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Abstract—Big data is a new economic driver for many advanced
technology domains, such as autonomous driving, reusable rock-
ets or cancer research. Generating knowledge from large amounts
of data in such domains, will become increasingly important.
Management and processing is done in powerful big data infras-
tructures located in the cloud. Diversifying requirements for the
different big data domains require new uniform and adaptable
architectural patterns that can be implemented and changed
without much effort. This paper introduces a generic domain
independent cloud big data framework, focussing on simplifying
data preprocessing tasks and the deployment of data analysis
environments by using adaptable and easy to configure domain
specific components.
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I. INTRODUCTION

Requirements for big data infrastructures strongly differ
depending on the domain and individual/statutory provisions.
As rapidly as data volumes change, business objectives will
change based on newly discovered knowledge. The fast-
growing need for integrating new data to analyze an increasing
amount of data in new analysis domains and for provisioning
new analysis methods/approaches for big data analysis requires
fast and simple adjustable big data infrastructures that easily
cope with changing requirements.

Limiting the administrative effort by using reusable com-
ponents based on common and interchangeable technologies
would also enable small and middle-class businesses to do
big data analysis. Due to the continuously increasing data
volumes more and more resources are needed for fast and
reliable analysis task execution. Relocating traditional big data
infrastructures into the cloud using virtualized environments,
benefiting from the cloud’s essential characteristics (resource
pooling or rapid elasticity) will help reduce costs, by providing
less complex and reusable frameworks. Big Data infrastruc-
tures can be operated as a private cloud (self-hosted service)
or in a multi-tenant public cloud environment, depending on
company’s preferences and guidelines. Encouraging businesses
of all sizes to use and analyse their data, non-abstract and easy
adaptable infrastructure patterns are needed.

The main contribution of this paper introduces a generic
data analysis framework, which can be adapted to fulfil
different domain and data analyst’s requirements. The to be
introduced infrastructure consists of two main components, the
preprocessing framework and the domain analysis provisioner
framework. The preprocessing framework is responsible for
transferring, storing, persisting and processing data provided

by various data sources, whereas the domain analysis provi-
sioner framework provides Platform-as-a-Service(PaaS) envi-
ronments providing necessary analytical tools.

The paper is organised as follows: In Section II, related
work will be presented. Section III describes components
and functionality of the preprocessing framework. In sec-
tion IV, the domain analysis provisioner framework, providing
machine-learning and analytic environments is described. The
next section elaborates important characteristics of the pro-
posed framework followed by section VI, which summarizes
and concludes the paper.

II. RELATED WORK AND STATE OF THE ART

In the following subsections, we present related work about
big data architectural patterns and broker-based systems.

A. Architecture Patterns
In the field of big data architectures, there are several best

practice design patterns that can be used.
The goal of the Lambda architecture pattern (Marz and

Warren [1]), is to redefine classic data computation using mod-
ern big data technologies, while focusing on high scalability,
realtime and immutability data processing. While scalability
and realtime capabilities are achieved by using modern big
data technology, achieving immutability requires a particular
design. They described an architecture, in which input data is
computed twice using batch processing as well as stream pro-
cessing while the corresponding results are stored separately.
This approach enables to recompute the processing results in
the case of possible malfunctions. The disadvantages of this
design pattern are (i) the necessity to develop and maintain
redundant program logic within the two processing models
and (ii) the resulting storage overhead.

To address these problems another design pattern, called
Kappa architecture, was introduced by Kreps in [2]. The
Kappa architecture focuses on the capability to recompute
the processing results in case of possible malfunctions but
eliminates the necessity to manage redundant program logic.
To achieve this, the Kappa architecture utilizes the messag-
ing system Apache Kafka to integrate data streams into the
processing engine. Due to the capability of Apache Kafka to
persist messages for a given time period, it is possible to
recompute the data streams in case malfunctions were detected.
The infrastructure mentioned in this paper is strongly based on
the principles of these two architectural patterns.

