources, reducing the risk of cross-tenant interference or
data leakage.

• Evolution of AI, Big Data, and HPC Software Ecosys-
tems: AI, Big Data, and HPC have evolved within distinct
software ecosystems, each optimized for different goals
and environments. AI software ecosystems are built around
cloud-native, containerized environments with frameworks
like TensorFlow, PyTorch, and Keras. Big Data ecosystems,
such as Apache Hadoop and Spark, are designed for dis-
tributed storage and processing of vast datasets. Meanwhile,
supercomputer ecosystems focus on HPC with specialized
libraries and frameworks like MPI and OpenMP optimized
for parallel processing. The divergence in software ecosys-
tems creates significant challenges when integrating AI and
Big Data workflows with HPC environments. The AI and
Big Data frameworks often lack the native compatibility
with HPC-specific software and libraries. Managing de-
pendencies and ensuring version compatibility across these
ecosystems is a non-trivial task. AI and Big Data frameworks
evolve rapidly with frequent updates and new releases,
whereas HPC software stacks may rely on more stable,
tested versions. Ensuring compatibility between different
versions, libraries, and tools without exposing the system
to vulnerabilities or performance issues is a considerable
challenge.

• Cloud-Native ML Frameworks and HPC Security Com-
patibility: The distributed ML libraries and frameworks,
such as TensorFlow, PyTorch, Horovod or Ray, have been
developed primarily with cloud infrastructure assumptions in
mind. However, these frameworks rely on the inherent isola-
tion provided by cloud virtualization for security and require
users to manage infrastructure-level security settings [56].
In an HPC environment, where such virtualized isolation is
often absent, deploying these frameworks securely becomes
challenging. The lack of compatibility with HPC security
requirements means these frameworks may inadvertently
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expose vulnerabilities when deployed in non-virtualized
environments. This creates a challenge of either adapting
these frameworks or fundamentally redesigning the HPC
environment to support them securely.

• Maturity of Distributed ML Libraries and Frameworks:
As mentioned above, distributed ML libraries and frame-
works are still in relatively early stages of their development
lifecycle, tending to prioritize performance and scalability
over security, and leading to a lack of robust built-in security
features. For example, they may not have mature mecha-
nisms for handling control or secure communication, which
are critical in multi-tenant HPC environments. This creates
vulnerabilities that could be exploited in environments where
sensitive data is processed. They may also focus heavily
on performance optimization and may employ shortcuts or
assumptions that do not hold in more secure or controlled
environments like HPC. For instance, assuming trusted
environments and thus lacking robust isolation between
processes, increases the risk of side-channel attacks or data
leakage.

• Security Issues with Container Runtimes in HPC Envi-
ronments: Most container runtimes (software responsible
for running containers, managing container images, and
providing necessary tools and libraries to support container-
ized applications), such as Docker, traditionally require root
(administrator) privileges to manage containers, which poses
a significant security risk in HPC environments. Running
containers with root privileges can lead to a potential
exploitation where malicious users can gain unauthorized
access to the underlying host system. This is particularly
concerning in multi-tenant HPC setups, where ensuring
isolation and security between different users and their
workloads is crucial. HPC-oriented container runtimes like
Apptainer (formerly Singularity) and Podman are designed
to address some of these security concerns by allowing con-
tainers to run in a "rootless" mode, which avoids requiring
root privileges. However, these runtimes rely heavily on user
namespaces (a Linux kernel feature that allows a process
and its children to have a different view of the system’s
user and group IDs; this enables root privileges within the
namespace without granting those privileges on the host
system) to provide isolated environments. Recent history has
shown that user namespaces have been subject to vulnerabil-
ities, such as CVE-2022-0492, CVE-2022-0185, CVE-2021-
22555 where a flaw in the user namespace handling could
lead to privilege escalation. Such vulnerabilities undermine
the security guarantees provided by rootless containerization
in HPC environments. Alternatively, udocker [57] is a
unique container runtime that operates entirely in user space,
meaning it does not require root or system-level privileges
to execute. This design significantly reduces the risk of
privilege escalation attacks, a common concern with other
containerization tools that rely on elevated privileges. Since
udocker runs without needing system privileges, it is well-
suited for environments where users do not have adminis-
trative rights, such as shared HPC systems. While udocker

provides enhanced security by running entirely in user space,
this approach can lead to performance penalties. The run-
time achieves container-like isolation by emulating container
features through techniques such as tracing or intercepting
system calls (both are normally used to monitor, control
or debug the behaviour of processes). These techniques,
while effective at maintaining isolation without elevated
privileges, can introduce significant overhead, especially for
I/O-intensive HPC applications.

