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Abstract—In Big Data applications, it is often required to inte-
grate data from different sources to fuel machine learning models.
In this paper, we describe a prototype implementation of the
data logistics and model deployment services. Our goal was to
create a one stop shop solution to support generic Data Science
life cycle. It starts from formalized and repeatable data selection
and processing provided by the data logistic service. The data are
used for model creation in a typical machine learning fashion.
The model is then put into a model repository to enable easy
model management, sharing, and deployment. The functionality
of the proposed prototype is positively verified with a particular
use case from environmental science.
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I. INTRODUCTION
Data Science is a way of obtaining novel insights from

collected data. The process is propelled by two main forces:
large amounts of data and analysis methods subsumed under
the term machine learning. There are many ways of defining
the Data Science process [1], but for the sake of argumentation,
we can reduce it to three main phases: data preparation,
model creation, and model deployment. Each of the phases
poses some unique challenges. The modelling phase probably
attracts most of the attention. This part unifies approaches from
applied computer science, statistics, artificial intelligence, and
many more popular scientific fields. Yet, the phase cannot be
conducted efficiently without the data collection phase, and it is
not very useful if the created model is not put into production.
Therefore, in this paper we focus on the data collection and
model deployment and propose a solution, which is sufficiently
generic to accommodate different kinds of models.

The quality of the outputs of a Data Science project is
mainly resulting from the quality and amounts of the input data
used (rather than a sophistication of the used model). Thus, in
the process of data preparation, one has to make sure to collect
as much relevant data as possible. Just as in the physical world,
a factory needs to be timely supplied with all the production
means it requires, and the quality of the products depends on
the resources used. The problem in physical world is solved
by logistics. Along these lines, in this paper we propose a data
logistics service responsible for timely delivery of the data to
the models.

Collection of the data requires access to many sources.
Furthermore, the data have to be cleansed to ensure their
quality. Also, a higher-level processing is often required, for
instance, to transform the data into a different format. In our
experience, the process of data preparation takes a lot of time
and effort, and yet becomes little acknowledgment because
it is regarded as a mundane and less important process than
modeling. The challenges posed in the phase of data collection

are further reinforced by the fact that in many cases new data
becomes available during the process as data collections evolve
over time. This is especially important for the forecasting
models, as their output might be more dependent on the
most up-to-date information rather than the historical ones.
The model performance depends on the data freshness. It is
generally considered a bad practice to perform data collection
and processing in a manual way [2]. Rather a formalization
of the process in form of programming scripts shall be sought
after. Programmatic approach helps in understanding and re-
peating the process of data collection and can also be crucial
for efficient provenance tracking. The availability of programs
and scripts for automated data collection and processing does
not alone solve the problem of keeping track of data changes.
Because of the aforementioned requirement of data freshness,
the data collection is not a one-off act but rather a repeatable
action. Thus, the programs and scripts have to be executed
periodically, and monitored to detect progress, errors, and
problems. In this paper, we propose an approach based on
Apache Airflow [3] to implement data logistic service to gather
and process data in an automatic, repeatable, and user-friendly
way.

Second phase we would like to focus our paper on, is
the model deployment phase. It follows the phase of model
selection, tuning, and training. This is often done, at least
partly, in an interactive way with tools like Jupyter Note-
book [4], or Zeppelin [5]. Such tools are second to none in
terms of user friendliness and quick turn over times (at least
for small models). As soon as a promising model is found
and its basic parameters are set, a more laborious phase of
model training follows. Roughly speaking, this process sets
up the model internal parameters to try to fit the collected
empirical data as good as possible. Depending on the size
of the data and complexity of the model the training can
take substantial amounts of time. The trained model should
be then put into production to accomplish the work it was
intended to do. The production can be a support of an inter-
active web application where the model does the predictions,
classifications, visualizations, etc. Given the dynamic nature
of the data used in most Data Science projects, the model
may require a retraining to account for the newly collected
information. Sometimes also an adjustment of the parameters,
or even change of the model class is required. In this paper,
we show how the training of a model can be incorporated in
the proposed data logistics service, and also, how the trained
models can be put in MLflow [6] model repository to enable
easy model sharing, review, and deployment. Our goal is to
provide a one-stop shop solution to support complete Data
Science life cycle.