The National Institute of Standards and Technology (NIST)
defined a general reference architecture for big data applica-
tions. As described in [3], the proposed architecture comprises
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the five functional components System Orchestrator, Data
Provider, Big Data Application Provider, Big Data Framework
Provider and Data Consumer, which describe common func-
tionalities big data applications should have. Based on the
NIST’s big data Reference architecture, we built a generic
framework utilizing the components defined by NIST.

Rahmen et al. describe in [4] a platform to process and
analyze healthcare information. The platform mainly relays
on predefined functionalities and hides technology-specific
implementations. The work introduces centralized approaches
to manage the platform and deploy customized applications.
Our platform, considers several of the introduced approaches
while trying to fill the gap of domain-independent platforms.
The purpose of the Cask Data App Platform [5], is to speed
up the development of data analysis tasks. Therefore, several
layers of abstraction are provided, such as an easy to use API
and container based runtime environments to run and deploy
analysis tasks. They provide graphical interfaces to quickly
create ad hoc analysis tasks. Due to the limitations, of their
imperative approach, we introduce a declarative solution to
achieve maximum flexibility for analysis tasks.

B. Broker Systems
There is a wide variety of cloud based broker systems sup-

porting the intermediation and aggregation of services offered
by heterogeneous Cloud Service Providers (CSP) containing
potential complex mechanisms related to any subdomain. A
cloud broker is the basis of our domain analysis provisioner
framework.

Roy et. al. show a Quality of Service (QoS) enhanced
virtual resource broker [6] that allow different CSPs to register
their resources at the broker by declaring, e.g. non-functional
properties of their services. A broker client may request a
virtual resource with a certain amount of assured quality by
utilising the systems inter-CSP manager. The work on hand
delimits itself from the QoS brokerage and the dedicated cost-
and billing system, but focusses on the request analyzer as well
as on the resource allocation manager.

Another economic driven cloud service facilitator was
presented by Kim et. al. in [7]. The Virtual Machine (VM)
reservation based cloud service broker considers the executed
applications inside the leased resources, which overlaps with
the scope of the work on hand. As workload increases, the
VM reservation module starts to conduct demand prediction
and reservation planning for new resources.

In order to develop efficient scheduling strategies of jobs in
federated cloud environments, Pacini et. al. suggested an Ant
Colony Optimization (ACO)-based approach, implemented as
a three-layered broker in [8]. An underlying layer of the broker
calculates the most suitable datacenter for a particular job,
depending on the results of a parameter sweep experiment
(e.g., simulations with repeatedly changing input parameters).

III. A REUSABLE BIG DATA INFRASTRUCTURE FOR
PROCESSING MASSIVE DATASETS

The interpretation of massive datasets called big data
analysis offers a promising potential for various industries and
research fields. Due to the characteristic properties of these
datasets (see [9]) as their volume, variability, and velocity,
the development of such an application poses a particular
challenge. In order to reduce the emerging development costs

for adapting the data analysis task caused by different analysis
domains, it is important to identify general-purpose concepts.
In the following section, we introduce a configurable, ex-
pandable and reusable big data infrastructure to address these
problems.

A. Framework Requirements
The main objective of the described framework is to

abstract universally valid concepts, such as collecting and
provisioning input data and orchestrating them in an archi-
tectural pattern, which is easily adaptable for domain-specific
use cases. To address these challenges, we defined modular
layers, which can be easily applied individually or combined
to build up larger data analysis tasks. As depicted in Figure
1 these layers consist of various parts that can be divided
into infrastructural system and domain-specific components.
The infrastructure components are designed and implemented
according to common big data application functionalities (see
[10]). To tackle the big variety of scenarios the approach is
focusing on domain-specific components. The functionality of
these components depends on the provided data structures,
data sources, and required processing tasks. Therefore, the
framework comprises generic implementations to abstract the
usage of technologies, as well as providing easy to use and
flexible interfaces including communication functionalities for
the combined infrastructure. Besides the identification and
concatenation of suitable technologies and universally valid
functionalities, another aspect comprises the definition of
consistent interfaces and the logical separation of application
components from collecting raw data until their final usage.
The following subsections describe the responsibilities of the
defined layers and the involved components.

