
Application of Event Sourcing in Research Data Management

Jedrzej Rybicki
Juelich Supercomputing Center (JSC)

Juelich, Germany
Email: j.rybicki@fz-juelich.de

Abstract—Event sourcing is an architecture pattern successfully
applied in modern microservice-oriented web applications. It en-
ables better scalability, integration, and traceability by changing
the way in which data are handled in those distributed systems.
There are many differences, however, between data used by
commercial applications and research data. In this paper, we
examine if and how event sourcing can be applied in the field of
research data management and what ramifications and benefits
can it bring. One of the most important rules of the pattern
is to record and publish all the changes ever done to a data
item. Therefore, not only the current version of the item exists,
but also older versions and all modifications can be traced back
in time. As we will show, it opens new avenues to work with
research data. The publication of the changes makes it easy to
replicate the data, and collaborate on them without a central
authority. All these are features often required in the modern
data-driven science. The concept, its suitability, ramifications,
and initial performance evaluations are presented in two real
world usage scenarios. The preliminary results corroborate the
assertion of suitability of event sourcing in this particular field.

Keywords–Data Management; Event sourcing; Replication; Per-
formance evaluation.

I. INTRODUCTION

The research data come in all kinds and flavors. Spanning
from small items like single measurement of a parameter value,
through all kinds of documents, or recordings, up to large
size genome sequences or results of astrophysical observations.
Data can be raw and unprocessed or curated to form highly
processed secondary data. Also, there is a high veracity with
regard to the intended use of the data: some of them are
expected to be just safely stored (archived), some are shared
(downloaded) or collaboratively edited by researchers spread
all over the world. Finally, there is an option for processing
the data with High-Throughput Computing (HTC) or High-
Performance Computing (HPC) facilities. The variety along all
the dimension, suggest that there is not a single optimal storage
solution, but rather one has to decide on case-by-case basis
which solution best suits the particular data and envisioned
usages.

One common feature of research data is the time dimen-
sion. It can either be explicit like in case of subsequent mea-
surements, but also implicit like different versions of curated
document. Closely related to this subject is the question if the
research data change at all. Does a new, modified version of the
data really substitute the old one, or should the old one be kept?
One could argue that for the sake of data understandability and
research transparency both versions should exist with a link (or
other indicator) between them in the logical data access layer.
In that sense, the research data are immutable, i.e., they never
change but rather new versions emerge along the old ones.

Each new version or each new measurement is yet another
event on the time axis, that should be recorded and stored to
enable better understanding of the current versions.

If the data are used as input for scientific processing,
researcher often requires means to define exactly the set of
inputs. A snapshot composed of many data objects could be
a useful abstraction for that. In many cases, it might also be
relevant how the output of the processing changes depending
on the selected data. In that case, the snapshots must be
parameterized, e.g., to include only measurements from given
region or time interval. If the processing supports the notion
of snapshots for inputs it is also possible to create “alternative
past models”, for instance to examine what results alternative
measurements would led to.

A common problem with research data is the distribution.
The data often need to be replicated to make distributed
processing more efficient. In some of the cases, sharding
makes more sense than full replication: on a given location
only a partition of data is stored. A reason could be that
a local facility is only interested in parts of the data. The
problem of data distribution can also be understood as a
generalization of snapshotting mentioned above. Local replica
is then a snapshot and replication is creation of parametrized
snapshots with final location of the data as one parameter.
Replication and sharding are hard engineering problems and
become even more challenging when data are modified in a
distributed fashion. Some coordination is required to keep track
of such changes and potentially propagate them to all interested
parties. Preferably this should happen with as little overhead
as possible, in particular global “locks” as in case of well-
known two-phase commit distributed transactions might not be
acceptable. Yet there are high expectations in regard to data
consistency. As we show latter, the distributed modification of
data can be better understood and solved with the notion of
events mentioned above.

