
An Multi-step Prediction Algorithm for Analysis of Gravitational Waves Based on 
Deep Learning 

Chunlin Luo 
Shanghai Jiao Tong University 

Department of Electronic Engineering 
And Shanghai Frontiers Science 
Center for Gravitational Wave 

Detection 
Shanghai 200240, China 

e-mail: luochunlin@sjtu.edu.cn 

Yuewei Zhang 
Shanghai Jiao Tong University 

Department of Electronic Engineering 
And Shanghai Frontiers Science 
Center for Gravitational Wave 

Detection 
Shanghai 200240, China 

e-mail: yueweizhang@sjtu.edu.cn 
 

 
 

Jie Zhu 
Shanghai Jiao Tong University 

Department of Electronic Engineering 
And Shanghai Frontiers Science 
Center for Gravitational Wave 

Detection 
Shanghai 200240, China 

e-mail: zhujie@sjtu.edu.cn 

Abstract—The detection of Gravitational Wave (GW) events 
necessitates a vast number of precise GW templates. Improving 
the accuracy and effectiveness of template waveform synthesis 
remains a significant challenge. This problem is interesting 
because accurate templates are critical for identifying GW 
signals from astronomical events such as Binary Black Hole 
(BBH) mergers. Previous methods have struggled with 
cumulative errors and limited parameter ranges, affecting 
template reliability. We propose a Multi-step prediction 
method based on deep learning to enhance waveform prediction 
accuracy. Our approach achieves over 99.6% mean template 
matching accuracy on a test set of 100,000 waveforms and 
performs well across a broader parameter range. The main 
conclusion is that our method significantly improves prediction 
accuracy and efficiency, facilitating better GW event detection. 

Keywords-Gravitational Wave; Waveform Prediction; Multi-
step Prediction; Deep Learning; 

I.  INTRODUCTION 

Since Albert Einstein predicted that GW would exist. A 
new era in astrophysical study began with the announcement 
in 2016 by the LIGO Scientific Collaboration of the first 
detection of GW [1]. An increasing number of countries and 
organizations have been joining in the research of GW. It is 
primarily concerned with a number of things, including target 
for GW identification [2]-[4], parameter estimate [5][6], 
denoising [7][8], and rapid waveform production [9][10]. The 
improvement of waveform modeling's production speed and 
waveform accuracy cannot be disregarded as a fundamental 
tool for GW astrophysics. In recent years, very promising 
progress has been made in the generation of GW [11][12]. 
Traditional optimization methods require specialized 
knowledge of physics and astronomy, which is difficult for 
novice GW research enthusiasts. And there is limited scope 
for optimizing the use of computational resources and the 
accuracy of waveform modeling. 

With the rise of deep learning, various neural network 
models such as Convolutional Neural Networks (CNN) [13], 
Deep Neural Networks (DNN) [14], Recurrent Neural 
Networks(RNN) [15], Long and Short-Term Memory (LSTM) 
[16], Transformer [17], Generating Adversarial Networks 

(GAN) [18], etc. have excellent performance in various fields 
such as video, image, and speech. Deep learning has great 
potential for optimizing and investigating issues in the study 
of GW astrophysics. Waveform prediction is an essential part 
of the GW field. It can provide proposals on GW modeling, 
as well as on GW detection [2] and parameter estimation. It 
also helps to understand the physical process of GW 
formation from a deep learning level. There have been related 
studies applying deep learning methods to waveform 
generation and prediction. The conditional GAN (cGAN) 
model has been used to rapidly produce a large number of 
random waveforms [19]. A single-step prediction method has 
used the transformer model to forecast the remaining GW, etc 
[20]. These attempts have yielded promising results. 

Existing methods often suffer from cumulative errors and 
limited parameter ranges, affecting waveform reliability. 
Additionally, they require significant computational 
resources and domain-specific expertise, making them less 
accessible to new researchers. An ideal solution would 
minimize these errors, extend parameter ranges, and optimize 
computational efficiency without extensive specialized 
knowledge. Our contribution addresses these gaps with a 
multi-step prediction method based on deep learning, using 
the LSTM neural network. This method predicts subsequent 
merger and ringdown phases from a known pre-inspiral 
waveform segment, reducing errors and improving efficiency. 
The goal is to enhance waveform prediction accuracy and 
efficiency, making GW template generation more reliable and 
accessible. 

