
On Compressing Time-Evolving Networks
Sudhindra Gopal Krishna1, Sridhar Radhakrishnan1, Michael Nelson1, Amlan Chatterjee2 & Chandra Shekaran3

1School of Computer Science, University of Oklahoma, Norman, OK, {sudhi, sridhar, Michael.A.Nelson-1}@ou.edu
2Department of Computer Science, California State University Dominguez Hills, Carson, CA, {achatterjee}@csudh.edu

3Department of Computer Science, Loyola University at Chicago, Chicago, IL, {chandra}@cs.luc.edu

Abstract—A graph G = (V , E) is an ordered tuple where V
is a non-empty set of elements called vertices (nodes), and E
is a set of an unordered pair of elements called links (edges),
and a time-evolving graph is a change in the states of the edges
over time. Extremely large graphs are such graphs that do not
fit into the main memory. One way to address the issue is to
compress the data for storage. The challenge with compressing
data is to allow for queries on the compressed data itself at the
time of computation without incurring overhead storage costs.
Our previous work on Compressed Binary Trees (CBT), which
was shown to be efficient both in time and space, compresses
each node and its neighbors (termed as row-by-row compression).
This paper first provides encoding to store the arrays in the
Compressed Sparse Row (CSR) data structure and extends the
encoding to store time-evolving graphs in the form of CSR. The
encoding also enables accessing a node without decompressing
the entire structure, meaning the data structure is queryable.
We have performed an extensive evaluation of our structures on
synthetic and real networks. Our evaluations include time/space
comparison with both time-evolving compressed binary tree and
ckd data structures, including the querying times.

Index Terms—Compression, Network Science, Time-Evolving,
Queries, Graphs

I. INTRODUCTION

Graphs can be used to represent real-world data from a
wide variety of domains. The relationships among the data
are captured by the characteristics of the graph. For most real-
world data, the relationships change over time. This results in
the graph evolving from its initial state to the current one. A
graph G = (V,E) is represented by a set of vertices V and a
set of edges E. For real-world data, the graph G evolves with
time and can be statically represented using a series of graphs
Gt = (Vt, Et) where the time t indicates an instant which is
spread over a certain interval.

Therefore, a time-evolving graph can be defined as a graph
that changes or evolves over time. Consider, as an example,
pages on Wikipedia. Each page evolves over time with the
addition and deletion of content. The current state of the
page is the one that contains the content of the page at
present. However, all the edit information is also saved for
the page. Using the edit information, the state of the page at
previous instants of time can be checked. Hence, having such
information preserves the integrity of the page while being
open to editing. Now, the information for the Wikipedia pages
with the time-evolving data can be represented and stored
as graphs. Storing such information is useful for performing
various kinds of analyses. For example, one might want
to know what changes have occurred to a document from

beginning to the current state. Another related query can be,
what changes occurred to a document within a certain interval
of time; this would be specifically interesting to study if the
document represents some current socio-economic or political
events. Also relevant would be to know the number of changes
that occur to the documents from any point in time to another.

Time-evolving graphs represent data from different domains
such as social networks and communication networks. A
variety of analyses can be performed on such data based on the
availability of the same over time. For example, such graphs
can be used to perform descriptive, diagnostic, predictive and
prescriptive analytics, among others. Hence, to execute such
operations on time-evolving graphs, the data has to be stored.
Generally, graphs are stored in either of the three different
representations: adjacency matrix, adjacency list and edge list.
In adjacency matrix, the graph is represented as a matrix of n2

elements, where |V | = n; edges are represented using 1’s and
lack of it as 0’s. For an adjacency list representation, for each
node v ∈ V , a list of adjacent nodes is stored. Finally, for an
edge list representation, all edges are stored in a pair format
(vi, vj) where an edge exists from vi to vj ; the number of
entries in the edge list is |E|. However, most real-world graphs
are very large in size. Hence, the memory requirements for
storing the data are significant. For example, if we consider a
time-evolving graph, like Wiki-edits and Yahoo Netflow, the
sizes of the data in the edge list format are 5.7 GB and 19
GB, respectively. With such sizes, the data might not fit on
the main memory for analysis. Therefore, to store the data for
time-evolving graphs and perform computation on the same,
the data is required to be compressed.

