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Abstract— The paper presents a multi-agent simulation using 

fuzzy inference to explore in an integrated way the task 

allocation and battery charging management of mobile 

baggage conveyor robots in an airport. This simulation 

approach offers high adaptability thanks to a distributed 

system, adapting to variations in the availability of conveyor 

agents, their battery capacity, knowledge of the context of 

infrastructure resource availability, and awareness of the 

activity of the conveyor fleet. Dynamic factors, such as 

workload variations and communication between the conveyor 

agents and infrastructure are considered as heuristics, 

highlighting the importance of flexible and collaborative 

approaches in autonomous systems. The results highlight the 

effectiveness of adaptive fuzzy multi-agent models to optimize 

dynamic task allocation, adapt to the variation of baggage 

arrival flows, improve the overall operational efficiency of 

conveyor agents, and reduce their energy consumption. 

Keywords-autonomous industrial vehicle; dynamique task 

allocation; fuzzy agent; agent-based simulation; Airport 4.0. 

I.  INTRODUCTION 

The deployment of Autonomous Industrial Vehicle 
(AIV) fleets in the context of Airport 4.0 raises several 
issues, all related to their real level of autonomy: acceptance 
by employees, vehicle localization, traffic flow, failure 
detection, collision avoidance and vehicle perception in 
changing environments. Simulation makes it possible to take 
into account the various constraints and requirements 
formulated by manufacturers and future users of these AIVs. 

Before starting to test AIV fleet traffic scenarios in often-
complex airport situations, it is wise, if not essential, to 
simulate these scenarios [1]. Moreover, one of the main 
advantages of using simulations is that the results can be 
used without the need to apply a scaling factor. 

The main advantages of simulating mobile robot or AIV 
operations are: reducing the time and cost of developing an 
AIV, minimizing potential operational risks associated with 

AIVs, allowing to assess the feasibility of different AIV 
circulation scenarios at a strategic or operational level, 
allowing a rapid understanding of the operations carried out 
by AIVs, and identifying improvements in the layout 
configurations of the facilities hosting these AIVs [2]. 

Simulation also provides flexibility in terms of AIV 
deployment and allows studying the sharing of responsibility 
between the central server and the robots (local/global or 
centralized/decentralized balance) for the different 
operational decisions. Another advantage of simulations is to 
introduce humans into the scenarios in order to verify and 
validate, before the actual deployment of autonomous mobile 
robots, the safety of the coexistence and possible interactions 
between these AIVs and human operators [3]. Agent-based 
approaches are often proposed for the simulation of 
autonomous vehicles. They offer simulation contexts ranging 
from trajectory planning to optimal task allocation, while 
allowing collision and obstacle avoidance [4]. 

Our current research focuses on the use of fuzzy agents 
to handle the levels of imprecision and uncertainty involved 
in modeling the behavior of simulated vehicles [5]. Indeed, 
fuzzy set theory is well suited to the processing of uncertain 
or imprecise information that must lead to decision-making 
by autonomous agents, used in activities such as the 
simulation of AIVs in an airport or product design [6]. 

Fuzzy agents can track the evolution of fuzzy 
information from their environment and from agents [7]. By 
interpreting the fuzzy information they receive or perceive, 
fuzzy agents interact within the multi-agent system of which 
they are a part. For example, a fuzzy agent can discriminate a 
fuzzy interaction value to assess its degree of affinity (or 
interest) with another fuzzy agent [8]. 

Thus, we develop a comprehensive study on utilizing 
fuzzy inference within multi-agent simulations to optimize 
task allocation and battery management for mobile baggage 
conveyor robots in airports. The proposed simulation 
approach is designed to be highly adaptable, taking into 
account dynamic factors such as workload variations, battery 

58Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services



capacities, and communication between agents and 
infrastructure. The results demonstrate that this adaptive 
fuzzy multi-agent model can significantly improve 
operational efficiency, adapt to variations in baggage arrival 
flows, and reduce energy consumption. 