B. Information Layer
Selecting and integrating relevant data sources for data

collection is the foundation of every big data application. Large
amounts of data sources, such as smart devices, wearables or
sensors in manufacturing facilities, result in the necessity to
involve multiple data sources and correlate the gathered data.
Therefore, the Information Layer can be considered as a logical
representation of various data sources.

C. Messaging and Distribution Layer
The main goal of the Messaging and Distribution Layer

(see Figure 1) is to integrate the data sources and provide
generated data to the succeeding infrastructure components.
A domain-specific Connector has to be extended with spe-
cific collection functionalities to integrate data sources. For
example, this may be used to establish a connection to a
remote data store, understand the dataset format and much
more. Depending on the application the data sources can vary
from static datasets to realtime data collected by sensors.

Integrating Static Datasets: While dealing with batch data
the connector will initially store new data within the FileCache.
The FileCache is realized as a distributed Network File System
(NFS) using the Parallel NFS (pNFS) standard providing fast
and scalable functionality to store data within the infrastructure
for further distribution. After uploading the data into the File-
Cache the StorageConnector is informed about the occurrence
of new data. The responsibility of this component comprises
uploading data from FileCache to a distributed storage engine
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Figure 1. Architecture of the big data preprocessing framework

realized as a Hadoop Distributed File System (HDFS) cluster.
Depending on the size of data, uploading to a HDFS cluster can
be very time consuming, due to the necessity of splitting data
into several blocks, which will be replicated and distributed
in the storage cluster. In order to be able to manage massive
datasets in a timely manner, this functionality can be highly
parallelized using multiple instances of the StorageConnector.
Using the Messaging and Distribution Layer, processing this
kind of data only requires the definition of how to read
data within the Connector. To speed up the development of
such a component a base class was implemented providing
functionalities for the FileCache and data persistence.

Integrating Realtime Data: Dealing with streaming data
requires a different behaviour from the Messaging and Dis-
tribution Layer. In this case, the Connector has to continu-
ously read small datasets and distribute it to the succeeding
infrastructure components. The base class for implementing a
Connector provides the functionality to distribute data within
the infrastructure. To ensure a scalable and reliable data
distribution the messaging system Apache Kafka has been
chosen. Therefore, the base class acts as a Producer and
provides the functionality to publish new data to multiple
broker instances, which subsequently can be processed in the
Realtime Processing Layer.

D. Batch Processing Layer

While the Messaging and Distribution Layer can be used
independently, most big data scenarios require further data
investigation (e.g, quality check, improvement, etc.) by a
domain-specific Apache Spark job. Using Apache Spark for
this kind of processing benefits from high scalability, fault
tolerance and in-memory processing capabilities, which are
required for processing large data sets efficiently. Implement-
ing such a task strongly depends on the provided data struc-
tures and therefore, predefining general valid functionalities
is impossible. Therefore, our approach focuses on integrating
the preprocessing tasks within the infrastructure. Our approach
provides base implementations for storage engine connections
and for the integration of result postprocessing. The results of
such a task can be divided into two categories: a) Generating
new data (e.g., aggregations or enhanced data records). To store
and provide the results for further usage, the base implementa-
tion allows to store new data into the HDFS cluster. b) Storing
data tags that can be found looking for specific data patterns
through data correlation. The EventUnit can be used within

processing jobs to inform succeeding components about new
results (data tags) or to directly exchange the achieved results.
The EventUnit uses the messaging system Apache Kafka to
enable a nearly linear scalability and can be configured as a
Producer or a Consumer.