In this paper, we propose techniques to perform compres-
sion on time-evolving graphs. There are normally two methods
for compressing the adjacency information for a graph: one is
to consider the entire graph together, the other considering
portions of the graph at a time.

For our methods, we exploit row-by-row compression for
node data separately. Specifically, we utilize two combinations
of data structures to store the time and adjacency information.
In the first one, the time tree provides information regarding
the instants of time the graph evolved; for each node, there is
an additional tree to store the adjacency information for each
instant in the time tree which is CBT. Rather than storing
the entire adjacency information for the nodes, a differential
approach is leveraged to reduce the memory requirements.
In the second approach, for each time frame the edges are
stored in an unsigned bit array and similar to the CSR-CSR

43Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

compression, the later information is stored in a differential
approach to save the memory which is CSR. Our contributions
also show that depending on the characteristics of the graph
being compressed, using a combination of techniques rather
than a single method for the data structures yields better
compression.

The rest of the paper is organized as follows. In Section II,
we discuss existing techniques for storing and managing time-
evolving graph data. We propose our methods for compressing
and storing time-evolving graphs in Section III. In Section
IV, we examine the various algorithms that provide efficient
compression for time-evolving graphs. We report the empirical
results and analysis in Section V and the conclusion in Section
VI.

II. RELATED WORK

A time-evolving graph can be represented as a sequence of
static graphs (snapshots), with each of the snapshots represent-
ing the graph at a particular point in time. Since a snapshot
can be represented as a 2D matrix, a time-evolving graph can
thus be represented as a 3D matrix, also known as a presence
matrix [1].

In 2009, Chierichetti et al. [2] modified the web com-
pression method developed by Boldi and Vigna’s WebGraph
[3] called Backlinks Compression (BLC). The compression
is based on the social network’s property of reciprocity.
The compression technique makes use of intrinsic ordering
heuristics based on shingles, which improves on the WebGraph
format.

Nelson et al. [4] in 2017 introduced a compressed data
structure as an indexed array of Compressed Binary Tree
(CBT). The data structure eliminates the necessity of interme-
diate structure to create the compressed binary tree. The data
structure also makes use of row-by-row compression which
enables faster access to the edge existence, neighbor query
and the streaming operation.

In 1976, Compressed Sparse Row (CSR) was first docu-
mented by Snay [5], and is one of the most common data
structures used for representing a graph. Compressed sparse
row is also a row-by-row compression which involves two
arrays for the compression of each node. All the information
is efficiently packed in the array for the quick traversal of the
data structure. The first array shows the degree of each node,
and the following array shows the edge incidence to each node.
Here, the degree of a node v is the number of edges incident
to v, and is denoted as d(v).

In 2016, Caro et al. [6] developed ckd− trees. They define
a contact as a quadruplet (u, v, ti, tj) and then compress the
4D binary matrix corresponding to the time-evolving graph
defined by a set of these contacts. It is done by representing
the 4D matrix as a kdtree and then distinguishing white nodes
as those without any contacts, black nodes as ones that only
contain contacts, and gray nodes as those that contain only one
contact. This work was preceded by Brisaboa et al’s k2−trees
[7] in 2014.

G∗ database [8] is a distributed index that solves the space
issue of the presence matrix by only storing new versions of
an arc when its state changes, i.e. as a log of changes. This is
done by storing versions of the vertices as adjacency lists and
maintaining pointers to each time frame. If an arc changes in
the next frame, a new adjacency list is created for that vertex’s
arc and a pointer is added to the new frame.