In this paper, we propose how modern software architecture
principles subsumed under the term of event sourcing can be
applied to research data. In particular, this approach seems to
suit well the distributed, collaborative storing and processing of
data. The paper is a work-in-progress report on our experiences
with application of event sourcing paradigm in research data
management. We will present two distinct use cases of storing
research data with the proposed architecture and shed some
light on the technical details of our approach. The paper also
includes preliminary performance assessments of applications
employing the concept.

The rest of the paper is structured as follows. In Section II,
we shortly summarize some of the previous work on event
sourcing and its application in research. Then, follows a section
describing the different flavors of event-driven architectures to

46Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

finally formulate event sourcing pattern and give some insights
on how it can be implemented with help of Apache Kafka. The
main part of this paper is the evaluation of event sourcing for
managing research data, this is done based on two real-world
inspired use cases which we describe in Section V. The results
obtained in our preliminary evaluations are discussed before
the papers ends with a conclusion and outlook on future work.

II. RELATED WORK

Event sourcing was and is successfully applied in the
domain of commercial applications [1]–[3], because of the
performance, distribution, and ease of integration (especially
in microservice-oriented systems) it offers. There are many
evaluations of using event sourcing with particular languages
or frameworks [4] [1] [5]. There is not much work, however,
on how this kind of architecture approach can be applied in
research data management. Of course, emerging research in-
frastructures should follow best development and architectural
practices obtained in the commercial setting. On the other
hand, there are some unique aspects of managing research
data that need to be addressed. The most prominent difference
seems to be caused by the Open Data Movement [6]. Research
data are expected to become open, and accessible, at least in
in the long term. Also, the transparent provenance standards
resulting from the need of reproducibility are probably higher
in the academic context. In this paper we show how event
sourcing can help in achieving these features.

Müller [7] showed how event sourcing can enable retroac-
tive computing, i.e., to examine how alternative chains of
events could lead to a different final state of the system. This
interesting use case can be realized if the research data are
stored in an event-driven fashion and is therefore orthogonal
to our work. Another application of event sourcing in broad
context of research data comes from Erb and Kargl [8]. They
analyzed how event sourcing architecture can be incorporated
into discrete event simulations to make them better to un-
derstand, debug, and evaluate. The work is less focused on
managing research data (although it is relevant in this context)
but provides important insights and use cases for the event
sourcing architecture.

One of the use cases discussed in this paper is replication
of research data repository. State-of-the art research data man-
agement solutions like iRODS [9] or Fedora Commons [10]
store data on the backend file system and metadata in a
relational database. iRODS provides its own means to facilitate
replication. Upon ingest of new data they can be copied
to remote repository with proprietary transport protocol. To
replicate an existing repository, its backend filesystem and
metadata database has to be copied to a remote location by
other means. To create such a consistent snapshot, original
repository has to be either stopped or set into read-only mode.
In this paper we will show that event store has some clear
advantages over the mixture of database and file system in
this scenario. In particular, it enables replication during normal
operation of the original repository. By playing back all the
past operations on the original repository it can be guaranteed
that the replica is in a consistent (even if not most up-to-date
state) state. The messaging features of event stores, guarantee
that the future updates will be propagated to existing replicas.
Lastly, the event stores allow for replication in the time which
are convenient to the receiver, e.g., during the night hours.

The popularity and usability of event-oriented approaches
in the modern microservice architectures led to availability of
at least few products that can be used to built event sourcing
solutions. Apache Kafka [11] is one of the most popular and
we used it as a backbone of our solution. Furthermore, we
already have used Kafka in context of research infrastructure,
namely to extend Swift [12] with flexible namespaces [13].
Thus, some initial experiences with this product that we could
build upon were available. The basic workings and most
prominent features of Apache Kafka will be explained later
in this paper.