Our high-level motivation is based on two observations.
Models created in scientific endeavours should be verifiable
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by other researchers. Such a verification can be conducted
also by applying given model to a new set of data. We
believe that our approach can be helpful here. Secondly,
we observe increasing asymmetry between resource usage of
model training and prediction. Complex models, e.g., neural
networks driven by large amounts of data often require large
amounts of special kinds of hardware for efficient training.
Yet a prediction with such models are pretty quick even with
simple hardware. Also, for these purposes, a model repository
with model deployment functionality can be beneficial. It
allows for large research organizations to share their (often
expensive) specialized hardware and results it produces.

The rest of the paper is structured as follows. We firstly,
summarize the use case that motivated our work in Section II.
We then proceed with the description of the system design in
Section III, where we describe both the data logistic and model
deployment services and their interplay. The created solution
is evaluated in Section IV. Subsequently, we shortly discuss
related works in Section V, before summarizing the paper in
Section VI.

II. USE CASE DESCRIPTION
In this paper, we propose a system to support typical

tasks in a Data Science project. In particular, we cover the
data preparation and model deployment phases. These phases
occur in many standardized Data Science life cycles (even if
under different names) like Cross Industry Standard Process
for Data Mining [7] or Team Data Science Process [8]. To
better understand how the proposed solution can facilitate
efficient Data Science endeavors, let us describe a use case
that motivated our implementation.

Firstly, our goal was to put the relevant data in a target
database. Subsequently, the database was used for training a
machine learning model, which was then put into production
to conduct forecasting. Our data source was the OpenAQ Plat-
form [9]. It collects measurement of following pollutant types
PM10, PM2.5, sulfur dioxide (SO2), carbon monoxide (CO),
nitrogen dioxide (NO2), ozone (O3), or black carbon (BC).
OpenAQ stores raw data from measuring stations operated
by government entities or international organizations across
the world. The data are accessible through an API and also
put in a public storage based on Amazon Simple Storage
Service (S3) [10]. OpenAQ publishes data in different formats
and with different time resolutions, we were interested in the
most current ones, i.e., the real-time version published every
10 minutes to S3 [11].

Our target database was Tropospheric Ozone Assessment
Report (TOAR), which is a relational database of global sur-
face ozone observations emerging from a cooperation among
many data centers and individual researchers worldwide. It
combines data from over 10 000 measuring stations, allowing
for sophisticated analysis of ozone concentrations in tropo-
sphere. Ozone is relevant for both human health and envi-
ronment [12]. Access to the collected data is granted through
Jülich Open Web Interface for accessing TOAR surface ozone
data [13]. OpenAQ shall become one more of many sources
of data integrated into the TOAR database.

Two main challenges with respect to data management
were to keep them up-to-date and transform data from OpenAQ
into a new TOAR format. Roughly speaking, the TOAR
database is built around the notion of measurement series
stored in a relational database, whereas OpenAQ collects single

measurements stored in compressed NDJSON [14] format.
Such discrepancies are typical in real life and have to be often
addressed in the data collection phase.

The target database was used to retrieve relevant measure-
ment series, which in turn were used to train a model for
predicting air quality in a given area. The model was deployed
and served as an analytic backend for a web application. We
intentionally omit some details regarding the actual model and
its usage, this part belongs to a different Data Science life
cycle phase, which lays outside of the scope of this paper. The
presented use case comes from a scientific field of environmen-
tal science, but we believe that the principles apply in other
scientific fields and also outside of the academia, where Data
Science approaches become more and more popular. The data
flow in our use cases is schematically depicted on Figure 1.

III. SYSTEM DESIGN
In this section, we describe the design and implementation

of the proposed solution. Its two main parts are data logistics
service and model repository with deployment function. Al-
though, as we pointed out, the parts support distinct phases of
Data Science life cycle, there is also an overlap between them.
For instance, a model can only be deployed when it passed the
training phase fuelled by the delivered data.