This article is structured as follows: first, we present a 
state-of-the art on the fuzzy agent-based allocation of tasks; 
then, we propose a case study on fuzzy task allocation where 
we compare five kinds of strategies; in Section 4 we present 
three improvements using fuzzy heuristics; finally, we 
conclude on the proposed fuzzy dynamic task allocation 
strategies, and then we present different work perspectives. 

II. FUZZY AGENT-BASED TASK ALLOCATION  

This section presents a brief state of the art on task 

allocation and fuzzy agent-based simulation. 

A. Task allocation 

Task Allocation (TA) consists of optimally assigning a 
set of tasks to be performed by agents, actors, robots or 
processes, grouped and organized within a cohesive system. 
This is the case for mobile multi-robot systems [9], AIV 
fleets [10], and applications in airports [11]. 

In the field of mobile robotics, the taxonomy presented in 
[12] has been defined to better characterize allocation and 
assignment functions to robots: Single Task for a Single 
Robot (STSR), Multiple Tasks for a Single Robot (MTSR), 
and Multiple Tasks for Multiple Robots (MTMR). These 
classifications enable tasks to be assigned to one or multiple 
robots, with various tasks being allocated to heterogeneous 
or multitasking robots. 

Moreover, De Ryck et al. [12] defined also: allocation 
modalities, such as instantaneous allocation or allocation 
extended in time. This last is linked to synchronization and 
precedent or time window constraints. As many 
combinations as exhaustively detailed by numerous surveys 
on the issue of multi-robot TA. 

Different solution models have been proposed for TA: 
based on optimization: exact algorithms, dynamic 
programming, (meta-)heuristics [9]; based on the Contract 
Net Protocol: inside an agent-based system, an initiating 
agent sends a call for proposals to all agents, chooses the best 
proposal received, and then informs all agents [10]; based on 
the concept of the market: announcement by an auctioneer, 
submission by bidders, selection by the auctioneer and award 
by the auctioneer [13]. 

Furthermore, different types of optimization objectives 
can be defined for this task allocation [12]: cost objectives 
(travel costs, such as time, distance or fuel consumption), 
behavior objectives (ability of a robot to perform a task), 
reward objectives (payoff for performing a task), priority 
objectives (urgency to perform a task), and utility objectives 
(subtracting the cost from the reward or fitness). 

Task allocation and planning are often managed 
centrally, even semi-centrally when global and local 
planning are differentiated [14]. For the proper functioning 
of autonomous and dynamic systems, the requirements of 
flexibility, robustness and scalability, lead to consider 
decentralized mechanisms to react to unexpected situations. 

Autonomy and decentralization are two excessively linked 
notions to the extent that an autonomous system operates and 
makes decisions autonomously [15]. The problem of task 
allocation can also be thought of in a decentralized way [12]. 

For reasons of flexibility, robustness and scalability 
necessary in an Industry 4.0 or Airport 4.0 context, we are 
interested in decentralized task allocation solutions. These 
solutions, decomposed below, must be able to assign tasks to 
a fleet of robots. 

Particularly, solutions based on the market concept can 
easily be applied in a distributed context, where each mobile 
robot can become an auctioneer [16]. For each situation, a 
single mobile robot is appointed auctioneer, and retains this 
role until the situation is definitively managed 

B. Fuzzy agent-based simulation 

Many agent-based approaches are proposed for the 
simulation of autonomous vehicles. They offer simulation 
contexts ranging from trajectory planning [17] to optimal 
task allocation, while allowing collision and obstacle 
avoidance [18]. Our current research focuses on the use of 
fuzzy agents to handle the levels of imprecision and 
uncertainty involved in modeling the behavior of simulated 
vehicles [5]. Fuzzy set theory is well suited to the processing 
of uncertain or imprecise information that must lead to 
decision-making by autonomous agents [6]. 

