
Detection and Cancellation of Motion Artifact in fNIRS Device Using  
Kalman Filter and Discrete Fourier Transform  

 

Kensuke Uesugi 
Graduate School of Science and Engineering 

Doshisha University 
Kyotanabe, Japan 

e-mail: uesugi0410@gmail.com 

Masafumi Hashimoto,  Kazuhiko Takahashi 
Faculty of Science and Engineering 

Doshisha University 
Kyotanabe, Japan 

e-mail: {mhashimo, katakaha}@mail.doshisha.ac.jp
 

 
Abstract—This paper presents a method for detecting and 
cancelling motion artifacts related to standing and walking in a 
functional near-infrared spectroscopy (fNIRS) signal. Our 
fNIRS device has 22 channels. The motionless fNIRS signal 
from each channel is represented by a fourth-order 
autoregressive (AR) model, and the related parameters are 
estimated based on the motionless fNIRS signal using the Yule 
Walker equation. The motion artifacts included in the fNIRS 
signal are cancelled using the Kalman filter constructed from 
the AR model. However, the cancellation may be insufficient 
when the motion artifacts are strong. To determine in which 
fNIRS channels the motion artifacts are cancelled insufficiently, 
we apply a measurement prediction error related to the 
Kalman filter and a discrete Fourier transform. The brain 
activity of the user is then recognized from those fNIRS 
channels in which the motion artifacts are cancelled 
sufficiently. To evaluate the proposed method, a mobile robot 
is controlled using an fNIRS devise as worn by 10 subjects 
while standing, walking, or sitting. The experimental results 
show the performance of the proposed method. 

Keywords-fNIRS; Motion artifact; Detection and 
cancellation; AR model; Kalman filter; Discrete Fourier 
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I.  INTRODUCTION 
Human brain activity is being measured in fields, such 

as automobile driving, rehabilitation, and computer 
interfaces [1][2][3]. Various devices have been developed 
for measuring human brain activity, such as 
electroencephalography (EEG), functional magnetic 
resonance imaging (fMRI), and functional near-infrared 
spectroscopy (fNIRS).  

fNIRS devices measure the brain activity from changes 
in the hemoglobin concentration (fNIRS signals). This has 
the advantage of being less restrictive compared with EEG 
or fMRI devices [4] [5]. However, the disadvantage with 
fNIRS devices is that they can be disturbed by artifacts due 
to body movement, fatigue, and anxiety, for example [5]. 

Such artifacts have to be removed before the brain activity 
can be evaluated correctly using an fNIRS signal.  

Many methods have been proposed for removing motion 
artifacts from an fNIRS signal [6][7][8]. Cooper et al. [6] 
proposed a method that removes motion artifacts using 
spline interpolation, wavelet analysis, Kalman filter, or 
principal component analysis. Izzetoglu et al. [9] proposed a 
method that identifies a motionless fNIRS signal using an 
autoregressive (AR) model, and then constructed an AR 
model-based Kalman filter to remove the motion artifacts. 
Admian et al. [10] applied an autoregressive moving-
average (ARMA) model to identify a motionless fNIRS 
signal. 

However, the aforementioned methods removed only 
motion artifacts due to head motion while sitting. Such 
methods are expected to be ineffective for large motion 
artifacts caused by body movements, such as standing or 
walking. Hiroyasu et al. [11] attached an accelerometer to 
the head. Because acceleration and the fNIRS signal are 
largely correlated during head motion, they were able to 
remove the motion artifacts by using an independent 
component analysis. This method enables motion artifacts to 
be removed easily, however, it required an additional sensor 
other than the fNIRS device. 

In this paper, we consider motion artifacts that occur in 
the fNIRS signal during standing and walking. We propose a 
method of detecting and cancelling such motion artifacts 
using the Kalman Filter and the discrete Fourier transform. 
We verify our proposed method experimentally with a 
mobile robot controlled by human brain activity. 

The remainder of this paper is organized as follows. In 
Section II, we give an overview of our experimental system. 
In Section III, we present our method for detecting and 
removing motion artifacts from an fNIRS signal. In Section 
IV, we describe a method for controlling a mobile robot via 
human brain activity. In Section V, we conduct experiments 
on mobile-robot control to verify the proposed method, 
followed by conclusions in Section VI. 
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II.  EXPERIMENTAL SYSTEM 
Figure 1 shows the configuration of our experimental 

system. The fNIRS signal obtained from the fNIRS device 
is transmitted to a control personal computer (PC) via a 
wireless LAN and a data-capture PC. The control PC 
recognizes the brain activity (as either active or inactive) 
and then sends a command (either run or stop) to the mobile 
robot according to the brain activity. 