The structure of GW is relatively simple, and there is a one-
to-one mapping between structure and parameters. A known 
waveform segment containing sufficient information 
corresponds to the only GW with an inspire-merge-ringdown 
process. With a known waveform sequence, the remaining 
waveform sequence can be predicted without relying on 
information from other time nodes. This situation qualifies for 
multi-step prediction, which means that the unknown 
waveform sequence can be directly predicted by inputting a 
segment of the waveform sequence. We briefly compare the 
traditional CNN, LSTM, and Bi-directional Long Short-Term 
Memory (BiLSTM) models. Mainly considering the running 
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time and prediction accuracy, we use the LSTM neural 
network structure which is more straightforward and 
performs well in time series prediction. Input pre-inspire 
phase waveform containing sufficient information to the 
neural net and predict the post-inspire, merge, and ringdown 
parts. The predicted results are matched to the real waveforms 
and the matches were collated statistically. 

In the next section, we will introduce the methods and 
models used in the experiments. First, the basic structure and 
principles of the multi-step forecasting method will be 
described. Then, three traditional deep learning models are 
compared to select the appropriate one in terms of model 
training time and variation of loss values. We've picked 
LSTM and briefly described its components and guiding 
ideas. The basic structure and principles of the model will be 
introduced. There is also the data preparation session before 
the experiment. In Section 3, we will predict the test dataset 
and match the results to the real waveform and statistically 
obtain the match distribution, etc. Then, we summarize the 
advantages and disadvantages of the experimental approach 
and look ahead in Section 4. 

 

II. BACKGROUND 

This section provides an overview of the experimental 
background. We utilize the IMRPhenomD waveform 
generator to simulate the merger process of aligned-spin BBH, 
selecting and generating waveforms based on parameters 
such as mass and spin. The number of predicted points is set 
to 230, covering various stages of the merger process. For 
model selection, we compare the loss functions and runtime 
of three traditional models: CNN, LSTM, and BiLSTM. 
Experimental results demonstrate that LSTM exhibits 
significant advantages in time series prediction, particularly 
in terms of loss function convergence speed and runtime. 
Therefore, given the available computational resources and 
data collection, LSTM is chosen as the optimal model. 

A. Dataset 

Our dataset is generated with the IMRPhenomD [21] 
waveforms from the open-source tools PyCBC and LALsuite 
[22] and simulate the inspire, merge, and ringdown of the 
aligned spin BBH merge model in the time domain. Since 
waveforms of longer durations of lesser quality produced by 
BBH were not useful for training, the masses (𝑚ଵ, 𝑚ଶ) are 
distributed in the range [30,70] 𝑴. The sampling rate is set 
to 1024 Hz and the waveform length is set at 1s to shorten the 
training period [23]. The distribution of the spins (𝑠ଵ, 𝑠ଶ) fall 
between [-0.4, 0.4]. The waveform's amplitude is multiplied 
by 10ଶଶ since it is too modest in magnitude for the model 
to be trained at its original level. The capacity of the model to 
forecast waveforms without blindness was taken into account 
when generating the training data set. The mass is 
incremented in steps of 0.8𝑴 and the spin is incremented 
in steps of 0.1. The test set is randomly generated using the 
parameter range of the training set with 100,000 waveforms. 

Set the number of predicted points to 230, including the post-
inspire, merge, and ringdown components. 

B. Model Comparison 

An appropriate model should be chosen from a limited 
dataset by contrasting its loss function and running time. 
Three traditional models—CNN, LSTM, and BiLSTM—are 
initially trained on a small test dataset of 9,000 waveforms 
that is randomly produced. For waveform prediction, the loss 
function may be used to determine the loss value by 
calculating the difference between the real value and the 
predicted value. The model's ability to forecast outcomes may 
be correctly reflected by the trend of loss value and the 
comparison of loss values of the three models is shown in 
Figure 1. 

TABLE I.  RUNTIME OF CNN, LSTM, AND BILSTM. 

No Model Run Time/s 

1 CNN 1734.4 

2 LSTM 3690.4 

3 BiLSTM 8229.4 

 

 
Figure 1. Loss of CNN, LSTM, BiLSTM 

The loss values produced from the training model 
demonstrate how rapidly CNN converges. The loss function 
for our models is MSE to quickly fit the waveform points. 
However, the ultimate outcomes are not as good as LSTM and 
BiLSTM which demonstrates LSTM and BiLSTM have a 
distinct advantage for time series prediction. Table 1 displays 
the running times of the three models. When LSTM and 
BiLSTM are compared in terms of running times, the 
BiLSTM consumes twice the time while producing results 
that are almost identical to those of the LSTM. Given the 
available computer power and a sufficient data collection, we 
choose LSTM. 