Most of the control tasks performed by autonomous 
mobile robots have been the subject of performance 
improvement studies using fuzzy logic [19]: navigation [20], 
obstacle avoidance [21], path planning [22], motion planning 
[23], localization of mobile robots [24], and intelligent 
management of energy consumption [25]. 

An agent-based system is fuzzy if its agents have fuzzy 
behaviors or if the knowledge they use is fuzzy [26]. This 
means that agents can have: 1) fuzzy knowledge (fuzzy 
decision rules, fuzzy linguistic variables, and fuzzy linguistic 
values); 2) fuzzy behaviors (the behaviors adopted by agents 
because of fuzzy inferences); and 3) fuzzy interactions, 
organizations, or roles. The six equations below propose a 
model of fuzzy agents corresponding to the principles stated 
above and used in the simulations presented in this paper: 
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Where 
~

 is a fuzzy interaction; s
~  is the fuzzy agent 

source of a fuzzy interaction; r
~  is the fuzzy agent receiver 

of a fuzzy interaction; and c
~  is a fuzzy communication act. 

 

III. CASE STUDY: FUZZY TASK ALLOCATION SIMULATION 

This case study proposes the simulation of mobile robots 

conveying baggage fleet in an airport (we will keep the 

name "AIV" for these conveyors). Figure 1 shows the 

simulator's HMI, which allows on the one hand, to visualize 

the arrival of baggage and the movements of 5 AIVs, and on 

the other hand, to follow the evolution of the different levels 

of indicators of the simulation (energy level, baggage level, 

charge level, and time level). 

 

 
Figure 1. Simulation Application 

Effective management of these AIVs requires an 

integrative approach that considers several factors, including 

the baggage arrival flow, the operational availability of the 

AIVs, their energy consumption, their communication, 

among themselves and with the infrastructure, and their 

adaptation to changing environmental conditions. In the 

case study, we analyze the TA performed by a supervisor 

who questions AIVs to know their task completion costs. 

Through 8 scenarios, we will progressively introduce fuzzy 

inferences to determine the costs of task completion, battery 

recharging and speed adjustment. 

A. The simulation framework 

Figure 2 presents the agent model proposed to test our 
dynamic task allocation strategies for AIVs in simulation. 
The objective is to have an agent-based modeling and 
simulation system designed generically to test different 
scenarios, but also different types of circulation plans. 

An infrastructure is deployed in the environment. It is 
composed of a circulation plan and active elements, such as 
beacons, tags, the two charging stations and the two types of 
treadmill for baggage entry and exit. Static or dynamic 
obstacles (e.g., operators) may be present in the environment. 

AIV fuzzy agents perform missions defined by paths on 
the traffic plan. AIV fuzzy agents are equipped with a radar 
to avoid collisions and have knowledge about the 
environment and other agents to operate and cooperate. AIV 
fuzzy agents communicate with each other with different 
types of standardized messages. AIV fuzzy agents have 
fuzzy and uncertain knowledge, but also incomplete and 
fragmented, in order to adapt to situations that are 
themselves uncertain. Baggage are objects managed by the 
environment: arrival flow on the entry treadmill, tracking of 
its localization, and exit from the circuit on the exit treadmill. 
 

 
Figure 2. Simulator architecture: dynamic elements in red, static in green, 

and not related to the environment in purple. 

B. Task allocation with basic strategies 

In this section, we provide a comparative analysis of 
three basic types of auction-based task allocation strategies: 
random TA, FIFO TA, and AIV availability-based TA. Each 
of these strategies is tested in a scenario: 

 Sc1 (Random) is a TA scenario where missions are 
assigned to the AIV agents only randomly. 

 Sc2 (FIFO) is a TA scenario where missions are 
assigned to AIV agents using a queuing mechanism. 

 Sc3 (Available) is a TA scenario where missions are 
assigned to the most available AIV agents. 

We simulated these three scenarios for 100 bags. We 
seek to minimize the maximum number of pending bags at a 
given time, the total simulation time, the average time to 
complete a mission per AIV agent, the number of missions 
completed per AIV agent during the simulation, and the 
activity rate per AIV agent. The simulation results are 
presented in Table 1. 