A. Data logistics
Our solution for data logistic is based on Apache Air-

flow [3]. It is a platform to programmatically author, schedule,
and monitor workflows. Workflows are defined as Directed
Acyclic graphs (DAGs), which comprise of Operators and ad-
ditional metadata defining, e.g., execution frequency. A unique
feature of Airflow, when comparing to well-known workflow
systems like Taverna [15] or Kepler [16], is that it does not use
a product-specific language for defining workflows, but rather
uses standard Python programming language. This allows for
more flexibility in terms of task and dependencies and also
lowers the entry barrier for the new users.

The way the Airflow workflows are executed differs from
the aforementioned workflow systems. DAG’s Operators are
instantiated to become Tasks, which are then passed through
a messaging queue to the Worker nodes for execution. The
number of workers in the system can be changed depending
on the workload. Operators abstract different kind of tasks and
constitute extension points in system. There are three kind
of Operators in Airflow: actions, data transfers, and sensor.
Sensors wait and detect a particular event, e.g., publication
of new data. Data transfer operators move data to and from
particular system (like database, object store, etc.). Finally, the
action operators execute particular action in remote environ-
ment, for instance DockerOpetator,SparkOperator,
BashOperator, SSHOperator.

Airflow has a very unique yet powerful approach to the
repeatable tasks. To enable reproducibility of the workflows
their dependency on time is reduced. Each DAG has to have a
start_date and schedule_interval. The end_date
is optional and if no value is provided a date in the future is
used to facilitate perpetual repeating workflows. The interval
is divided into smaller parts, each of schedule_interval
length. For each of the parts, one DAG run is created and
executed. The time variable is injected into the tasks of the
workflow. The tasks must be implemented in such a way
that they should rely on the execution time provided by
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Figure 1. Data and computation flow in the modeled use case.

the workflow system (rather than other means like operating
system date or time values). Thus, upon failure of a workflow
it is possible to restart it at later date. Also, changes in the
workflow or single tasks can be easily implemented and then
rerun in an efficient way.

The workflow for the retrieval of the OpenAQ data and
upload it TOAR database is composed of three main tasks.
Firstly, a list of objects in S3 is created and filtered so that
only objects from the injected time interval of ten minutes
are considered in the next steps. Subsequently, the identified
compressed NDJSON objects are downloaded and temporarily
stored in a distributed file system. Lastly, the files are analyzed
and uploaded to the target TOAR’s Postgres database. During
the last task, single measurements from OpenAQ are analyzed.
If they refer to a measuring station, which is present in the
target database, the measurement is added to the existing
measurement series, otherwise a new series is created. Unfortu-
nately, the stations in OpenAQ do not have a unique identifiers.
Their names are given by the station operators and can even
change over time. Therefore, we decided to use coordinates
to identify the stations. This worked for most of the cases,
stations with no coordinates were discarded.

Since new measurements are published every 10 minutes
to S3 buckets, the workflow has to be rerun periodically. This
part is taken care of by Airflow scheduler. To speed-up the
processing, some of the tasks are implemented in a parallel
fashion: NDJSON objects are split into chunks, which are
processed in parallel.

B. Model creation
The availability of the data marks a starting point, at which

training of a model for air quality forecast becomes possible.
The process is manifold. Firstly, the relevant data are selected
from the database. We are interested only in measurements
regarding particular station. Secondly, a simple RandomFore-
stRegressor model from Python Scikit-learn [17] pack-
age is trained. It is worth stressing that we use this very simple
model only to show case how our solution works. In reality,
the scientists doing the analysis would be using much more
data and much more sophisticated models. The input data for
the model is pulled from a temporary data table. The reason for
this is the flexibility to use the same train code with different
data. The progress of the training process is traced with help
of a MLflow server [6]. With such a server, it is possible to
store model parameters, metrics like mean square error, and
model artifacts, e.g., serialized model.

We implemented the model creation as an Airflow DAG.
One of the challenges of such an approach is the dependency

management. Although, we use a popular Python library
(Scikit-learn), it might not be available at the Ariflow
workers executing the model training task. The MLflow offers
help here. It is possible to create MLflow Projects that
comprise not only of the code for the model creation but
also metadata to define its dependencies. For Python, conda
can be used, which is a well-established and mature package,
dependency and environment management solution [18]. It
will, upon project execution, take care of downloading and
installing all the required libraries. This solution also works
with other programming languages and libraries.