E. Realtime Processing Layer
The realtime layer enables the processing of streamed

data individually or by combining it with layer described in
previous sections to cover more complex processing scenarios
(e.g., creating a Lambda architecture). The collected data for
the Realtime Processing Layer is provided by the messaging
system Apache Kafka and integrated by the DataEntryPoint
component. This component acts as a Apache Kafka Consumer
and can be configured for the given data structures. The
processing task can be developed by implementing a domain
specific Apache Strom Topology with nearly linear scalability,
fault tolerance and realtime capabilities, representing important
requirements in realtime scenarios. Furthermore, a general-
purpose data quality module, validating input data against user
configured thresholds for missing values, outliers or min/max
values was implemented. Data composition is described using
XSD schemes defining data structures and constraints for a
given dataset. Processing realtime data mainly relies on the
discovery of patterns within a given time frame, to generate
more significant events for further operations. Furthermore, it
is possible to use the previously described EventUnit to inform
succeeding components about the occurrence of such events.
If the processing task involves data manipulation it is possible
to store the results within an Apache Cassandra cluster.

F. Application Layer
Depending on the given use case, there is a wide range

of possible tasks to perform after processing the input data,
like building models using machine learning technologies. To
tackle the high variability of analysis tasks the Application
Layer contains domain-specific components, which will access
and utilize interfaces provided by the underlying layers. The
EventUnit abstracts the direct data access to the corresponding
storage engine.

G. Configuration Layer
The Configuration Layer contains all necessary compo-

nents to provide centralized infrastructure management, en-
abling the implementation of different analysis tasks. One
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important responsibility of this layer includes a centralized
and automated deployment of domain-specific components.
To automate the distribution of components and their correct
configuration, DeploymentPackages are introduced, containing
the executables and specific configuration files representing the
component’s type (e.g., Connector, Application or Processing
Component) and their expected parameters.

While the component type defines how the corresponding
executables will be distributed and executed within the cluster,
parameters can be used to execute multiple instances of the
same processing task individually. Starting a processing task
relies on an uploaded DeploymentPackage using a web inter-
face (see Figure 2). After the DeploymentPackage is uploaded,

Figure 2. Process to Execute a Processing Task

the involved components are deployed to their assigned nodes
by the Task Assembler component. Furthermore, this compo-
nent creates a Task object, which is applied to orchestrate
the domain-specific components and manage their execution.
The Task object is also used to dynamically create a form
within the user interface to execute a parameterized instance
of the processing task. After a configured processing object
was established, the Task Executer creates and executes a start
script, connecting to the corresponding nodes and executing the
involved components, while mapping the specified parameters.
For the possibility to receive notifications and manage the
running components, the Task object has to be registered
by the Task Monitor. The Configuration Layer also provides
functionalities to dynamically scale the cluster by adding
exclusive nodes for each processing task.

IV. A GENERIC PROVISIONER ARCHITECTURE FOR
SCHEDULING DATA ANALYSIS ENVIRONMENTS

Using Cloud Management System (CMS) or hypervisor
technologies, predefined cloud images enable different isolated
processing platforms to be used by a data analyst. Instantiating
these non-universal VMs requires an initial configuration with
the to be processed data source. These instances implement
the proper data processing tasks, using adjusted software,
system packages on top of an underlying operating system. A
domain analysis provisioner framework using a web dashboard
is proposed that accumulates different cloud images with their
corresponding data sources and establishes a self-service for
users to deploy a personalized data analysis environment.

The raw data of any data source always contains meta data,
which has to be translated into meaningful attributes to enable
the users to identify and select the desired dataset. Executing
an action on these datasets results in a VM containing the
required data source and a pre-configuration of analysis or
processing tools. Once a validation of data accessibility from
the instances point of view is confirmed, the processing tool

is executed automatically. Additionally, this proposed config-
uration enhances usability as well as the convenience level.