Random strategy: the maximum number of pending 
bags is high, the simulation time is also high, and the 
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allocation of missions and the activity rates of AIV agents 
are poorly balanced (the average activity rate at 0.72 is low). 
The random strategy does not allow allocation to AIV agents 
that are a priori available, which very quickly leads to 
pending bags to be processed and therefore poor results. 

FIFO strategy: this strategy brings a clear improvement 
in the results. The maximum number of pending bags is very 
low, the simulation time is very correct, the allocation is 
almost uniform (only the stops for recharging the batteries 
cause imbalances), and the occupancy rate of the AIV agents 
is much better (0.84). 

Available strategy: this strategy produces the best 
results, except for the maximum number of pending bags. 
Allocating a mission to an AIV agent that is more available 
than the others are therefore improves the results. However, 
it is necessary to better manage the allocation based on 
pending bags and energy consumption to consolidate (or 
even optimize) this strategy.  

TABLE I.  TASK ALLOCATION SIMULATION RESULTS IN 

SCENARIOS SC1, SC2 AND SC3, FOR 100 BAGS. 

Scenarios Random FIFO Available 

Maximum nb of 

pending bags  
19 4 8 

Simulation time 2270s 1942s 1846s 

Average mission 

time per AIV (in s) 
[81,81,83,83,81] [80,82,83,81,83] [81,80,81,83,81] 

Nb of missions 

completed by AIV 
[26,26,14,14,20] [21,21,19,21,18] [22,21,20,19,18] 

Work rate per AIV 
[0.93,0.93,0.51, 

0.51, 0.71] 

[0.87, 0.89, 0.81, 

0.88, 0.77] 

[0.97, 0.91, 0.88, 

0.85, 0.79] 

 

C. Task allocation with fuzzy strategies 

In this section, we propose an analysis of task allocation 
by auction based on a fuzzy inference approach. As a 
reminder, fuzzy logic allows us to better understand natural, 
uncertain, imprecise and difficult to model phenomena by 
relying on the definition of if-then fuzzy rules and 
membership functions (linguistic variables) to fuzzy sets [27]. 

Two scenarios are studied. The first, Sc4, implements a 
TA strategy in which each AIV agent uses a fuzzy model 
with 3 linguistic input variables (availability of the AIV 
agent, distance from the baggage drop-off location, energy 
level of the AIV agent) to determine the cost of handling a 
mission (picking up and dropping off a baggage). The 
second, Sc5, takes the strategy of Sc4 and adds energy 
management with a second fuzzy model. With this new 
fuzzy model, the AIV agents determine whether they will 
need to recharge during a mission, which allows them to 
refine calculation of the mission cost. The linguistic 
variables used in this scenario are: availability of the AIV 
agent, distance from the baggage drop-off location, energy 
level of AIV agent, and distances of the 2 charging stations. 

Fuzzy strategy in Sc4. The results with this new strategy 
are generally good: low maximum number of pending bags, 
good overall simulation time, good distribution of missions 
between AIV agents and good average AIV activity rate 

(0.88). However, few elements of uncertainty are considered 
(3 linguistic variables at the input and one at the output). The 
introduction of other fuzzy elements (nuances in the 
simulation parameters) should improve the results, 
particularly in terms of maximum number of pending bags 
and management of battery recharges. 

Fuzzy strategies in Sc5. In this new scenario, the raw 
results of the TA are slightly worse than in Sc4: same 
maximum number of pending bags, slightly longer overall 
simulation time, worse distribution of missions between AIV 
agents and worse average AIV occupancy rate (0.82). 
However, the overall recharge time is lower in this scenario, 
which can allow a greater availability of AIV agents (an area 
of improvement for the next scenarios). 