2) Organizational challenges: Beyond the technological
complexities, securing AI applications in HPC environments
also involves overcoming significant organizational challenges.

• Managing Multiple Systems for Diverse User Groups:
HPC centres often cater to a wide range of users with varying
computational needs, such as researchers, data scientists, and
engineers from different domains. As a result, a single centre
may deploy multiple types of systems, including traditional
HPC clusters, AI-specific accelerators, Big Data analytics
platforms, and GPU-based systems for deep learning. This
diversity in system types creates significant challenges in
terms of system management and security. For instance,
AI and Big Data platforms may require more frequent
updates and may have different access control mechanisms
compared to traditional HPC clusters. Coordinating these
security needs across different systems while maintaining a
consistent security posture becomes a challenge.

• Continuous Infrastructure Upgrades to Maintain
Cutting-Edge Capabilities: As HPC centres continuously
update their infrastructures with newer hardware, they may
inadvertently introduce new security vulnerabilities. Each
new piece of hardware, whether it’s a next-generation CPU,
GPU, or a specialized accelerator, comes with its own
set of firmware, drivers, and software dependencies. These
components could have undiscovered or recently discovered
vulnerabilities that can be exploited by malicious actors,
especially if proper security assessments and patches are not
promptly applied. The diversity of hardware in an upgraded
HPC environment inherently increases the attack surface.
New components and systems require additional configu-
rations, libraries, and tools, which may not always be fully
vetted for security. An attacker could exploit inconsistencies
or gaps in security configurations, especially in environments
where legacy systems are mixed with newer hardware.
Frequent hardware upgrades also expose HPC centres to
supply chain risks. As they procure new components from
different vendors, there is a risk of introducing compromised
hardware or firmware that could be exploited.

• Elevated Risk of Insider Threats in HPC Systems:
HPC systems often handle highly valuable computational
resources and sensitive data, such as proprietary research,
government data, or confidential business analytics. This
makes them prime targets for insider threats, where indi-
viduals with legitimate access may misuse their privileges
for unauthorized purposes, either for personal gain, sabotage,
or espionage. The high-stakes environment of HPC makes
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the impact of insider attacks particularly severe, potentially
resulting in substantial financial loss, reputational damage,
or compromised research integrity. Due to the collaborative
nature of HPC environments, where researchers, scientists,
and external collaborators often require access to various
systems and data, managing user privileges becomes highly
complex. Many HPC centres provide access to shared re-
sources, which can be exploited by insiders if not man-
aged properly. The lack of fine-grained access controls
or monitoring capabilities can allow malicious insiders to
access sensitive information or disrupt system operations
unnoticed. HPC centre staff, such as researchers and system
administrators, usually have high technical expertise. This
technical proficiency means that insiders who wish to con-
duct malicious activities might be able to bypass standard
security controls, manipulate logs, or exploit unpatched
vulnerabilities without easily being detected. The insider’s
deep understanding of the system architecture and potential
weak points makes it more challenging for security teams
to detect and prevent insider threats. While implementing
strict security policies can help mitigate insider threats,
doing so in HPC environments is challenging due to the
need for flexible and rapid access to resources by different
user groups. Security measures that are perceived as too
restrictive can hinder research productivity and lead to user
resistance or attempts to circumvent controls, inadvertently
creating security loopholes.

• Lack of Security Awareness Among HPC Users: Users
in HPC environments, such as researchers, data scientists,
and engineers, are typically focused on maximizing ease
of use and achieving research or computational results as
quickly as possible. Security is often seen as an impediment
to their workflows rather than a necessity. This mindset can
lead to risky behaviours, such as sharing passwords, using
weak or repetitive credentials, ignoring security updates,
or circumventing security protocols that they perceive as
hindrances. Given their focus on productivity and achieving
results, users may resist the implementation of strict security
controls, such as multifactor authentication, strict access
controls, or frequent password changes. Such controls are
often viewed as burdensome and time-consuming, leading
users to find workarounds or ignore policies altogether. This
resistance can undermine organizational efforts to maintain
a secure HPC environment. Many users assume that the re-
sponsibility for security lies solely with HPC administrators
and IT security teams. This overreliance creates a gap in the
overall security posture of the organization, as users may
fail to recognize that their actions - such as downloading
unverified software, neglecting to patch their applications, or
mishandling sensitive data - can directly impact the security
of the entire HPC system.
3) Environmental challenges: While organizational chal-

lenges focus on user behaviour and policy management,
the environmental context addresses broader issues stemming
from the shared and increasingly diverse nature of HPC
systems and their network security practices.