For our experiments we selected Kafka as an event store.
The idea of event sourcing is to store all the changes done to
entities as events. Thus, to obtain a valid state of an entity,
it is required to replay all the events that happened to it.
We did this by retrieving the events from event store, an
alternative approach would be to use one of the streaming
platforms like Samza [14] or Spark [15] or streaming features
of Kafka. These platforms can read data from Kafka and
direct process the data, e.g., to obtain an aggregate or entity
state. Such a processing is usually done in close to real-time
manner. This was not required in our scenarios. In opposite
we were interested in the past versions of entities. Thus,
streaming platforms may combine well with our approach but
their application is depending on the user requirements.

III. EVENT-DRIVEN ARCHITECTURES

Before we explain what kinds of event-driven architectures
are common in distributed systems, we shall first define some
basic terminology. In the remainder of this paper, we will use
terms entity, aggregate, and event as defined by domain-driven
design [16]. In short, entity is characterized by the possession
of identity, a group of entities can form an aggregate, and
changes in state of entities or aggregates are called events.
Especially the last definition is not so common in the event-
driven approaches as we will see later in this section.

Fowler presented an excellent discussion of the different
kinds of event-driven architectures [3], we include only a short
summary of his arguments. One of the first examples of an
event-oriented approach were systems using notifications dis-
tributed through a common Enterprise Service Bus (ESB) [17].
This solution was used for enterprise-wide integration of
services. In particular, upon a change within the system,
a notification was sent to the bus, and then distributed to
all interested parties. This was achieved in publish/subscribe
fashion. The messages were usually simple in form and to
actually get information about what changed, the interested
party had to contact the message originator. Soon, this sub-
sequent communication was identified as a bottleneck and
new architectures emerged where messages included sufficient
description of the actual change to eliminate the need for ad-
ditional communication. Usually, it would include an identifier
of the entity or aggregate and new values of its attributes. Such
approaches were subsumed under the term event-carried state
transfers, they were still relying on publish-subscribe message
buses and were oriented on costly immediate information
delivery.

The final evolution of message-driven architectures, and
the one that is relevant for the rest of the paper is called event
sourcing. Here again each change in the entity or aggregate
state is recorded as an event and published. But unlike the

47Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

previous approaches the publication is done with help of an
event store. This component stores the events for longer period
of time and beside supporting publish-subscribe interface for
immediate event distribution, it also provides access to stored
events from the past. Thus, the subscribers can not only just
express their interest for the future events (like in approaches
described above), but also request the past events. Events
follow time order, and each consumer can request all the
messages starting from a given time offset. At the first glance,
the change might not seem to be very substantial but it has a
lot of implications. In particular, each service in the system can
maintain its own state replica, and thanks to the notifications
the state can be kept up-to-date. Importantly, changes of the
state can be done in a consistent manner even without costly
distributed transactions or central coordination in form of
global locking. Further, the local state can be erased and
rebuild from the past events. As all the changes in the system
are stored as events, it is only required to play all the events
in timely order to recreate the final state.

We believe that event sourcing can be successfully applied
to manage research data. Since modification of an entity is
done by publishing a “modification” event, no information is
lost and old versions of the entities can always be retrieved.
It is much more meaningful, for instance, to see that a value
was added and then removed from a stream of measurements,
rather than have just the final version without the given value.
Furthermore, the event sourcing removes the need for central
coordination when working with research data. Each researcher
can pick and choose the events she is interested in, publish her
modifications, or withheld modifications from others in her
local version. This is not only a technical argument but also
a social one as it plays well with the open nature of modern
data-driven research.

It should be stressed that event sourcing is not a plug-
and-play solution that can be easily included in the existing
systems. It is an architecture decision that strongly influence
the design of the system especially in data access layer.

IV. IMPLEMENTATION OF EVENT SOURCING

In this paper, we aim at evaluating the general suitability
of event sourcing architectures to manage research data. We
are more focused on general insights rather than rigorous
performance evaluations (which might follow up this paper).

A. Apache Kafka
Kafka is a “distributed streaming platform” [18], its func-

tionality boils down to three main aspects:

1) publish/subscribe system,
2) fault-tolerant distributed storage,
3) processing of streams.

