
Design of Elastic Hadoop Supporting Dynamic Scaling of the Cluster

Wooseok Ryu

Dept. of Healthcare Management

Catholic University of Pusan

Busan, Republic of Korea

e-mail: wsryu@cup.ac.kr

Abstract—This paper discusses the problem of node

management in the Hadoop cluster and presents a mechanism

for managing the Hadoop cluster more elastically. The

proposed mechanism supports instant removal of a slave node

from the cluster and reconnection to the cluster. Using this, the

cluster can be managed more elastically because slave nodes no

longer need to be dedicated to the cluster. The experimental

results show that the proposed mechanism can process 5 times

faster than when a slave node is arbitrarily stopped.

Keywords-Hadoop; cluster management; scalability.

I. INTRODUCTION

Big data computing is one of key issues in many areas of
business domains that wish to discover breaking knowledge
from massive data [1]. Apache Hadoop is the most popular
open source platform that contributes to broadening the
scope of big data analysis. Its distributed processing
capability can be extended to thousands of nodes because it
supports real-time up-scaling of the cluster [2].

However, we found that Hadoop lacks real-time down-
scaling of the cluster [3]. This causes serious problems for
small business domains that want to configure a Hadoop
cluster with limited resources. The reason is that it would be
a financial burden for small businesses to construct a cluster
using a large number of dedicated systems. If dynamic
up/down scaling of Hadoop is provided, the cluster can be
configured more economically by using existing business
computers only when necessary. Although cloud computing
can be considered as an alternative, some domains, such as
small-and-medium sized hospitals do not agree to it due to
security reasons.

This paper presents an implementation-level mechanism
to manage the Hadoop cluster more elastically by removing
nodes from the cluster and adding them again to the cluster
in an instant manner. This makes it possible to maintain an
elastic Hadoop cluster including existing computers, which
means that these computers can be used for analysis or at
work in turn, depending on the circumstances at that time.
The main idea of this work is initiated and partly
implemented by our previous works [3][4]. This paper
improves the previous studies through detailed
implementation and experiments.

This paper first analyzes the Hadoop architecture with
problem statements in Section 2. In Section 3, this paper
presents a design and implementation of the elastic node

management in Hadoop. Experimental studies are discussed
in Section 4, followed by the conclusion.

II. PROBLEM STATEMENT

A Hadoop cluster consists of one master node and a set
of slave nodes. The main components of the Hadoop are the
Hadoop Distributed File System (HDFS) and the
MapReduce framework. The former is a filesystem to store
big data in a distributed manner. The latter is to process user
requests on big data in parallel. Currently, the MapReduce
framework is controlled by Yarn, which is a new framework
for job scheduling and resource management [5]. The
software architecture of Hadoop is depicted in Figure 1.

Figure 1. Software architecture of Hadoop.

If a certain slave node needs to be stopped, all the
processes inside the node should of course be closed. The
first problem is that the processes are handled separately
even though they are tightly related to each other. The
second problem is that there is no way to stop the DataNode
process instantly. The existing decommissioning mechanism
of HDFS includes moving of data blocks to other live nodes,
which cannot be done in a short period of time.

III. SYSTEM DESIGN AND IMPLEMENTATION

In our implementation, we designed a single, unified
interface for the Hadoop cluster, which immediately pauses
or resumes all the server processes of a slave node. When a
pause of a certain slave node is requested, the interface lets
NameNode and Resource Manager of the master node finish
the execution of related server processes running on the slave
node and delegate task executions to other slave nodes. If a
resumption of the node is requested, the master node
automatically initiates server processes on the slave node
without additional user control.