Caro et al. [9] proposed a compressed adjacency log struc-
ture based on the log of events strategy called EveLogs. It
consists of two separated lists per vertex - one for the time
frames, and another for representing the arcs related to the
event. The time frames are compressed using gap encoding,
and the arc list is compressed with a statistical model. Caro
et al. [6] shows that query times suffer with scanning the log
sequentially.

Ren et al. [10], developed the FVF (Find-Verify-Fix) frame-
work which includes a copy+log compression that also sup-
ports shortest-paths and closeness centrality queries. More
preliminary work is done in [11] [12], which describe three
different methods to index time-evolving graphs based on the
copy+log strategy.

Two log of events strategies, CAS and CET, are proposed
in [9] to address the problem of slow query times when
processing a log. CAS orders the sequence by vertex and adds
a Wavelet Tree [13] data structure to allow for logarithmic time
queries. CET orders the sequence by time, and the authors
develop a modified Wavelet Tree called Interleaved Wavelet
Tree to also allow logarithmic time queries.

In 2014, Brisaboa et al. [14] adapted Compressed Suffix
Arrays (CSA) as in [9] for use in temporal graphs (TGCSA)
by treating the input sequence as the list of contacts. They use
an alphabet consisting of the source/destination vertices and
the starting/ending times.

III. REPRESENTATION OF TIME-EVOLVING GRAPHS

In this paper, we represent the time-evolving graphs based
on the neighbors of each node over time. This requires two
data structures, the first one stores the time information, which
can be represented as a time array, and the second one stores
the neighbors of the node at each of the instants given in
the time array. Now, the time array can be thought of as a
stream of 0 and 1 bits: a 0 indicating no change from the
previous instant of time, and a 1 indicating changes in the
neighborhood of the node from the previous time stamp. Since
the time instants taken into account are finite and relatively
small, the size of the time array could be in the range of
10,000 for an example graph. For the same graph, the size
of the node array, which would contain the neighborhood
information for the specific node over 10,000 time instants,
could be 1,000,000,000 elements.

The density of the time array and the node array can be
different. Given the time array and the node array are bit
arrays, these can be compressed for storage using different
methods. In this paper, we propose compressing the binary
arrays using one of the two techniques: a) CBT, and b) CSR.

44Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

Now, depending on the size, and the sparsity of the graphs,
the sizes of the compressed structure vary.

The term bit-packing works on the number of bits required
to represent each number. For a given array of unsigned
integers, represent each number of the array in bits and store
them in as an unsigned bit array. For example, consider
an array of unsigned integers 1, 3, 5, 10, 16, and 26. The
maximum number of bits required to store each integer is the
ceiling of the log of the maximum element in the array. An
array location can store a maximum of 32 or 64 bits depending
upon the system, and all the bits are stored in a little-endian
format. Table I shows all the above numbers stores in a single
unsigned bit array location.

TABLE I: THE SINGLE BIT ARRAY NEEDED TO REPRESENT ALL THE
INTEGERS.

unsigned int 1 3 5 10 16 26
unsigned bit 00001 00011 00101 01010 10000 11010

If the entire number does not fit into an array location, a
part of the number can be stored in one array location and
the rest of the number can be stored in the starting bits of
the following memory location. This ensures that there are no
unoccupied bits in the bit array. Table II shows the bits carry
over for a 32-bit integer.

TABLE II: THE CARRY-OVER BIT ARRAY NEEDED TO REPRESENT ALL THE
INTEGERS.

unsigned int 1 3 5 10 16 26 30

unsiged bit 00001 00011 00101 01010 10000 11010 11
110 00000 00000 00000 00000 00000 0000

Algorithm 1 explains the working of the bitPacking method.
The algorithm takes in an unsigned integer array, the number
of elements in the array, and the number of bits required to
represent each number in the array. The variable arraySize
indicates the number of array locations needed to store the
unsigned bits of all the numbers in the array. Line 7 indicates
the start of converting the unsigned integer to the bit repre-
sentation; m indicates the number of unsigned integers that an
array location can accommodate. Lines 9 through 11 convert
the unsigned integers to unsigned bits and store it in the array
location k. The remaining bits in the array location k are filled
by the most significant bits of the next number, as shown in
line 13 through line 20.