From our perspective the first two are the most important.
Kafka uses notion of records, that are roughly equivalent to
events from our previous definition. The records are very
flexible structures comprising of a key, value, and timestamp.
Both key and value are basically streams of bytes handled over
to Kafka. Records belong to topics, i.e., categories of events.
For efficiency Kafka divides them into partitions. Partition
is an immutable sequence of records with strict time-based
ordering. Upon publication of a new record Publisher assigns
it to a partition. This can be done in a programmatic way (e.g.,

Figure 1. Architecture overview of our solution

based on hash of the message or any other information about
the structure of records). Consumers can subscribe to given
topic and will receive records in the same order as they were
published. Each consumer can, also, select its offset in the
topic, i.e., the position of the next message she would like to
receive. It could be the newest one, but also the oldest one in
case of rebuilding of an entity. The producer, on the other hand,
only appends to new records to the partition log (which does
not require random access to the storage and is very beneficial
for the overall performance). If required, consumers can form
groups per topic. In such case each record will be delivered to
exactly one consumer from a group in a round robin fashion.

As already mentioned, Kafka is more than yet another
publish/subscribe system. Its strength is the fact that the
records are written to disk for defined periods of time in a fault-
tolerant way. In particular partitions of a topic can be replicated
and have their own retention policies. To increase data safety,
consumer upon publication of a record, can wait for a defined
number of acknowledgments from all replica managers.

A good intuition of what Kafka is and how it differs from
other messaging and storage systems is to see it as a system
that allows access to both past and future data [18]. Storage
repositories, like filesystems or databases, are providing the
data stored in the past. Whilst messaging systems allow to
subscribe for the future data, i.e., data that will become
available in the future will be distributed to all clients that
subscribed.

B. Kafka deployment
There are many ways in which Kafka can be deployed.

In general, Kafka servers can form a cluster and coordinate
through Apache Zookeeper [19] (which can also be deployed
as cluster). For our experiments we used, however, one host
deployment, with one instance of Kafka and one instance
of Zookeeper residing on the same host. The basis for our
deployment were Docker images provided by Confluent Plat-
form [20]. Docker enables rapid provisioning of software, thus
this setup can be further extended towards cluster setting. With
one exception that will be described later we used the pre-
configured defaults of Kafka and Zookeeper as defined in the
images.

Both Kafka and Zookeeper were deployed on a host with
1 VCPU, 2 GB RAM and 100 GB storage using Ubuntu 16.04

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

LTS and Docker in version 1.13.1. We used Confluent platform
version 3.3.1 which included Kafka 0.11.0.1 and Zookeeper
3.4.10. To communicate with Kafka we used Python library
kafka-python version 1.3.4.

C. Programming interface
As mentioned above, event sourcing is not a plug-and-play

extension that can be added to an existing systems. It requires
some changes in the persistent layer. Rather than performing
fetches from a “source of truth" central database system to
obtain current state of an entity, each service has to work with
streams of events rather to build their states.

For a better understanding of the mental model required to
work with events as persistence layer, let us discuss following
code example.

get current version
pastEvents = findEvents(entityId)
entity = new()
applyEvents(entity, pastEvents)

do something with it
newEvents = processCommand(entity,...)
applyEvents(entity, newEvents)

publish changes
storeEvents(entityId, newEvents)

In the first lines, a substitute for fetch command from
traditional database-based approaches is presented. Crucial
is the function applyEvents which applies all the events
(stream of modifications) to a newly created, pristine entity.
The modification to an existing entity is done with commands,
which rather than modifying it directly, produce a list of events
that need to be applied to the existing entity. Lastly, to make
the changes induced by a command persistent, it is required
to store the list of events.

To improve performance of such workflows it is possible to
use snapshots. Snapshots would be entities which are rendered
with applyEvents function and persisted together with a
timestamp. The same function (without modifications) can be
used to update snapshot or produce an entity for a timestamp
of higher value than the timestamp of the snapshot.