III. MODEL AND METHOD 

In this section, we present our model and method. Due to 
the superior performance of the LSTM model, we employ 
the LSTM model in our approach. And we propose the 
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utilization of multi-step prediction method for waveform 
prediction, which significantly enhances both computational 
speed and accuracy of waveform prediction.  

A. LSTM 

LSTM is a recurrent neural network. Recurrent neural 
network is a recurrent network structure that updates the 
current state based on the current input and past state, which 
has a more favorable result than CNN and DNN in processing 
time series data. LSTM is a network structure that solves the 

long-term time-dependent problem of recurrent neural 

networks. It is well-known for deep learning research and 
excels in a variety of areas, including text and language 
connected to time series prediction [24]. 

Figure 2 depicts the LSTM's schematic structure [25]. A 
forget gate, an input gate, and an output gate are the three 
components that make up an LSTM neuron. The LSTM  

network's most distinctive structure, the forget gate, decides 
whether to keep and discard unit state information. The 
related mathematical expressions are as follows: 

 
𝑓௧ ൌ 𝜎൫𝑊ℎ௧ିଵ   𝑊௫𝑥௧   𝑏൯ ሺ1ሻ


where 𝑊 , 𝑊௫  and the subsequent  𝑊 , 𝑊௫ , 𝑊̃ and 
𝑊̃௫ are weights. 𝑏, 𝑏,, and 𝑏̃, are the biases. When the 
value of 𝑓௧, of the forgetting gate is set to 1, it retains all the 
information. On the other hand, when 𝑓௧ is set to 0, all data 
is deleted. 

The input gate selects the data to be deposited in the new 
cell as well as the input to the network. The following are the 
mathematical expressions for the relevant parameters: 

 
𝑖௧ ൌ  𝜎ሺ𝑊ℎ௧ିଵ   𝑊௫𝑥௧   𝑏ሻ ሺ2ሻ 

�̃�௧ ൌ tanhሺ𝑊̃ℎ௧ିଵ   𝑊̃௫𝑥௧   𝑏̃ሻ ሺ3ሻ 
where 𝑖௧ represents the input gate's state. It can decide what 
data can be kept in the cell. 

The output gate uses the current state for the output. The 
mathematical expressions which we compute the output and 
cell state are as follows: 
 

𝑐௧ ൌ  𝑓௧𝑐௧ିଵ   𝑖௧�̃�௧ ሺ4ሻ 
𝑜௧ ൌ  𝜎ሺ𝑊ℎ௧ିଵ   𝑊௫𝑥௧   𝑏ሻ ሺ5ሻ 

ℎ௧ ൌ  𝑜௧ •  tanhሺ𝑐௧ሻ ሺ6ሻ 

 
where ℎ௧ represents the output at moment t. 𝑐௧ is the cell 
state of the LSTM at moment t. 

B. Multi-step Prediction 

Time series forecasting can be divided into single-step 
forecasting and multi-step forecasting depending on the 

Figure 2. Schematic structure of LSTM. 

Figure 3. Waveform prediction comparison chart. The left side of the blue curve is input when there is no intersection part with the red one. The right 
side of the blue curve intersecting the red curve is the predicted target. The red part is the prediction part. 
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dimensionality of the output. The output dimension of single-
step forecasting is one-dimensional and will be passed as 
input for forecasting the next step. The process continues until 
all forecasts are made. The error in the current prediction is 
then passed on to all subsequent points. And it goes without 
saying that these errors will mount.  

 
Figure 4. Waveform prediction enlargement chart. 

Multi-step prediction, on the other hand, has an output 
dimension greater than one dimension. When handling time-
dependent issues, it performs worse than single-step 
prediction. Multi-step prediction can be generally divided 
into multi-model multi-step prediction, multi-output, and 
seq2seq strategies [26]. We use multi-step prediction with 
multiple outputs. The remaining waveform is directly 
anticipated and output after a segment of the waveform 
sequence is entered. The neural network will adjust the 

number of neurons in the output layer according to the 
projected waveform's predicted number of points. 

IV. RESULTS 

This section presents the experimental results of our 
study. Here, we showcase the predictive performance of the 
models and their robustness under varying parameters. 

A.  Demonstrate the Predictions of The Model 

Input known waveform segments and make predictions 
for the remaining segments using the taught deep learning 
model. We present nine waveforms from the test set at 
random in Figure 3, together with the input waveform, the 
predicted waveform, and the actual waveform. The subfigure 
of Figure 3 was expanded in Figure 4 to better display the 
intricacies. The predicted partial waveform sequence was 
compared to the actual waveform sequence, and the match 
rate was 99.91%. 