IV. COMBINING CBT AND CSR

For every input of the time-evolving graphs G, the input
is divided as an ordered triplet (u, v, Tτ), where u and v are
the nodes which form an edge at time Tτ . If the edge appears
again later at another time frame Tτ+i, the edge is considered
to be deactivated at the time frame. For the CSR-CSR and
CBT-CSR combinations, we are assuming the datasets are
sorted with respect to the time frames and then sorted by node
numbers for each time frame. For the CSR-CBT and CBT-
CBT combinations, the datasets are first sorted with respect
to source node and then sorted with respect to time frame for
each source nodes.

Algorithm 1: Algorithm for bitPacking
Input: An unsigned integer array (uArray), number of

elements (numElements), and the number of
bits (numBits) required to convert

Output: The converted bit array.
1 begin
2 totalBits = 64;
3 balance = 0;
4 arraySize = numberofElements

numberofBits ∗ totalBits;
5 Initialize an unsigned bit array (bArray);
6 k = 0;
7 for index = 0 to (index < numOfElements) do
8 m = availBits/numBits;
9 for i = 0 to (i < m && (index+ i)

< numElements) do
10 bArray[k] | = (uArray[index+ i] <<

((i ∗ numBits) + balance)));
11 i++;

12 index + = m;
13 if index < numElements then
14 remBits = availBits%numBits;
15 if ((remBits > 0)&&(m <

numElements)) then
16 bArray[k] | = (uArray[index] <<

(totalBits− remBits));
17 availBits

= totalBits− (numBits−remBits);
18 k++;
19 bArray[k] | =

(uArray[index] >> remBits);
20 balance = (numBits− remBits);
21 index++;

22 else
23 k++;
24 balance = 0;
25 availBits = totalBits;

26 return bArray;

A. CSR-CSR

This is a novel combination. In this algorithm, we compress
the graph based on the edges appearing in each time frame.
For the time frame T0, we compress the graph row-by-row in
a conventional compressed sparse row format using Algorithm
2. For each row, the first array consists of each node’s degree
in the time frame T0, and the second array consists of the
upper triangular destination edge id v.

For time frame T1 to Tτ , storing the edge in the conven-
tional CSR format will cost more space as not all the edges
from the original start edges change. To overcome this, we
encoded all the edges using Algorithm 3. For every time frame
Ti, CSR is made up of three arrays, where the first array is
the unique source node u involved in the graph’s changes, the

45Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

Algorithm 2: Algorithm for Compressed Sparse Row
at time T0

Input: Unsigned integer array of contacted nodes (v),
unsigned integer array of degree of each nodes
(u), maximum degree of the graph (δ(G))

Output: Unsigned bit array
1 begin
2 logD = log2(maxDegree) + 1;
3 logN = log2(numNodes) + 1;
4 degreeBitArray = bitPacking(degreeArray,

numNodes, logD);
5 csrBitArray = bitPacking(vArray, numEdges,

logN);
6 finalBitArray.append(degreeBitArray);
7 finalBitArray.append(csrBitArray);
8 return finalBitArray;

Algorithm 3: Algorithm for Compressed Sparse Row
from time T1 to Tτ

Input: Unsigned integer array of contacted nodes (v),
unsigned integer array of degree of each nodes
(u), unsigned integer array of contact nodes (u)

Output: Unsigned bit array
1 begin
2 for time t = 1 to t = τ − 1 do
3 logU = log2(maxContactNode) + 1;
4 logD = log2(maxDegree) + 1;
5 logN = log2(maxContactedNode) + 1;
6 bitUArray = bitPacking(uArray, uArray.size(),

logU);
7 bitDegreeArray = bitPacking(degreeArray,

uArray.size(), logD);
8 bitVArray = bitPacking(uArray, vArray.size(),

logN);
9 finalBitArray.append(bitUArray);

10 finalBitArray.append(bitDegreeArray);
11 finalBitArray.append(bitVArray);

12 return finalBitArray;

second array consists of the degree of the source nodes, and
the third array consists of the destination nodes v.