A rudimentary overview of our architecture is depicted in
Figure 1. Kafka is abstracted by an event source service which
can also use snapshots if required. On the top level applications
constituting user interfaces reside. In our case there are two
web applications created. One is a simple research data repos-
itory and the other is a measurement display. These emulate a
means in which data from event store would be served to end
users.

V. USE CASES

We defined two use cases inspired by real-world usage
of research infrastructures. The use cases are implemented
with the application of event sourcing. In this section we will
describe the use cases and how we implemented them.

A. Measurements storage backend
The inspiration to this use case was a common practice of

collecting research data from a distributed network of sensors.

Figure 2. Modeling measurement stream as series of events. Aggregated
states at t1 and t2.

We assumed that each station in the network periodically
measure some values and uploads those to the central sink
for further processing. We, also, wanted to account for a
possibility to upload corrections of the previous measurements
(e.g., upon detection of sensor malfunction). A simple domain
analysis suggest a model in which each station in the network
is an entity and each measurement would be an event. Hence,
the state of the entity at given time would be a stream of
measurements (and corrections) collected up to this moment.
In fact, we are somehow close between discussing aggregates
and entities but in general, this is not relevant here.

We implemented this use case in such a way that a process
produces measurements of two values (x, y) which are then
uploaded with a timestamp and station identifier to the central
repository (i.e., Kafka server). The state of the entity is given
by a f(x) = y. Therefore, if a measurement arrives with a
value of x which is already present it would be treated as a
correction. This approach is depicted in Figure 2. State of the
entity requested at t = t1 would include values x : 2, y : 7 and
x : 4, y : 9. Later, a correction of the first measurement arrives,
thus the entity returned at t = t2 is built of values x : 2, y : 8
and x : 4, y : 9. It is worth noticing that the corrected measure-
ment is still present in the event store and thus it is always
possible to request state at t1.

Because the timestamps are also recorded it is possible
to generate previous views of the entity state (e.g., before
a correction). We implemented this functionality in form
of a web application that connects to Kafka, pull all the
relevant measurements and presents them in form of a x, y
plot. Since building of the final state of a given entity boils
down to replaying all the events (measurements), an obvious
optimization would be to store previous states as snapshots
and only apply events that happened between the snapshot
time and the requested time. Many different strategies for
generating snapshot are conceivable. A simple strategy is to
store a snapshot depending on the number of events that needs
to be read from Kafka to rebuild the requested entity state.
If the number is higher than some pre-defined threshold a
snapshot will be stored. This strategy aims at optimizing the
overhead of communicating with the event store. An alternative
like time-based snapshotting is less effective in this, especially
when events are not evenly distributed in time. Two states
of an entity, which are distant in time, might not differ very
much in number of events that happened to them. All the code
we developed can be found in the GitHub repository [21] for
further analysis.

A system built in this manner would have to provide good
performance on at least two fields. Firstly, a high throughput

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4 5 6 7 8

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

Round

Initial query (no snapshot available)
Subsequent query (snapshot available)

Figure 3. Querying measurements storage: In each round aggregated entity
for decreasing timestamp is requested twice.

with regard to the uploading measurements must be granted.
Secondly, the entity states delivered by aggregating the mea-
surements should be produced quickly. The throughput was
measured by uploading repeatedly large batches of measure-
ments directly to Kafka. We tested batch sizes of 5 000, 10 000,
and 50 000. The experiments were divided into 10 rounds, in
each round a defined number of measurements were uploaded
and time measurement was conducted. We summarize the
obtained results in Table I. Our very rudimentary experiments
suggest that it is possible to arrive at the throughput of almost
6 000 messages per second. Given, rather simple single-node
deployment, we consider this performance sufficient.

TABLE I. MEASUREMENTS UPLOAD THROUGHPUT.