A. Architecture Overview

As depicted in Figure 3, the domain analysis provisioner
framework architecture consists of multiple dynamic mod-
ules, which are partially generated by model driven software
development. To separate these structures, the provisioning
engineer divides involved subsystems into different domain
scopes. The domain analysis provisioner framework scope
contains modules regarding the definition of tasks and must
adjust itself to the referenced data source. A platform image is
always linked to a data source and is responsible for executing
the intentions of the domain analysis provisioner framework’s
scope. Resource provisioning is the central execution of pro-
cessing platforms and rests upon CMS interaction. Each com-
ponent may be implemented in a specialized way, maximizing
domain specific requirements realization. A User Interface
displays all data sources and possible actions on different
scopes while taking care of accountability requirements. Main
focus of the Task Definition Module is the connection to the
incoming data source technology, using a representation of
emerging meta data. A defined task can consist of multiple
data sources, requiring a separate connector implementing a
connectToData, as well as a getData function. Using
these functions as alternative views of remote data sources
supports the engineer of such a system in case metadata is
altered frequently. The Task Management Module defines basic
mechanisms for instantiating and configuring platform images
with data sources. For example, OpenStack and Amazons Elas-
tic Compute Cloud (EC2) both provides a user data parameter
for popular custom commands and system calls executed at
instantiation time of an image [11] [12]. With the definition
of startup templates, realizing individual and task specific
platform preparation is programmatically extended by dynamic
metadata of the to be analyzed content. A processing platform
is defined by the Platform Image Definition Module and must
be registered with a CMS. Depending on the deployed software
ecosystem and its configuration capabilities, the proper dy-
namic initiation script provided by the Platform Instantiation
& Configuration module containing values defined by the
metadata representation structure is deployed. Assigning a data
source is done by manipulating different configuration files
inside the VM. Since the CMS is able to push commands
directly to the instances, every other method of registering
or gathering data for processing is conceivable. The image
ID resulting from the registration process with a CMS is
the provisioner’s reference for creating platforms inside the
virtualized infrastructure. Once a platform is instantiated, the
VMs static metadata is persisted inside an internal data store
for further usage by the dashboard to visualize processing jobs,
as well as manipulations by the Cloud Resource Management
module. For example, a program executed inside the cloud
image produces a log file, whose content may be interpreted
by a status server, which returns feedback to the dashboard via
REpresentational State Transfer (REST) paths. Thereby, the
VMs assigned IP address is consulted from the provisioner’s
internal data store, requesting its current state at a predefined
port and path to display it inside the user interface.
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Figure 3. Modules of the generic domain analysis provisioner framework

B. Language independent module implementation

For a programming language independent implementation
of the modules mentioned before, the Apache Thrift technol-
ogy has been used. The definition of the modules, common
data structures and provided interfaces is achieved using dif-
ferent Thrift Interface Definition Language (IDL) files that
are used to compile it to a language specific implementation.
The VMs status server may also be implemented as a Thrift
service for transparent function calls using similar procedures
as REST. Requirements, such as scalability, versioning or
physical distribution of a provisioner are viable using Apache
Thrift despite the given complexity of the technology when
comparing it to language specific distribution technologies, like
OSGi or native Remote Procedure Call (RPC).

C. Provisioner module generation

The previously described relations are rich in complexity
and dependencies of modules among themselves. With the
implementation of a specific application, based on the archi-
tecture shown in Figure 3, there are multiple interfaces and
data connectors to define, impacting the cumulative provisioner
procedure. With respect to the potential intertwined hetero-
geneous technologies of each sub-module, the necessary do-
main knowledge further increases the applications complexity.
Therefore, a context-free grammar was engineered, enabling
the declaration of these coherences as abstract syntax. A model
to code transformation enables the translation of a universal
domain analysis provisioner framework application model into
technology specific skeletons. The creation of structures con-
taining basic logic related to a specific technology supports the
efficiency in provisioner task development. Using the XText
environment, a Platform-Domain Specific Language (DSL)
was developed, abstracting the architecture’s main features and
providing input for the code generator. The resulting structures
must be enriched with individual module logic.

The XTend framework enables parsing previously generated

grammar, as well as the utilization of code creation using
templates. Implementing a custom template of the DSL, there
are no restrictions for web frameworks or technologies re-
spectively. Executing the required shell scripts, source code
and technology dependent components the consequent results
are placed in a central Dashboard folder. In case of Thrift
usage there will be separate IDL files for each action and con-
nector. Due to the freedom of choice regarding programming
languages, a pre-filled skeleton for the service implementation
containing common logic makes is not feasible. All client-side
service calls are formulated inside the user interface structures
and a script for creating proper cloud images is prepared. Path
definition for processing applications on the local machine, as
well as additional software packages, enables the creation of
customized platforms.