This yields the time complexity of O(τ ∗ (n ∗ log(δ) +
mlog(n))), where τ is the number of time frames, n is the
number of nodes, m is the number of contacts, and δ is the
maximum degree of the graph.

Figure 1 shows the overall structure of the CSR-CSR
compression. The dotted line in the graph at each time frame
represents the edge being added and the double-crossed red
line represents the edge being deleted at the time frame.

B. CBT-CSR

This is a novel combination. In this combination, we com-
press the first time frame T0 using the existing CBT algorithm

Algorithm 4: Compressed Binary Tree
Input: An edge’s time array, T, of size τ
Output: The compressed edge as a bitstring

1 begin
2 BitString s;
3 Node node = root;
4 Boolean flip = False;
5 Visitor vtr = PreOrderTraversal(node);
6 for i = 0 to τ − 1 do
7 while !node.isLeaf() do
8 if (!flip ∧ node.spans(v)) ∨
9 (flip ∧ !node.spans(v)) then

10 s.AppendBit(1);

11 else
12 s.AppendBit(0);
13 vtr.Ignore(node);

14 node = vtr.VisitNext(node);

15 s.AppendBit(T [i])
16 if T [i] != flip then
17 flip = !flip;

18 //fill rest of tree with 0s
19 return s;

CSR as unsinged char: 01101100010010001000
100001001100001010100010010101110000100110000101010 000100101 100010100
110000101010001 100010001 100100010 0010111000010101000 0000100011000001
1111 1100111011101001

Fig. 1: The structure of the time-evolving CSR

4 [4] as shown in the Figure 2. The input to the algorithm [4]
are the edges associated with time frame T0. For the time
frames T1 to Tτ we follow the method used in the CSR-
CSR compression, as shown in Figure 1. This yields the time-
complexity of O(τ ∗ (d(v)log(δ) +mlog(n))).

46Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

Fig. 2: The structure of the time-evolving CBT at time frame T1

C. CBT-CBT

In this combination, we followed the algorithm mentioned
in [15]. The input to this algorithm is first sorted based on the
source node u, and for each source node, the data is sorted
based on the time Ti. With this type of input comes two arrays
for each node, the first being the time frames at which the node
has an edge, followed by all the destination node v for each
time Ti. Therefore, each node’s total number of trees will be
the number of time frames for the node u and one tree to
represent all the time frames. This yields the time-complexity
of O(τ ∗ (d(τ)log(δ) +mlog(n))), where d(τ) represents the
degree of each time-frame.

D. CSR-CBT

This is a novel combination. In this combination, we follow
the same input type as CBT-CBT combination, but here we
first compress the time array using bit-packing algorithm 1,
and to compress the destination edges for each time frame of
the source node u, we follow the CBT algorithm 4 [4]. This
yields the time-complexity of O(τ ∗ (d(v)log(δ)+mlog(n))),
where d(v) denotes the degree of each node v.

V. EXPERIMENTAL RESULTS

For our analyses, we have the results of compression size
and the time taken to compress from all the combinations using
the datasets mentioned in Table III, which is compared with
the results of ckd− tree [6] and CBT [15] as shown in Table
IV.

TABLE III: THE GRAPH DATASETS, INCLUDING THE TYPE, NUMBER OF
NODES, NUMBER OF EDGES, TIME FRAMES, AND THE SIZE OF THE INPUT
FILE BOTH IN .TXT AND GZIP FORMAT.