We implemented the mechanism in the Apache Hadoop
version 2.7.4. We modified some source codes to support

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

new properties and pausing/resuming procedures of HDFS
and Yarn in addition to the new interface. Figure 2 shows the
detailed mechanism when the cluster needs to be down-
scaled. In step 1 in the figure, user requests for a pause by
calling the shell command “NodeManage.sh pause
slavenode1”. This adds the node descriptor in a configuration
file specified by a new server property named dfs.host.pause
specified by yarn.resourcemanager.nodes.pause-path,
followed by sending a refreshNode command to the
Resource Manager and NameNode. We consider the state of
the node in the configuration file as Paused [3][4]. The
Resource Manager reads the configuration file and
decommissions the Node Manager process on the specified
slave node by terminating the related daemon, marks the
node as unusable, and reschedules tasks to other nodes as
described in steps 2 and 3. In steps 4 and 5, the NameNode
reads the file and terminates the DataNode daemon when
receiving a heartbeat message. This does not decommission
the DataNode, which demands extra time for moving data
blocks, which cannot be done immediately [4].

Figure 2. Processing flow for pausing a slave node.

We implemented that the resumption of the paused node
can be done by calling a command “NodeManage.sh resume
slavenode1”, which initiates the DataNode and Node
Manager processes in consecutive order. Once the node is
resumed, it can store data blocks and execute job tasks
immediately without any further work.

IV. EXPERIMENTAL RESULTS

To verify feasibility of the proposed mechanism, we built
a small Hadoop cluster consisting of one master node and
four slave nodes. Each node is equipped with a 2-core
Pentium processor and 4GB main memory. Ubuntu 14 is
installed as an operating system. All the nodes are connected
to each other with a 1 Giga-bit Ethernet switch.

Figure 3 shows the comparison of processing times
among three evaluation cases when executing a wordcount
program with two text datasets of which sizes are 1Gbyte
and 2Gbyte, respectively. When one slave node is paused
while the program is running (marked as Pause), its
processing time was 10~20% slower than when all slave
nodes are running (marked as Normal). If server processes of

one slave node are killed during the execution (marked as
Kill), its processing time was more than 6 times slower than
that of Normal. The reason is that the Resource Manager has
to wait for a timeout, 10 minutes by default, when a slave
node is not reachable.

0

100

200

300

400

500

600

700

800

900

1000

1G 2G

P
ro

ce
ss

in
g

Ti
m

e
 (

s)

Size of Dataset (byte)

Normal

Pause

Kill

Figure 3. Performance comparison of the proposed implementation

The result shows that the proposed implementation can
speed up more than 5 times faster than when the processes
are killed arbitrarily in the Apache Hadoop with the default
configuration.

V. CONCLUSION

This paper discussed problems of dynamic node
management in the Hadoop cluster and proposed a new
mechanism to manage slave nodes more elastically.
Implementation of the proposed mechanism is also discussed,
along with the experiment. The experimental results show
that when a slave node is being stopped, the proposed
mechanism can speed up more than 5 times compared with
the Apache Hadoop. The main contribution of this paper is to
provide the empirical implementation of the proposed
mechanism. More comprehensive experimental studies need
to be performed as future works.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. NRF-2016R1C1B1012364).

REFERENCES

[1] R. Kune, P. K. Konugurthi, A. Agarwal, R. R. Chillarige, and
R. Buyya, “The anatomy of big data computing,” Software:
Practice and Experience, vol. 46, no. 1, pp.79–105, 2016.

[2] W. K. Lai, Y. U. Chen, and T. Y. Wu, “Towards a framework
for large-scale multimedia data storage and processing on
Hadoop platform,” The Journal of Supercomputing, vol. 68,
no. 1, pp. 488–507, 2014.

[3] W. Ryu, “Flexible management of data nodes for Hadoop
Distributed File System,” The Third International Conference
on Big Data, Small Data, Linked Data and Open Data
(ALLDATA 2017) IARIA, Apr. 2017, pp. 1–2, ISBN: 978-1-
61208-070-3.

[4] W. Ryu, “Implementation of dynamic node management in
Hadoop cluster,” International Conference on Electronics,
Information, and Communication (ICEIC 2018), Jan. 2018,
pp. 814–815.

[5] V. K. Vavilapalli et al. “Apache Hadoop Yarn: Yet another
Resource Negotiator,” Proc. Symp. Cloud Computing, ACM,
Oct. 2013, doi:10.1145/2523616.2523633.

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