The predicted matches for 100,000 waveforms were 

statistically done and are shown in the histogram of subplot 
(a.2) in Figure 5. The mean value of the match at the mass 
range of [30,70] 𝑴, spin range of [-0.4,0.4] is 99.88% and 
the median is 99.95%. 

B. Generalization Capability of The Model 

In this model, the three crucial variables are mass, spin,  
and sequence length. This section we will examine how well 
the model may be generalized in light of these three factors. 

With three sequence lengths, we trained three models. 
They are 200 points, 230 points, and 260 points respectively. 

Figure 5. Model prediction matching statistics. a, b, and c represent the range of SPIN, which are ห𝑠ଵ,ଶห  0.4, ห𝑠ଵ,ଶห  0.6, and ห𝑠ଵ,ଶห  0.8, 
respectively. 1, 2, and 3 represent models with 200, 230, and 260 predicted points 

4Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-171-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ALLDATA 2024 : The Tenth International Conference on Big Data, Small Data, Linked Data and Open Data



Predictions were made for 100,000 waveforms using a 
uniform method of generating training and test datasets. The 
criteria used to generate the dataset when studying spin and 
mass later are the same. Statistics were made for each 
predicted waveform match, and the mean and median of the 
matches were calculated and the statistical results are shown 
in subplots a.1 and a.3 of Figure 5.  

Expand the range of spin to generate the test dataset in 
ห𝑠ଵ,ଶห  0.6 and ห𝑠ଵ,ଶห  0.8. To investigate the predictive 

ability of the model in the range of the non-training set, three 
models with different sequence lengths in ห𝑠ଵ,ଶห  0.4 were 
used to predict the test dataset in ห𝑠ଵ,ଶห  0.6 and 0.8. The 

statistical results are displayed in Figure 5.  
Broadening the sampling range of the BBH masses to [25, 

75] 𝑴 and [20, 80] 𝑴. Fixed spins in ห𝑠ଵ,ଶห  0.4 and 
sequence length of 230 points. We took the model to predict 
these 100,000 waveforms and matched them. The mean and 
median were obtained after tallying all of the matches and the 
outcomes are shown in Table 2.  

TABLE II.  MATCHING OF MODEL'S PREDICTIONS WITH WAVEFORMS 
OF DIFFERENT MASSES 

Spin(𝒔𝟏, 𝒔𝟐) Mass(𝒎𝟏, 
𝒎𝟐) / 𝑴 

Mean Medium 

[-0.4, 0.4] [30, 70] 0.9988 0.9995 
[-0.4, 0.4] [25, 75] 0.9973 0.9990 
[-0.4, 0.4] [20, 80] 0.9934 0.9980 

 
The statistics in Figure 5 and Table II indicate that the 

model can achieve more than 99% matching when varying 
sequence length, spin, and mass. In predicting 200 points, the 
model was able to generate waveforms with almost 100% 
overlap. 

V. CONCLUSION AND FUTURE WORK 

The proposed method and model aim to combine deep 
learning and find suitable methods to improve the accuracy 
and computational efficiency of the GW construction. It can 
provide suggestions for the construction of GW template 
library and provide methods for problems that may be 
encountered in the GW detection process. We observed many 
time domain waveforms of BBH mergers and found 
predictable trends in each phase of the waveform. The 
waveform consists of many segments stitched together and 
the segments are interconnected. Predicting the remaining 
waveform from a known segment of the waveform is 
precisely the principle of multi-step prediction. We proposed 
using a multi-step prediction method to learn and predict the 
time-domain waveform of a BBH merger with aligned spins. 
We tested the prediction effectiveness of the method at 200, 
230, and 260 points. And the predicted segments under the 
same template matched well with the waveform of the target. 

We also showed the generalization ability of the model in 
terms of mass and spin distribution. Model predictions were 
compared for spins( |𝑠ଵ,ଶ| )   0.4, 0.6, and 0.8, and for 

mass(𝑚ଵ,ଶ) at [30,70] 𝑴, [25,75] 𝑴 and [20,80] 𝑴. 
The statistical results show that the model still performs well 
in prediction with 2 times the spin range and 1.5 times the 
mass range of the training data set. The match between the 
predicted value and the waveform can exceed 99%.  

The GW of the BBH merger is a simple and traceable 
waveform in the time domain. It is suitable for forecasting 
using a multi-step forecasting method. Our model needs to 
specify the number of input and output points. The 
computational efficiency and prediction of the model are very 
high due to the absence of cumulative errors and double 
counting. The model can be subsequently improved by 
scaling down the number of input points and increasing the 
number of prediction points. It is also possible to train 
multiple models to cover various stages and combine the 
predictions to obtain the complete waveform. 
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