Batch size Throughput (measurements/s)

5 000 5819.39

10 000 5938.39

50 000 5500.44

Our second heuristic was the performance of delivering the
aggregated states of entities. For that we have conducted a two-
phased experiment. Firstly, about 50 000 evenly distributed
measurements were uploaded to Kafka. Subsequently, entity
states for decreasing timestamps (i.e., from the most current
downwards) were requested and response times were recorded.
For each timestamp we performed two requests, thus the first
response was produced solely based on measurements from
Kafka and resulted in storing a new snapshot. It was in turn
used to answer the subsequent query. The results are show
in Figure 3. Solid line depicts the initial queries where no
snapshot was available, subsequent query in each round bene-
fited from the just-created snapshot and, thus, were answered
quicker (dashed line). It can be seen that snapshots indeed
improve the response times and are crucial especially for more
complex entities aggregating large number of measurements
(left side of the plot). This experiment was intended to show
the best possible gains obtained by creating snapshots. The
initial query always required full list of events for the requested
entity. It is worth mentioning that we stored the snapshots in a
simple in-memory store, so the difference in response times is
mainly caused by retrieval of events from Kafka and process
of rebuilding of the requested entity.

Figure 4. Storing data objects (dark gray) and files (light gray) in Kafka.

B. Replication of research data repository
Research data often need to be replicated. The reasons

for that might be the data-preservation policies that require
multiple copies, or efficiency considerations. To this end, we
want to examine how event sourcing can be used to implement
such replication.

For our tests we used data from a real-world research data
repository EUDAT B2SHARE [22]. It is part of the EUDAT
research data infrastructure built to serve researchers from all
across Europe [23]. The data model used by B2SHARE defines
data objects as a set of metadata, persistent identifier (PID),
and a list of files. Current model does not support versioning
of the objects and files. B2SHARE is based on open-source
Invenio system [24] which offers an API that we used to
download all the data from the repository. We obtained 538
objects and total size of data amounted to about 40 GB.
Subsequently, we uploaded the data objects and files to our
Kafka instance. Data objects were just JSON documents as
downloaded from B2SHARE, they included basic metadata
and names of files attached to the object, we used their PIDs
as keys in Kafka. Files were uploaded with filenames as keys,
and binary content as values. Larger files needed to be split
into chunks of 40 MB. Such large records required a change
in the default configuration of Kafka. All the data were put
into one partition in Kafka and objects were put before files
they referred to. We used creation time to sort the data objects,
i.e., newer data objects have higher offsets in the partition. The
code we developed for both scrapping the original data, as well
as replicating it can be found in GitHub repository [25].

It might not be immediately clear from the above descrip-
tion what are the entities and events in this scenario. The
entities in the system are the data objects, and events are
modifications (or creations) of metadata descriptions which
are stored in Kafka and uploads (or modifications) of files
belonging to the data objects. The approach is shown in
Figure 4. The dark gray rectangles depict events of uploading
metadata descriptions of objects, and light gray rectangles are
the upload of files corresponding to the objects. For example
at offset n in partition there is a metadata object, at offset n+3
starts a list of three files belonging to an object at n + 2 (it
could also be three chunks of a larger file).

The evaluation of this use case comprised of two phases.
First, the time required to upload the content of the B2SHARE
repository to Kafka was measured. Afterwards, the repository
was restored at the target site. These two phases simulate full
replication of the research data. In total, 4267 events were
generated to upload the content. The results are summarized
in Table II.

There is apparently not much difference in performance
of uploading and downloading. For comparison we copied

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

TABLE II. REPLICATION TIMES.

Phase Time (s)

Upload 2170

Download 2282

the same data between the same hosts using Secure Copy
Protocol (SCP) which completed the task in about 17 minutes.
It should be stressed that the upload and download to Kafka
can be done at the same time so that complete replication of
B2SHARE data would needed about 30 minutes.