TABLE II.  TASK ALLOCATION SIMULATION RESULTS IN 

SCENARIOS SC4 AND SC5, FOR 100 BAGS 

Scenarios Sc4 Sc5 

Maximum nb of 

pending bags  
6 6 

Simulation time 1843s 2000s 

Average mission 

time per AIV (in s) 
[80, 81, 80, 81, 82] [81, 80, 81, 84, 83] 

Nb of missions 

completed by AIV 
[21, 21, 21, 19, 18] [23, 19, 21, 19, 18] 

Work rate per AIV [0.91,0.92,0.91,0.84,0.80] [0.93,0.76,0.85,0.80,0.75] 

TABLE III.  RECHARGE SIMULATION RESULTS IN SCENARIOS SC4 

AND SC5, FOR 100 BAGS 

Scenarios Sc4 Sc5 

Recharge time 546s 490s 

Waiting time for recharges 34s 16s 

Nb of recharges 39 33 

Distribution of nb of 

recharges per AIV 
[8, 8, 8, 8, 7] [8, 6, 7, 6, 6] 

 

IV. IMPROVEMENT USING FUZZY HEURISTICS 

Now, we propose to increase the relevance of previous 

auction TA scenarios based on a fuzzy inference approach, 

by integrating other types of realistic constraints concerning 

battery recharging and AIV agent speed adjustment made 

possible by a stronger knowledge of the fleet traffic and 

mission management context (increased awareness). Three 

scenarios are studied (Sc6, Sc7 and Sc8) to show that 

specific heuristics allow us to treat certain situations quite 

finely and to increase the collective/global performances of 

the AIV agents. The results are presented in Table 4 for task 

allocation and Table 5 for battery recharging. 

Sc6 consists of completing scenario Sc5 to determine in 

which station the AIV agents can recharge in order to 

minimize the waiting times for recharging, based on 

knowledge of the context of occupation of the stations and 

the needs of the other AIV agents (therefore more awareness 

61Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services



for the agents). The linguistic variables used in this sixth 

scenario are the following: the availability of the AIV agent, 

the distance from the baggage drop-off location, the energy 

level of the AIV agent, the distances of the 2 recharging 

stations and the availability of the recharging stations. 

Sc7 takes up the strategy of Sc6 and adapts the 

recharging rate (80 or 100%) in order to increase their 

availability if the flow of incoming baggage increases and 

therefore if the number of pending bags is likely to increase. 

The linguistic variables used in this seventh scenario are: the 

availability of the AIV agent, the distance from the baggage 

drop-off location, the energy level of the AIV agent, the 

distances from the 2 charging stations, the availability of the 

charging stations and a variable energy charge rate. 

Sc8 consists of increasing Sc7 by adapting/regulating the 

speed of the AIV agents according to the flow of baggage 

arrivals and therefore the potential increase in the number of 

pending bags to be processed, but also according to the 

speed, the proximity of other AIV agents (use of observed 

and safety distances). The linguistic variables used in this 

eighth scenario are as follows: the availability of the AIV 

agent, the distance from the baggage drop-off location, the 

energy level of the AIV agent, the distances of the 2 

charging stations, the availability of the charging stations, a 

variable charging rate (80 or 100%) and urgency in relation 

to the number of pending bags. 

Results of fuzzy inferences in Sc6. This is the 

implementation of a first heuristic to improve the TA but 

also the recharge decision. The objective is to minimize the 

waiting time for a recharge when an AIV agent must be 

available to take baggage. The results for TA are slightly 

better than in Sc5: the same maximum number of pending 

bags, a slightly shorter overall simulation time, a rather 

homogeneous average mission completion time, a better 

distribution of missions between AIV agents, and an 

average AIV activity rate that is roughly the same (0.82). 

However, if the overall recharge time is the same, the 

waiting time for recharges is significantly lower (14s). 