As shown in Figure 2, the fNIRS device has 22 output 
channels, each of which measures an fNIRS signal in the 
human prefrontal cortex every 0.2 s using near-infrared light 
(700–900 nm). The fNIRS signal comprises an oxygenated 
hemoglobin (OxyHb) concentration and a deoxygenated 
hemoglobin (DeoxyHb) concentration. When the brain is 
active, OxyHb increases and DeoxyHb decreases. In this 
paper, we use only the OxyHb concentration as the fNIRS 
signal. 

III. METHOD FOR DETECTING AND CANCELLING   
MOTION ARTIFACTS 

A. Reducing Motion Artifacts Using Kalman Filter 
When body movement (e.g., jaw, eyes (blinking), and 

head) occurs, contact between the fNIRS device and the 
scalp becomes unstable and thus motion artifacts appear in 
the fNIRS signals. Such motion artifacts cause the brain 
activity based on the fNIRS signal to be recognized 
incorrectly, and so need to be removed. 

We use the following fourth-order AR model to reduce 
the motion artifacts in an fNIRS signal [8]: 

 

kkkkkk wxaxaxaxax 40312213            (1) 
 
where k–i (i = 0–4) denotes a time step, ikx  denotes an 
fNIRS signal that contains no motion artifacts, and ia  (j = 
0–3) denotes a coefficient. kw denotes the model error, 
which is assumed to be a normal white-noise sequence with 
zero mean and variance q . We set 4100.5q  (mM × 
mm)2 in the experiments in Section V. 

 
 

 
Figure 1.  Overview of experimental system. 

 

 
 

Figure 2.  Output channels of fNIRS device. 
 
 
We obtain the values of coefficient ia  (j = 0–3) from the 

fNIRS signal measured while sitting and hence including no 
motion artifacts. The following state equation is obtained 
from (1): 
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The measurement equation is given by 
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where kz  denotes the fNIRS signal that includes motion 
artifacts in the current time step k . kv  denotes the 
measurement noise, which is assumed to be normal white-
noise sequence with zero mean and variance r. We set 

5100.1r  (mM × mm)2 in the experiments in Section V. 
When we apply the Kalman filter [12] based on (2) and 

(3), the estimate kx̂  and its associated covariance kP  for an 
fNIRS signal that does not contain motion artifacts can be 
obtained from the following algorithms:  

 
● Prediction algorithm 
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Figure 3  fNIRS (red) and efNIRS (blue) signals. 
 
 

It should be noted that the coefficient estimation for the 
AR model and the Kalman-filter-based estimation for the 
fNIRS signal are performed in every channel of the fNIRS 
device. 

Figure 3 shows an example of fNIRS signal (red lines) 
with and without motion artifacts. The subject wearing the 
fNIRS device remains seated for sets 1 and 2 and then 
stands up at the start of set 3 and walks until the end of set 4. 
During the task, the subject alternates between 
concentrating on moving the mobile robot (in the green 
areas in Figure 3) and not (in the white area). One set of 60 
s comprises 15 s of rest prior to executing the task (pre-rest), 
30 s of task activity, and then 15 s of rest (post-rest). 

As shown in Figure 3, no motion artifacts appear in the 
fNIRS signal while sitting (sets 1 and 2), whereas motion 
artifacts contain while walking (sets 3 and 4). We estimate 
the AR-model coefficients at the end of set 2 using the Yule 
Walker equation [13] based on the fNIRS signal without 
motion artifacts during sitting (sets 1 and 2). We then apply 
the Kalman filter based on (4) and (5) and obtain an 
estimated fNIRS signal (hereinafter referred to as the efNIRS, 
blue line in Figure 3) from which motion artifacts have been 
removed. It is clear from this that the AR model can reduce 
the motion artifacts caused by walking. 

B. Detecting and Removing Motion Artifacts 
Sufficiently large motion artifacts in the fNIRS signal 

cannot be removed effectively even by applying the Kalman 
filter. Therefore, we execute the following process to 
identify whether the brain is in a state of activity or 
inactivity. 

(a) Determine whether the fNIRS signal contains large 
motion artifacts;  

(b) If so, determine whether they have been removed 
from the efNIRS signal sufficiently by the Kalman filter. 

To achieve process (a), we use the measurement 
prediction error that is obtained using the Kalman filter. To 
achieve process (b), we use a discrete Fourier transform to 
obtain the power spectrum of the efNIRS signal.  

The measurement prediction error kz~  can be defined as 
 

1/ˆ~
kkkk zz xH                               (6) 

where kz  denotes the fNIRS signal measurement, and 
1/ˆ kkx  denotes the fNIRS signal prediction obtained by the 

Kalman prediction algorithm given by (4). 
We set the threshold value for the measurement 

prediction error as 0.4 from a preliminary experiment. If 
4.0~

kz , we deem the fNIRS signal not to include large 
motion artifacts, and we use its estimate to recognize the 
brain activity. In contrast, if 4.0~

kz , we deem the fNIRS 
signals to include large motion artifacts, whereupon process 
(b) is applied. 