VI. DISCUSSION

To evaluate the applicability of event sourcing in research
data management we implemented two use cases. In the first
one we emulated gathering and evaluating of measurements
from a distributed sensor network. We have identified two
critical aspects for performance of event sourcing here. Firstly,
the throughput for collecting the measurements. The values
obtained in our experiments are pretty high. This comes at
no surprise as event sourcing allows for efficient resources
usage, there is no need for random access or costly data
removal, it only has to support addition of data to the log.
The other performance aspect were the response times of the
interface serving aggregated entities. Here we have noticed
that even a simple snapshotting strategy can substantially
improve response times. When discussing this use case it is
important to ask a question how hard would it be to change
an existing application to support event sourcing. It would
clearly require a change in the user-facing application, it must
support Kafka as the source of information and being able to
reconstruct the state of entity (as a stream of measurements
in our case) from recorded events. By offering retrospective
views on data it gives direct advantages to the researchers.
One further advantage would be the ease of integration with
other services and easy way towards replication of the data.

The replication of data constituted the central point of
our second use case. We used data from existing repository
to make the evaluation results more meaningful. The main
challenge here was coping with the large files, they need to
be split into chunks before uploading. We measured time for
complete replication of the repository. There are many more
possible aspects of this use case that might be relevant in
the future. First one, is the need of keeping replicas up-to-
date this would require changes in the existing repository
software so that it would emit information about user actions
(upload/modification of objects) and thus inform replicating
sites about availability of new data. There could also be
possibility of creating shards (i.e., partial replicas of the data),
for that a way of defining sharding strategy needs to be put
in place. This questions are pretty specific to particular use
case, a research infrastructure is addressing and thus were not
included into the evaluation. Since we are replaying the events
from the oldest one, the target repository remains in a valid
(i.e., consistent) if not most up-to-date state during the on-
going replication.

There are some common aspects for both use cases. On
very high level event sourcing requires a different mindset
when dealing with data. In particular, deleting data is almost

impossible. It is possible to create a correction (as we dis-
cussed), but the original event will remain in the event log.
Developers should always be aware of this, especially when
dealing with sensitive data like personal health data. Somehow
related is the problem of event modeling. In this paper we
used very simple modeling that might not be optimal. A
solution is always specific to the problem that is to be solved.
Another question is the evolution and extension of the event
models. It is possible to do this, but it requires changes in the
applyEvent function.

Event sourcing is not just new approach to data manage-
ment but also an integration pattern. It might require some
changes in the existing applications but as soon as they begin
to use event store as persistence layer, it is very easy to add
new services that can use the data. The application can run in
parallel, use the same data, there is no need for coordination
or global locking. The applications can be stateless and thus
it is also possible to create multiple instances of the same
application for instance to improve response times. In our
cases, it would be easy to create one more replica of the
repository or spin off one more user interface to present
aggregated measurements.

VII. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the application of event sourcing
for managing research data. We defined two use cases and
examined how they can be implemented in this architecture
style and what performance they display. We also showed the
functional benefits of this approach: how old versions of the
data can be retrieved and how data can be seamlessly repli-
cated. Although, these are preliminary experiences we believe
that they can be valuable for both developers and researchers.
The results obtained in the performance evaluation indicate
the applicability of the approach and particular technology
(Apache Kafka) in the real world scenarios. Also, the high-
level ramifications of the proposed approach, in particular the
concept of making the research data de facto immutable is a
profound change in way we think about data.

In our future work, we plan to put the gained experiences
into practice by implementing event sourcing in the context of
research data infrastructures.

REFERENCES

[1] D. Betts, J. Dominguez, G. Melnik, F. Simonazzi, and M. Subramanian,
Exploring CQRS and Event Sourcing: A journey into high scalability,
availability, and maintainability with Windows Azure. Microsoft
patterns & practices, 2013, ISBN: 978-1-62-114016-0.

[2] G. Young, Event Centric: Finding Simplicity in Complex Systems.
Addison-Wesley, 2012, ISBN: 978-0-32-176822-3.

[3] What do you mean by “Event Driven”? [Online]. Available: https:
//martinfowler.com/articles/201701-event-driven.html [retrieved: Mar.,
2018]

[4] B. Nobakht and F. S. de Boer, Programming with Actors in Java 8.
Springer Berlin Heidelberg, 2014, pp. 37–53, ISBN: 978-3-66-245231-
8.