Results of fuzzy inferences in Sc7. Second heuristic 

proposed in order to increase the availability of AIV agents 

so that they can take baggage according to their arrival flow 

while minimizing the waiting time for their recharges. In 

this scenario, the results for TA are significantly better than 

in the Sc6 scenario: the same maximum number of pending 

bags, but a shorter overall simulation time, a more 

homogeneous average mission completion time, a better 

distribution of missions between AIV agents and a higher 

average AIV activity rate (0.84). Regarding battery 

recharges, the results are of the same order for both 

scenarios: an identical overall recharge time, with in Sc7, a 

slightly higher waiting time for recharges (18s). 

Results of fuzzy inferences in Sc8. A third heuristic 

was proposed in order to adjust speed of the AIV agents to 

minimize the maximum number of pending bags when the 

flow of baggage arrivals increases. The results for TA are 

much better than in Sc7: the same maximum number of 

pending bags, but a much lower overall simulation time (a 

consequence of the adaptation of speeds of AIV agents 

when necessary), an average time of completion of the 

missions and a distribution of the missions between the AIV 

agents always homogeneous, and finally, a lower average 

occupancy rate of the AIV agents (0.79), because the last 

two AIV agents are less requested due to the adaptation of 

the speeds of the first 3, in particular their increase in speed 

to respond to the increase in the flow of baggage arrivals. 

As for the battery recharges, the results are less good: the 

increase in the speeds of the AIV agents has an energy cost! 

TABLE IV.  TASK ALLOCATION SIMULATION RESULTS IN 

SCENARIOS SC6; SC7 AND SC8, FOR 100 BAGS 

Scenarios Sc6 Sc7 Sc8 

Maximum nb of 

pending bags  
6 6 6 

Simulation time 1964s 1896s 1675s 

Average mission 

time per AIV (in s) 
[79,79,80,80,81] [79,80,80,80,80] [67,65,67,65,67] 

Nb of missions 

completed by AIV 
[22,22,20,16,20] [22,22,21,18,17] [22,22,22,19,15] 

Work rate per AIV 
[0.88, 0.88, 0.81, 

0.65, 0.82] 
[0.92, 0.93, 0.89, 

0.76, 0.72] 
[0.88, 0.85, 0.88, 

0.74, 0.6] 

TABLE V.  RECHARGE SIMULATION RESULTS IN SCENARIOS SC6, 
SC7 AND SC8, FOR 100 BAGS 

Scenarios Sc6 Sc7 Sc8 

Recharge time 490 490 736 

Wait time for recharges 14 18 119 

Nb of recharges 33 33 49 

Distribution of nb of 

recharges per AIV 
[7, 7, 7, 5, 7] [7, 7, 7, 6, 6] [11, 11, 11, 9, 7] 

 

V. CONCLUSION 

We developed a multi-agent simulation platform to test 
different scenarios of task allocation management for mobile 
baggage conveyor robots (AIVs) in the context of Airport 
4.0. This approach offers a flexible adaptation to the 
different aspects of AIV autonomy management and 
facilitates possible adjustments needed for deployment at an 
airport site. The use of a distributed multi-agent system 
provides temporary autonomy in case of central 
infrastructure failure, and can improve the management of 
individual AIV functions, such as task allocation, battery 
charging, speed regulation, etc. 

To establish a basis for comparison of auction-based task 
allocation strategies with the fuzzy approach we wanted to 
develop, we started by defining three basic scenarios 
implementing random, FIFO and AIV availability strategies. 
We then tested a task allocation scenario with a basic fuzzy 
model, and then we made several improvements to this 
scenario by extending the AIV’s fuzzy decision model to: (1) 
recharging the AIVs batteries, (2) determining the recharging 
station, (3) determining the most relevant recharging rate, 
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and (4) regulating the speed of the AIVs so that they adapt to 
the variation of the baggage arrival flow. 

The simulation results show that integrating adaptive 
fuzzy multi-agent models for managing task allocation, 
energy recharging management, determining the most 
favorable infrastructure elements (charging stations) and 
speed adaptation, can improve the operational efficiency of 
AIV fleet. These results highlight the importance of flexible 
and collaborative approaches to improve the performance of 
autonomous systems in dynamic environments. 