• Delegated Security Risks in HPC: Traditionally, HPC
service providers have delegated the responsibility for secure
network usage to end users, assuming that users will manage
their own network security measures. This model relies
heavily on users being knowledgeable and proactive about
securing their connections, data transfers, and communica-
tions. However, this assumption does not always hold true,
especially given the wide range of technical expertise among
users in academic and research settings. The primary users
of today’s HPC systems are academic researchers, scientists,
and students who often focus on their research objectives
rather than on implementing robust security practices. Many
of these users assume that the underlying HPC system and its
network are inherently secure, leading to a lack of precaution
when developing software or transferring sensitive data.

• Increased Application Diversity from HPC and AI Con-
vergence: The convergence of HPC and AI significantly
expands the variety of applications running on HPC systems.
Traditional HPC workloads, such as large-scale simulations
and complex scientific calculations, are now being com-
bined with AI-driven applications like deep learning, natural
language processing, and data analytics. This convergence
results in a more diverse set of software, libraries, and
frameworks that need to be managed within the same HPC
environment. The introduction of AI workloads brings new
security challenges, as many AI frameworks and libraries
were originally developed with cloud environments in mind
and may lack the rigorous security controls required in HPC
settings. The increased diversity in applications can lead to
conflicting dependencies, security vulnerabilities, and unin-
tentional exposure of sensitive data. Managing the security
of these diverse applications is particularly challenging when
they rely on different security models and practices.

• Growing Target for Sensitive Data and Malicious Ap-
plications: HPC systems are increasingly used to process
and analyse sensitive data, such as genomic information,
climate modelling data, defence simulations, and proprietary
research. As a result, these systems have become attractive
targets for cyberattackers [59] who seek to steal, manipu-
late, or exfiltrate valuable information. The aggregation of
sensitive data in HPC environments heightens the risk of
breaches, particularly if adequate security measures are not
in place to protect data in storage, transit, and processing.
Many HPC systems operate in a shared environment where
users from different institutions, research centres, and even
commercial entities collaborate. This openness, while fos-
tering innovation and scientific progress, also increases the
risk of insider threats and unauthorized access to sensitive
data. Attackers may exploit this shared nature to infiltrate
systems, elevate privileges, and access data that they are not
authorized to see.

IV. DISCUSSION AND CONCLUSIONS

The last section compares security concerns across different
computing paradigms, proposes strategies to mitigate potential
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TABLE II: AI THREAT MITIGATION STRATEGIES FOR CLOUD-BASED GPU SYSTEMS AND HPC SYSTEMS WITH GPU ACCELERATION

Mitigation Strategy Cloud-Based GPU Systems based on [26] HPC Systems with GPU Acceleration
Advanced Virtualization Se-
curity

Use Hypervisors and VMs to virtualize GPU and system
usage.

Virtualized platforms with low performance overhead and
virtual networks on HPC [58]

Robust Kernel Isolation Using vGPUs to mitigate manipulation attacks through APIs. Same as general systems, as well as prevent privilege escala-
tion by regularly updating underlying images.

Enhanced Memory Manage-
ment

Prevent memory snooping and leakage through randomization,
encryption and clearing.

Same as general system, as well as anomaly detection on
memory usage.

Driver and Firmware Secu-
rity

Rigorous system for patching and driver management to stay
on top of vulnerabilities.

Using safe underlying frameworks for GPU execution, and
active scanning for CUDA/ROCm vulnerabilities.

Secure Code Execution
Frameworks

Verifying code before executing and keeping up-to-date with
underlying frameworks.

Same as general systems.

GPU Usage Monitoring and
Anomaly Detection

Deep monitoring of GPU resources to counteract cryptojack-
ing, distributed DoS or overconsumption of resources using
AI/ML techniques.

Including monitoring details within the pipeline to correlate
jobs with resource usage to detect anomalies.

Application-Level Security
Measures

Validating input data before running AI/ML workloads to
mitigate model/data poisoning and evasion.