[5] K. Lee, Event-Driven Programming. Springer London, 2011, pp. 149–
165.

[6] M. B. Gurstein, “Open data: Empowering the empowered or effective
data use for everyone?” First Monday, vol. 16, no. 2, 2011, ISSN:
13960466.

[7] M. Müller, “Enabling retroactive computing through event sourcing,”
Master’s thesis, University of Ulm, 2016.

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

[8] B. Erb and F. Kargl, “Combining discrete event simulations and event
sourcing,” in Proceedings of the 7th International ICST Conference on
Simulation Tools and Techniques SIMUTools ’14, 2014, pp. 51–55,
ISBN: 978-1-63-190007-5.

[9] A. Rajasekar, R. Moore, C.-Y. Hou, C. A. Lee, R. Marciano,
A. de Torcy, M. Wan, W. Schroeder, S.-Y. Chen, L. Gilbert, P. Tooby,
and B. Zhu, iRODS Primer: Integrated Rule-Oriented Data System, ser.
Synthesis Lectures on Information Concepts, Retrieval, and Services.
Morgan & Claypool Publishers, 2010, ISBN: 978-1-62-705972-5.

[10] D. Wilcox. Stewarding research data with Fedora. [Online]. Available:
http://library.ifla.org/id/eprint/1796 [retrieved: Mar., 2018]

[11] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging
system for log processing,” in Proceeding of 6th International Workshop
on Networking meets Database (NetDB ’11), Jun. 2011, pp. 1–7.

[12] J. Arnold, OpenStack Swift: Using, Administering, and Developing for
Swift Object Storage. O’Reilly Media, 2014, ISBN: 978-1-49-190082-
6.

[13] B. von St. Vieth, J. Rybicki, and M. Brzeźniak, “Towards flexible open
data management solutions,” in Proceedings of the 40th IEEE Inter-
national Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO ’17), May 2017, pp. 233–
237, ISBN: 978-9-53-233090-8.

[14] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: Stateful scalable stream pro-
cessing at LinkedIn,” Proc. VLDB Endow., vol. 10, no. 12, Aug. 2017,
pp. 1634–1645, ISSN: 2150-8097.

[15] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,

J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine
for big data processing,” Communications of the ACM, vol. 59, no. 11,
Oct. 2016, pp. 56–65, ISSN: 0001-0782.

[16] E. Evans, Domain-Driven Design. Addison-Wesley, 2004, ISBN: 978-
0-32-112521-7.

[17] D. Chappell, Enterprise Service Bus. O’Reilly Media, 2009, ISBN:
978-0-59-600675-4.

[18] Apache Kafka. [Online]. Available: https://kafka.apache.org/ [retrieved:
Mar., 2018]

[19] F. Junqueira and B. Reed, ZooKeeper: distributed process coordination.
O’Reilly Media, 2013, ISBN: 978-1-44-936130-3.

[20] Confluent Platform Docker Images. [Online]. Available: https:
//github.com/confluentinc/cp-docker-images [retrieved: Mar., 2018]

[21] J. Rybicki. GitHub repository with the source code for
measurements use case. [Online]. Available: https://github.com/
httpPrincess/measurements2kafka [retrieved: Mar., 2018]

[22] EUDAT B2SHARE. [Online]. Available: https://b2share.eudat.eu/
[retrieved: Mar., 2018]

[23] W. Gentzsch, D. Lecarpentier, and P. Wittenburg, “Big data in science
and the EUDAT project,” in Proceedings of the Service Research and
Innovation Institute Global Conference, Apr. 2014, pp. 191–194, ISBN:
978-1-47-995193-2, ISSN: 2166-0786.

[24] Invenio. [Online]. Available: http://invenio-software.org/ [retrieved:
Mar., 2018]

[25] J. Rybicki. GitHub repository with the source code for replication
use case. [Online]. Available: https://github.com/httpPrincess/b2kafka
[retrieved: Mar., 2018]

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