V. FRAMEWORK EVALUATION

As elaborated in section I the main challenges for a big
data analysis frameworks are reusability, scalability, extensi-
bility and maintainability. These important characteristics are
presented in the following section.

Reusability: Relies on the separation between general base
framework and domain-specific functionalities. Developing
and implementing the framework was done focusing on pre-
defined functionalities while providing an intuitive way to
integrate domain-specific components. With this approach and
the use of common technologies to transfer, process and store
large datasets, the framework is able to reduce the required
developing time for a new processing task significantly.

Scalability: Processing large or high frequent datasets in a
timely manner, requires high scalability. This is achieved by
(i) using technologies, which are able to parallelize processing
tasks over a large set of individual nodes and (ii) combining the
involved components logically to create independent modules,
which can be scaled according to the individual load of a
processing task. Therefore, the framework is scalable by using
multiple modules of the same type or by executing multiple
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instances of specific components within a module.
Extensibility: Another important aspect of a generic frame-

work is to provide a broad extensibility to include additional
functionality or to integrate new technologies.Extensibility is
needed to integrate additional functionalities or technologies
to face the strongly changing requirements of modern Data
applications. The framework has been designed carefully with
the focus on defining generic interfaces between the layers and
technologies. Therefore, replacing existing components, tech-
nologies or complete layers without effecting the remaining
parts is possible.

Maintainability: Highly scalable big data frameworks re-
quire good component management to reduce the effort and
costs.To mitigate this problem a centralized management in-
terface that provides uniform functionalities to configure the
nodes, technologies and processing tasks was introduced. For
example, this includes adding new nodes, stopping processing
tasks or centralized logging for debugging purposes.

Technology Usage for Provisioning: The different parts of
the proposed domain analysis provisioner architecture can be
implemented in nearly every suitable technology. A template
for the provisioner core modules was implemented as a python
based Django application. The creation of platform images
is realized using virt-builder, resulting in qcow2 images for
further registration with different CMS environments. Alter-
natively, a snapshot of an existing and with the required
software assembled VM can be used as platform image. This
procedure results in an increased disk allocation and possibly
additional network latency for deployment, which can be
avoided using CEPH. Applying this distributed storage tech-
nology, a newly created snapshot only requires the difference
between its current size and the size of a previously taken
snapshot. Furthermore, this Copy On Write (COW) mechanism
increases the speed of a VMs instantiation procedure [13].
The Cloud Resource Management Module is adjusted for this
CMS. To demonstrate a language independent and distributed
setup, all actions and connector modules are implemented as
Thrift services. This way, the user interface consolidates the
different remote procedures as central contact points, allowing
changeability of connectors and action implementations at
runtime. The extension of an already active domain analysis
provisioner framework with additional tasks may depend on
the chosen technology like Django.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced a reusable cloud-based big
data framework. The defined preprocessing framework handles
communication and transfer of data by providing domain
independent and easy adaptable interfaces. This underlying
structure stores and processes data. With the help of the
configuration layer new analysis tasks for incoming data can
be created. Using the application layer, machine-learning tools
or other applications can be used in standalone mode or
the domain analysis provisioner framework can be deployed
inside this layer. The introduced domain analysis provisioner
framework provides dynamic modules generated by model-
driven software development. The platform gives a ready-to-
go definition for platform and resource management while
providing interfaces to cloud systems. The domain analysis
provisioner framework enables the platform engineer to define
a domain specific platform by creating an analysis environment
with all required tools and direct access to the stored and

preprocessed datasets.
As a next step, we will define data quality properties for the

data collection process and implement a domain specific data
validation chain using rules and neural-networks to determine
the quality of collected datasets in critical environments.
Benchmarking and improving scalability and security of the
proposed platform, as well as developing machine-learning
modules to simplify configuration for preprocessing, are an-
other aspect that will be implemented in the future.
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