Same as general systems.

Hardware Security Modules
for Sensitive Operations

HSMs offer higher security than GPUs, and should be used
for critical tasks.

Induction and inclusion of HSM partitions in HPC clusters.

Access Control Policies Role-Based Access Control for GPUs to reduce security leaks
due to unauthorized access.

Integration of HPC access policies, and peripheral system
access policies for more fine-grained resource-level access
control.

Education and Awareness Provide training for GPU-based security issues. Same as general systems, with an added emphasis on the HPC
architecture.

attacks on HPC, and addresses limitations and areas for future
research.
A. AI Security Concerns Across Computing Paradigms

While cloud, edge, and HPC environments each have unique
challenges for securing AI applications, HPC systems face
specific security risks due to their focus on performance
and scale. AI workloads in HPC need massive computational
power, often distributed across thousands of nodes. Ensuring
security at such a scale, especially when running distributed
ML algorithms, is a significant challenge. At scale, attack
vectors like data poisoning, adversarial inputs, and model
inversion become more feasible, particularly if the underlying
HPC infrastructure lacks robust, AI-specific security measures.
The literature does not, to our knowledge, sufficiently or-
ganize large-scale AI vulnerabilities within an ML lifecycle
framework from an HPC perspective, nor does it address
the specific challenges HPC centers face in mitigating these
vulnerabilities. Our research fills this gap by exploring how
AI security concerns manifest in HPC environments.

Edge computing environments, where AI inference is per-
formed closer to data sources, also face unique challenges
such as physical tampering, localized DoS attacks, and limited
computational resources for robust security protocols. HPC
systems, which typically handle large datasets in centralized
facilities, must ensure the integrity and confidentiality of data
across multiple storage and processing layers, with particular
attention to data in transit and at rest. Physical security in HPC
involves safeguarding large-scale data centres, whereas edge
environments require securing numerous distributed devices,
each with a potentially greater risk of compromise.

Cloud environments rely heavily on virtualization and multi-
tenancy to maximize resource utilization, which provides
strong isolation mechanisms. However, HPC systems often
prioritize performance and thus avoid extensive virtualization,
opting instead for shared access to physical hardware. This
lack of virtualization increases the risk of side-channel attacks

and resource contention vulnerabilities. So, addressing these
risks requires incorporating best practices from cloud security,
but adapting them to the specific needs of HPC. Accordingly,
the next section compares the AI threat mitigation strategies
for cloud and HPC systems.

B. Strategies for Solving Potential Attacks on HPC

We look at some threat mitigation strategies in Table II,
based on the work done by Huq et al. [26], with a particular
focus for AI on GPU-accelerated HPC partitions. Nevertheless,
HPC environments are increasingly integrating GPUs, TPUs,
and other accelerators to enhance AI processing capabilities.
The integration of these diverse resources requires a more
nuanced security strategy that addresses the specific risks
associated with each type of hardware.

Therefore, usage of purpose-built tools to monitor and infer
incursions should be used to create dedicated pipelines for
cybersecurity. For example, NVIDIA Morpheus [60] uses pre-
trained ML models within a pipeline framework to collect
cybersecurity information, and detect anomalous behaviours
across a data centre. In addition, Burstein [61] presents the
Data Processing Unit (DPU) architecture for accelerating
infrastructure processes, and taking them off the main CPU of
the processing nodes. Vilalta et al. [62] show the combination
of DPU and Morpheus to isolate the cybersecurity mechanisms
from the host machines, allowing for smarter analysis of
traffic on clusters. These modifications should bring the overall
security of AI applications on HPC higher. In the final section,
we discuss the limitations of the work done, as well as what
future steps can be taken to improve above this analysis.

C. Limitations and Future Work

As with any study, our research has limitations. First, we do
not employ a systematic literature review approach, although
we use established frameworks to map the studies. Second,
while we discuss the mitigation strategies for AI security risks
on HPC, we do not cover reproducing the threats or validating
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the mitigations. Third, we do not provide an agenda for HPC
centres by ranking the vulnerabilities according to criticality
or offering a secure AI technology adoption roadmap. Instead,
this study takes the first step toward secure AI applications on
HPC systems by introducing the threat landscape and mapping
the challenges. Future studies should address these limitations
to lower the computation barrier for start-ups, SMEs, and
researchers by enabling a secure HPC-integrated computing
environment for AI applications.
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