We plan to continue integrating fuzzy models into AIV 
agent behavior simulations and to add learning capabilities 
(e.g., based on neural networks [28]) to them in order to 
increase the relevance and efficiency of their decisions in the 
collective management of their autonomies. 

ACKNOWLEDGMENT 

The authors would like to thank the Brittany region for 
funding the VIASIC and ALPHA projects, as part respectively 
of the ARED-2021-2024 call for projects, and the PME 2022 
call for projects entitled “Accelerate time to market of digital 
technological innovations from SMEs in the Greater West”. 

REFERENCES 

[1] X. Hu and B. P. Zeigler, “A Simulation-based Virtual 
Environment to Study Cooperative Robotic Systems,” 
Integrated Computer-Aided Engineering, Vol. 12, Issue 4, 
2005, pp. 353-367. 

[2] N. Tsolakis, D. Bechtsis, J. S. Srai, “Intelligent autonomous 
vehicles in digital supply chains: From conceptualisation, to 
simulation modelling, to real-world operations,” Business 
Process Management J., Vol. 25, Issue 3, 2019, pp. 414-437. 

[3] A. Hentout, M. Aouache, A. Maoudj, I. Akli, “Human–robot 
interaction in industrial collaborative robotics: a literature 
review of the decade 2008–2017,” Advanced Robotics, Vol. 
33, Issue 15–16, 2019, pp. 764–799. 

[4] P. Jing, H. Hu, F. Zhan, Y. Chen, Y. Shi, “Agent-based 
simulation of autonomous vehicles: A systematic literature 
review,” IEEE Access, Vol. 8, 2020, pp. 79089-79103. 

[5] A.-J. Fougères, “A Modelling Approach Based on Fuzzy 
Agent,” Int. J. of Computer Science Issues, Vol. 9, Issue 6, 
2013, pp. 19-28. 

[6] A.-J. Fougères and E. Ostrosi, “Fuzzy agent-based approach 
for consensual design synthesis in product configuration,” 
Integrated Computer-Aided Engineering, Vol. 20, Issue 3, 
2013, pp. 259-274. 

[7] N. Ghasem-Aghaee and T. I. Ören, “Towards Fuzzy Agents 
with Dynamic Personality for Human Behavior Simulation,” 
Proc. of SCSC 2003, Montreal, Canada, 2003, pp. 3–10. 

[8] E. Ostrosi, A.-J. Fougères, M. Ferney, “A fuzzy configuration 
multi-agent approach for product family modelling in 
conceptual design,” Journal of Intelligent Manufacturing, Vol. 
23, Issue 6, 2012, pp. 2565-2586. 

[9] A. Khamis, A. Hussein, A. Elmogy, “Multi-Robot Task 
Allocation: A Review of the State-of-the-Art,” in Studies in 
Computational Intelligence, vol. 604, 2015, pp. 31–51. 

[10] K. Karur, N. Sharma, C. Dharmatti, J. E. Siegel, “A survey of 
path planning algorithms for mobile robots,” Vehicles, Vol. 3, 
Issue 3, 2021, pp. 448-468. 

[11] S. El-Ansary, O. M. Shehata, E. S. I. Morgan, “Airport 
Management Controller: A Multi-Robot Task-Allocation 

Approach,” Proc. of the 4th Int. Conf. on control, 
mechatronics and automation, 2017, pp. 26-30. 

[12] M. De Ryck, M. Versteyhe, F. Debrouwere, “Automated 
guided vehicle systems, state-of-the-art control algorithms 
and techniques,” J. of Manufacturing Systems, Vol. 54, 2020, 
pp. 152-173. 

[13] A. Hussein and A. Khamis, “Market-based approach to multi-
robot task allocation,” Int. Conf. on Individual and Collective 
Behaviors in Robotics (ICBR), IEEE, 2013, pp. 69-74. 