Graphs Type Nodes Edges Contacts Time Frames
CommNet Interval 10000 15940743 19061571 10001
PowerLaw Interval 1000000 31979927 32280816 1001
Flickr-Days Incremental 2585570 33140018 33140018 135
Wiki-edits Point 21504191 561754369 266769613 134075025

Yahoo Netflow Interval 32904819 122075170 1123508740 58735

If the edges in the graph exist from time [ti, tj), then such
graphs are called interval graphs. If the edges in the graph
appear once and live till the last time-frame, such graphs are
referred to as incremental graphs. If the edges appear for a
single time-frame, then such graphs are referred to as point
graphs.

TABLE IV: THE COMPRESSION SIZE AND THE TIME TAKEN TO COMPRESS
EACH DATASET. PLEASE NOTE THAT ckd DOES NOT ALLOW STREAMING
OPERATIONS

Graphs .txt .txt.gz CSR-CSR CSR-CBT
CommNet 271.6 M 51 M 34 M 10.25 s 16 M 56.19 s
PowerLaw 546.9 M 132 M 80 M 18.94 s 80 M 162.23 s
Flickr-Days 860 M 130 M 107 M 34.16 s 91 M 208.39 s
Wiki-edits 5.7 G 1.8 G 2.0 G 1158 s 1.8 G 2042.88 s

Yahoo Netflow 19 G 4.9 G 4.3 G 1372 s 3.2 G 1770.71 s

Graphs .txt.gz CBT-CSR CBT-CBT CkD
CommNet 51 M 16 M 55.80 s 15.9 M 65.5 s 30 M 119 s
PowerLaw 132 M 70 M 141.21 s 73.80 M 149 s 128 M 254 s
Flickr-Days 130 M 82 M 120.015 s 73.8 M 179 s 89 M 235 s
Wiki-edits 1.8 G 2.0 G 1126.85 s 1.4 G 3081s 1.2 G 2059 s

Yahoo Netflow 4.9 G 4.2 G 1874.95 s 2.99 G 3506 s 2.5 G 5471 s

The CommNet graph and the PowerLaw graphs are syn-
thetically generated datasets based on the data avaiable from
[6]. CommNet graph simulates short communication between
random vertices. PowerLaw graph simulates the powerlaw
degree distribution in the graph.

Flickr dataset is an incremental graph [16]. This graph
represents the user interaction derived from the Flickr social
network for a span of days from 11-02-2006 to 05-18-2007.

Wiki-edits is a bipartite point graph [17]. This graph shows
when the user edited an article in Wikipedia. The time is stored
in seconds since the creation of Wikipedia.

The last dataset for our analysis is a Yahoo-Netflow graph
[18]. This graph is an interval graph, where the data are the
interaction between the users and the Yahoo server. The time
is measured in seconds and the first occurrence of the data
was on 04-29-2008.

All the experiments were run on an Intel(R) Xeon(R) CPU
E5520 @ 2.27GHz (16 Cores) with 64 GB of RAM, and the
programs are written in GNU C/C++.

The source code for this work is available to download at
[19].

A. Compression Results

Table IV shows the compression results for the dataset in
Table III over all the combinations and ckd− trees. We have
used compression size, time taken to compress each dataset,
and querying times as metrics to evaluate.

Table IV clearly shows the space and time tradeoff between
the compression results of CSR-CSR and CBT-CBT. While the
CBT-CBT consumes 30% less space compared to CSR-CSR,
CSR-CSR consumes around 40% less time for the Yahoo-
Netflow graph [18]. The combination of CBT-CSR and CSR-
CBT has shown similar or better results with datasets with
fewer or no change in both compression size and time is taken
to compress.

B. Querying Results

For 1000 randomly chosen vertices,
• Neighbor Query: What are the neighbors that exist at time
Ti.

• Neighbor Query: What are all the possible neighbors of
a node between time interval of Ti through Tj .

47Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

TABLE V: THE AVERAGE TIME NEEDED TO QUERY A NODE TO FETCH ALL THE NEIGHBORS AT A GIVEN TIME Ti AND THE TIME INTERVAL Ti THROUGH
Tj

Graphs CSR Ti (ms) CBT Ti (ms) CKD Ti (ms) CSR Ti Tj (ms) CBT Ti Tj (ms) CKD Ti Tj (ms)
CommNet 0.78 ± 0.005 1.33 ± 1.44 48.89 ± 11.56 0.93 ± 0.049 1.43 ± 0.47 64.46 ± 0.43
PowerLaw 2.07 ± 0.006 2.99 ± 0.55 374.23 ± 50.72 2.10 ± 0.012 5.70 ± 1.05 374.64 ± 50.66
Flickr-Days 1.31 ± 0.02 11.29 ± 8.52 35.34 ± 10.39 2.08 ± 0.31 38.49 ± 8.34 45.22 ± 5.78
Wiki-edits 0.40 ± 0.007 1.24 ± 1.911 3.0 ± 3.0 0.403 ± 0.001 1.42 ± 2.12 4.39 ± 0.72

Yahoo Netflow 2.19 ± 0.45 43.13 ± 0.263 231.9 ± 82.1 1.51 ± 0.06 51.21 ± 4.67 254 ± 92.06

TABLE VI: THE AVERAGE TIME NEEDED TO QUERY AN EDGE EXISTS BETWEEN TWO NODES AT A GIVEN TIME Ti AND THE TIME INTERVAL Ti THROUGH
Tj

Graphs CSR Ti (ms) CBT Ti (ms) CKD Ti (ms) CSR Ti Tj (ms) CBT Ti Tj (ms) CKD Ti Tj (ms)
CommNet 0.78 ± 0.001 0.39 ± 0.66 49.6 ± 3.4 0.82 ± 0.002 0.39 ± 0.55 49.7 ± 0.24
PowerLaw 2.06 ± 0.011 0.64 ± 0.12 216.0 ± 5.3 2.08 ± 0.06 1.6 ± 0.03 226.13 ± 14.38
Flickr-Days 1.31 ± 0.013 4.23 ± 2.81 35.2 ± 1.2 2.21 ± 0.2 5.44 ± 10.11 37.2 ± 2.3
Wiki-edits 0.39 ± 0.08 1.15 ± 0.18 2.62 ± 1.7 0.39 ± 0.008 1.15 ± 0.19 2.98 ± 0.25

Yahoo Netflow 1.38 ± 0.014 30.32 ± 2.36 211.8 ± 89.0 1.52 ± 0.042 31.2 ± 5.37 212.32 ± 71

• Edge Existence: Does an edge exist at time Ti.
• Edge Existence: Does an edge exist between the time

interval of Ti through Tj .

From Tables V and VI, we can infer that the CSR takes the
least amount of time to query a random node both for edge
existence and to fetch all the neighbors.

VI. CONCLUSION

Valuable insights can be gained from the analysis of time-
evolving graphs. However, due to the large size of such graphs,
the memory requirements are significant and it is a challenge
for computing using the main memory. Therefore, in this paper
we propose compression techniques for time-evolving graphs.

Our techniques show that a significant reduction in memory
requirements can be achieved by exploiting the topological
characteristics of graphs, specifically the adjacency informa-
tion for each node also known as row-by-row compression.

With the help of the characteristics of the graphs, we were
also able to combine two identical or different techniques to
compress a graph, as proposed in section IV. We also compare
our compression results with state of the art compression CBT-
CBT and ckd − trees, as shown in Table IV.

We implement our algorithms on real-world datasets and
show significant improvements in the time required to query
edges or any node’s neighbors at a given time over the existing
techniques, as shown in the Tables V and VI, thereby showing
a clear space/time tradeoff between the compression size and
the querying time.

Our future work will focus on exploiting the parallelism
in improving the timings for the compression techniques on a
wider domain of graphs. Also, we plan use the faster querying
on compressed structure to enable us an opportunity to develop
graph algorithms with time constraints.

REFERENCES

[1] A. Ferreira and L. Viennot, “A Note on Models, Algorithms, and Data
Structures for Dynamic Communication Networks,” Research Report
RR-4403, INRIA, 2002.