It is worth stressing that our approach is pretty flexible. The
created Airflow DAG is capable of running different MLflow
projects, which train the model. Such projects can be stored
in GitHub [19] repositories from which they are retrieved for
execution. The only constrain that we put on the projects is
the convention for data retrieval. In our case, it is assumed
that the data will be in placed in a temporary database table.
The address of the database is injected to the MLflow project
through environment variables. At the same time, the MLflow
Projects can be executed outside of our data logistics service,
e.g., on a local machine in a early phase of model selection.

C. Model deployment
A nice side effect of using MLflow [6] to store the models

is an ability to instantiate such models in an easy way. For this,
a single command is required:

mlflow models serve
-m runs:/98ec38b6b846/model
-p 8081

Each model registered with the MLflow has its unique
run id, which can be used to instantiate it as in the command
above. Models are decorated with a REST interface, which
is accessible at given port (-p 8081). To this endpoint, a
request with data in JSON format can be sent. The data will
be passed over to the model for predictions and the results are
sent back to the client.

IV. EVALUATION
Despite this paper being a work in progress record, we

decided to include some preliminary evaluation of the system
performance. To this end, we used data from the OpenAQ data
repository and analyzed 10 subsequent days starting from 1.
January 2014. For the execution of a test system, we override
Airflow configuration to reduce the task parallelism to 1 to
eliminate the possibility of DAGs interleaving. Figure 2 shows
the Task run times for the most important tasks in the DAG:
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Figure 2. Duration of workflow tasks.

download of the data, data conversion and database upload,
data selection for training, model training and publication.
Apparently, the data download and conversion take constant
amount of time, similarly to training and model upload. This
is true, despite the increasing amounts of data used for the
training (36 measurements on first day, comparing to 345 on
the last one). The only tasks that displays some worrisome
scalability characteristics, is the data preparation step in which
all measurements from one selected measuring station are
retrieved from a database and made available for training.
Perhaps the negative scalability trend can be overcame by
some database optimization and shall be a subject of following
works.

V. RELATED WORK
Our work is partly motivated by the publication of Chen et

al [20] who proposed Data-as-a-Service (DaaS) and Analytics-
as-a-Service (AaaS). Our data logistic service could be under-
stood as a type of DaaS, and some functionalities of the model
repository can be used to offer Analytics services.

We already pointed out the differences between used so-
lution for data logistics and typical workflow systems like
Taverna [15] or Kepler [16] (see Section III). Airflow addresses
different kind of use cases, focuses mostly on efficient data
movement and integration. We think, that the proposed solution
is orthogonal to the classical workflow systems, the later ones
can be executed by Airflow, e.g., to facilitate model training
where computation performance is of the primary interest.

The problem of model repository and efficient model
deployment seems to be gaining attention lately. There is a
patent describing an idea of model repository [21]. It pro-
vides, however, no implementation details. FBLearner Flow by
Facebook [22], Google TensorFlow Extended [23], or Kube-
flow [24] are infrastructure and framework specific solutions
for model deployment and management. In our work, we were
striving for a generic solution and also wanted to promote the
idea of model sharing in academia. The Open Science move-
ment was successful in promoting the idea of data repository.
A truly open science requires publishing and sharing of the
created models. An interesting work by Behrouz [25] focuses
on continuous model deployment. At first glance the approach
is complementary to the solution presented herein. The author
provided a means for efficient model retraining, whereas we
cover the remaining phases of collecting data, changing and

redeploying of the model. We intend to verify if the proposed
solution can alleviate the problem of limited scalability of data
selection tasks observed in our evaluation.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a prototypical implementation of

the data logistics and model deployment services. The services
were used to implement a real use case from environmental
science. We described and explained our design decisions.
The use case was implemented successfully and put into
production.

In our future work, we plan to address some of the
shortcomings of our current solution. More improvement is
required in terms of efficient sharing of Airflow DAGs. This
will help in implementing other use cases. Also, more so-
phisticated deployments (e.g., with monitoring and dynamic
resource management) are planned. To this end, migration to
Docker-based model execution might be a good idea.
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