To achieve process (b), we use the power spectrum PS 
of the efNIRS signal obtained by a discrete Fourier 
transform. We set the frequency and threshold values for the 
PS as 07.0  Hz and 4100.2 , respectively, which were 
obtained from a preliminary experiment. If 4100.2PS  
for a frequency of 0.07 Hz or greater, we deem large 
artifacts to have been removed sufficiently from the efNIRS 
signal, whereupon it is used to recognize the brain activity.  

In contrast, if 4100.2PS  for a frequency of 0.07 Hz 
or greater , we deem large motion artifacts to be still present 
in the efNIRS signal, and we do not use the efNIRS signal 
to recognize the brain activity. For the discrete Fourier 
transform, we use 512 measurements and a Hamming 
window function.   

IV. CONTROL METHOD FOR MOBILE ROBOT USING 
EFNIRS SIGNAL 

We will conduct experiments on controlling a mobile 
robot (moving or stopping) in the following section to 
evaluate the proposed method. In this section, we describe 
the control method. 

Any channel, whose output includes large motion 
artifacts, is not used for recognizing the brain activity. We 
perform this process for all 22 channels of the fNIRS device. 
Two appropriate output channels are selected from those 
that can be used to recognize the brain activity. Their 
efNIRS signals are used to recognize the brain activity and 
to control the robot. We refer to these two selected output 
channels as the control channels. 

If channels that output a small fNIRS signal are used as 
the control channels, it is difficult to recognize the brain 
activity accurately. To use channels with high levels of 
brain activity as the control channels, firstly, we calculate 
two average values for the efNIRS signal, namely the 
average resting value in the rest section and the average task 
value in the task section. We obtain the difference between 
these average values and then use the two channels with the 
largest difference as the control channels. 

Saika et al. [14] proposed a distance-type fuzzy 
reasoning method to recognize the brain activity from an 
fNIRS signal. In their study, subjects wore the fNIRS device 
while sitting, so that motion artifacts did not occur. In our 
study, we recognize the brain activity by applying the 
distance-type fuzzy reasoning method to the efNIRS signal 
containing motion artifacts. We outline this method below; 
further details can be found in [14][15]. 

The Kalman filter is used to estimate the output fNIRS 
signals of the control channels. Because an fNIRS signal 
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would increases in the presence of brain activity, we 
introduce following three rules for robot control, in which 
the fluctuation in the efNIRS signal is used as the 
antecedent part and the switching of the robot control 
signals (output signals) as the consequent part: 
・Rule 1: If the efNIRS signal increases compared with 

the previous state, turn the control signals on; 
・Rule 2: If the efNIRS signal changes minimally or not 

at all compared with the previous state, maintain the current 
control signals; 
・Rule 3: If the efNIRS signal decreases compared with 

the previous state, turn the control signals off.  
Also, to compare the efNIRS signal in the current time 

step with that in the previous time step, we use the efNIRS 
signal from five time frames, namely the current one and 
those 0.4 s, 0.8 s, 1.2 s, and 3.0 s previously. 

The distance-type fuzzy reasoning method is used to 
recognize the brain activity in each of the two control 
channels. Thus, when the output results from these two 
channels coincide, they are sent to the robot as the output 
signals. When the output results are different, the output 
signals are turned off. 

V. EXPERIMENTAL RESULTS 

To verify the proposed method, we compare the results 
of robot control in two cases: using the efNIRS signal 
obtained by the proposed method and using the original 
fNIRS signal. The subjects are nine men and one woman in 
their 20’s, to whom we explain the experiment outline and 
from whom we acquire informed consent prior to the 
experiments.  

Figure 4 shows the flow of the experimental process. 
Each experiment comprises 10 sets, each of which consists 
of 15 s of pre-rest, 30 s of task, and 15 s of post-rest (a total 
of 60 s). Each subject performs the experiment twice. The 
subjects are instructed to concentrate during the task time 
(i.e., focus on moving the robot) and rest during the rest 
time.  
 During the preparation stage shown in Figure 4, the 
subjects perform tasks and rest while sitting without 
controlling the robot. During the robot-controlling stage, 
they control the robot while standing, sitting, and walking. 
The subjects avoid moving their heads while transitioning 
from sitting to standing and vice versa. They also walk at a 