[2] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi,
and P. Raghavan, “On compressing social networks,” in Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’09, (New York, NY, USA), p. 219–228,
Association for Computing Machinery, 2009.

[3] P. Boldi and S. Vigna, “The Webgraph Framework I: Compression
Techniques,” in Proceedings of the 13th International Conference on
World Wide Web, WWW ’04, (New York, NY, USA), pp. 595–602,
ACM, 2004.

[4] M. Nelson, S. Radhakrishnan, A. Chatterjee, and C. Sekharan,
“Queryable Compression on Streaming Social Networks,” in Big Data
(Big Data), 2017 IEEE International Conference on, IEEE BigData ’17,
IEEE Computer Society, 2017.

[5] R. A. Snay, “Reducing the profile of sparse symmetric matrices,”
Bulletin Géodésique, vol. 50, no. 4, pp. 341–352, 1976.

[6] D. Caro, M. A. Rodriguez, N. R. Brisaboa, and A. Farina, “Compressed
kd-tree for temporal graphs,” Knowl. Inf. Syst., vol. 49, pp. 553–595,
Nov. 2016.

[7] N. R. Brisaboa, S. Ladra, and G. Navarro, “Compact representation of
web graphs with extended functionality,” Information Systems, vol. 39,
pp. 152–174, 2014.

[8] A. G. Labouseur, J. Birnbaum, P. W. Olsen, Jr., S. R. Spillane, J. Vijayan,
J.-H. Hwang, and W.-S. Han, “The G* Graph Database: Efficiently Man-
aging Large Distributed Dynamic Graphs,” Distrib. Parallel Databases,
vol. 33, pp. 479–514, Dec. 2015.

[9] D. Caro, M. Andrea Rodrı́guez, and N. R. Brisaboa, “Data structures
for temporal graphs based on compact sequence representations,” Inf.
Syst., vol. 51, pp. 1–26, July 2015.

[10] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng, “On querying historical
evolving graph sequences,” PVLDB, vol. 4, pp. 726–737, 2011.

[11] S. Álvarez-Garcı́a, N. R. Brisaboa, G. d. Bernardo, and G. Navarro,
“Interleaved K2-Tree: Indexing and Navigating Ternary Relations,” in
2014 Data Compression Conference, pp. 342–351, March 2014.

[12] G. D. Bernardo, N. R. Brisaboa, D. Caro, and M. A. Rodrı́guez, “Com-
pact data structures for temporal graphs,” in 2013 Data Compression
Conference, pp. 477–477, March 2013.

[13] R. Grossi, A. Gupta, and J. S. Vitter, “High-order Entropy-compressed
Text Indexes,” in Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’03, (Philadelphia, PA,
USA), pp. 841–850, Society for Industrial and Applied Mathematics,
2003.

[14] N. R. Brisaboa, D. Caro, A. Fariña, and M. A. Rodrı́guez, “A compressed
suffix-array strategy for temporal-graph indexing,” in SPIRE, 2014.

[15] M. Nelson, S. Radhakrishnan, and C. Sekharan, “Queryable Compres-
sion on Time-Evolving Social Networks with Streaming,” in Big Data
(Big Data), 2018 IEEE International Conference on, IEEE BigData ’18,
IEEE Computer Society, 2018.

[16] “http://socialnetworks.mpi-sws.org/data-www2009.html,” 03/2020.
[17] “http://konect.uni-koblenz.de/,” 03/2020.
[18] “http://webscope.sandbox.yahoo.com/catalog.php?datatype=g,”

03/2020.
[19] “https://github.com/sudhigopal/csr cbt paper,” 02/2021.

48Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

	Introduction
	Related Work
	Representation of time-evolving graphs
	Combining CBT and CSR
	CSR-CSR
	CBT-CSR
	CBT-CBT
	CSR-CBT

	Experimental Results
	Compression Results
	Querying Results

	Conclusion
	References