[14] S. Mariani, G. Cabri, F. Zambonelli, “Coordination of 
autonomous vehicles: Taxonomy and survey,” ACM 
Computing Surveys (CSUR), Vol. 54, Issue 1, 2021, pp. 1-33. 

[15] W. de Paula Ferreira, F. Armellini, L. A. De Santa-Eulalia, 
“Simulation in Industry 4.0: A State-of-the-Art Review,” 
Computers & Industrial Eng., Vol. 149, 2020, pp. 106868. 

[16] A. Daoud, F. Balbo, P. Gianessi, G. Picard, “ORNInA: A 
decentralized, auction-based multi-agent coordination in ODT 
systems,” Ai Communications, Vol. 34, Issue 1, 2021, pp. 37-
53. 

[17] N.M. Kou, C. Peng, X. Yan, Z. Yang, “Multi-agent path 
planning with non-constant velocity motion,” Proc. of the 
18th Int. Conf. on Autonomous Agents and MultiAgent 
Systems, 2019, pp. 2069-2071. 

[18] J. Grosset , A. Ndao, A.-J. Fougères, M. Djoko-Kouam, C. 
Couturier, J.-M. Bonnin, “A cooperative approach to avoiding 
obstacles and collisions between autonomous industrial 
vehicles in a simulation platform,” Integrated Computer-
Aided Engineering, Vol. 30, Issue 1, 2023, pp. 19–40. 

[19] J. Grosset, A.-J. Fougères, M. Djoko-Kouam, J.-M. Bonnin, 
“Multi-agent Simulation of Autonomous Industrial Vehicle 
Fleets: Towards Dynamic Task Allocation in V2X 
Cooperation Mode,” Integrated Computer-Aided Engineering, 
Vol. 31, Issue 3, 2024, pp. 249–266. 

[20] V. Yerubandi, Y. M. Reddy, M. V. Kumar, “Navigation 
system for an autonomous robot using fuzzy logic,” Int. j. of 
scientific and research pub., Vol. 5, Issue 2, 2015, pp. 5-8. 

[21] A. Meylani, A. S. Handayani, R. S. Carlos, “Different Types 
of Fuzzy Logic in Obstacles Avoidance of Mobile Robot,” I. 
Conf. on Electrical. Eng. and Comp. Sc., 2018, pp. 93-100. 

[22] B. K. Patle, A. Pandey, D. R. K. Parhi, “A review: On path 
planning strategies for navigation of mobile robot,” Defence 
Technology, Vol. 15, Issue 4, 2019, pp. 582-606. 

[23] A. Nasrinahar and J. H. Chuah, “Intelligent motion planning 
of a mobile robot with dynamic obstacle avoidance,” J. on 
Vehicle Routing Algorithms, Vol. 1, Issue 2, 2018, pp. 89-
104. 

[24] M. Alakhras, M. Oussalah, M. Hussein, “A survey of fuzzy 
logic in wireless localization,” EURASIP J. on Wireless Com. 
and Networking, Vol. 1, 2020, pp. 1-45. 

[25] M. F. R. Lee and A. Nugroho, “Intelligent Energy 
Management System for Mobile Robot,” Sustainability, Vol. 
14, Issue 16, 2022, 10056. 

[26] E. Ostrosi, A.-J. Fougères, M. Ferney, “Fuzzy Agents for 
Product Configuration in Collaborative and Distributed 
Design Process,” Applied Soft Computing, Vol. 8, Issue 12, 
2012, pp. 2091–2105. 

[27] L. A. Zadeh, “Fuzzy sets,” Information and control, Vol. 8, 
Issue 3, 1965, pp. 338-353. 

[28] H. M. Yudha, T. Dewi, N. Hasana, “Performance comparison 
of fuzzy logic and neural network design for mobile robot 
navigation,” Int. Conf. on Electrical Eng. and Comp. Sc., 
2019, pp. 79-84, 2019. 

 

 

63Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-192-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AISyS 2024 : The First International Conference on AI-based Systems and Services