normal speed. In the experiments, the robot moves if the 
brain activity is recognized as being active, and it stops if 
the brain activity is recognized as being inactive.   
 To verify the efficacy of the proposed method, the robot 
is controlled using the proposed method during sets 3–5, 9, 
and 10. In contrast, the robot is controlled using the original 
fNIRS signal during sets 6–8. It should be noted that the 
subjects do not know during which sets the proposed 
method will be applied.  
 The AR-model coefficients are estimated based on the 
fNIRS signal acquired during the preparation stage (sets 1 
and 2), and two control channels are selected at the end of 
set 2. In sets 3–5, the robot is controlled by the efNIRS 
signals of the selected control channels. Because the robot is 
controlled using the original fNIRS signal during sets 6–8, 
we select two control channels at the end of set 5 using the 
original fNIRS signal during set 5. 
 Because the subjects become fatigued as the experiment 
progresses, the control channels and AR-model coefficient 
estimates acquired during sets 1 and 2 tend to differ from 
those found during sets 9 and 10. To address this problem, 
we estimate the AR-model coefficients during the robot 
control and again select two channels at the end of set 8. In 
sets 9 and 10, the robot is controlled by the efNIRS signals 
of the selected control channels. 
 As an example, we show the experimental results for 
subject “A”. Channels 1–4 and 20–22 in the fNIRS device 
are not used because of their relatively low S/N ratios; 
therefore, the experiment is performed using only the 
remaining 15 channels. The proposed method is used to 
select the control channels: channels 9 and 12 during sets 3–
5, channels 7 and 12 during sets 6–8, and channels 6 and 12 
during sets 9 and 10. 
 Figure 5 shows the results obtained using the proposed 
method during sets 3–5 (120–300 s). Figure 5 (a) shows the 
output signals for channel 12 of the fNIRS device, and 
Figure 5 (b) shows the corresponding robot control signals. 
The efNIRS signals are also shown in Figure 5 (b). The 
robot moves while the control signal output is “ON”, and it 
stops while the control signal output is “OFF”.  
 We can see from these figures that the robot is 
controlled in accordance with the changes in the efNIRS 
signal. The control output signals turn on when the estimate 
shows an increasing trend, and turn off when that trend is a  

 
 

 
 

Figure 4.  Experimental flow. 
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(a) fNIRS signal (12ch). 

 

 
(b) efNIRS signal and control output (12ch). 

 
Figure 5.  fNIRS and efNIRS signals and control output by the proposed 
method during sets 3–5. 

 

 
(a) fNIRS signal (12ch). 

 

 
(b) fNIRS signal and control output (12ch) 

 
Figure 6.  fNIRS signal and control output without the proposed method 
during sets 6–8. 

decreasing one. However, the output signals turn on at 180–
190 s and 240–250 s because the estimates then exhibit 
extremely small increasing trends during the rest time. 
 Figure 6 shows the results without the proposed method 
during sets 6–8 (300–480 s). Figure 6 (a) shows the output 
signals for channel 12 of the fNIRS device, and Figure 6 (b) 
shows the corresponding robot control signals. The fNIRS 
signals are also shown in Figure 6 (b). Because the fNIRS 
signals contained motion artifacts are fluctuated over short 
periods of time, the robot-control output signals are 
switched frequently and repeatedly between on and off. 
Therefore, the robot cannot be controlled correctly. 
 To compare quantitatively the recognition performance 
with and without the proposed method, we calculate the 
average recognition success rate of the brain activity for the 
10 subjects. The average recognition success rate indicates 
the success rate for controlling the robot and is defined as 
follows: 
 

rate)  success nrecognitioTask rate  success nrecognitioRest (
2
1

rate  success nrecognitio Average
 

                                              (7) 
 
where the rest (task) recognition success rate is defined as 
 

Rest time
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Figure 7.  Average success recognition rate of 10 subjects. 
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Figure 7 shows the results. Blue bar indicates the result 
by the proposed method (sets 3–5). Green bar indicates the 
result by the proposed method (sets 9 and 10). Orange bar 
indicates the result without the proposed method (sets 6–8).  

When using the proposed method, 8 of the 10 subjects 
have an average recognition success rate of 60% or greater 
during sets 3–5, and 7 of the 10 subjects have an average 
recognition success rate of 60% or greater during sets 9 and  
10. In contrast, when the proposed method is not used, only 
one of the 10 subjects has an average recognition success 
rate of 60% or greater during sets 6–8. When the proposed 
method is used, the average recognition success rate for the 
10 subjects is 66.3% during sets 3–5 and 62.2% during sets 
9 and 10. In contrast, when the proposed method is not used, 
it is only 54% during sets 6–8.  

VI. CONCLUSIONS 

In this paper, we proposed a method for detecting and 
cancelling motion artifacts due to standing and walking in 
the fNIRS signals acquired by a multi-channel fNIRS 
device.  

We identified the motionless fNIRS signal (while sitting) 
using a fourth-order AR model, and then reduced the motion 
artifacts due to standing and walking in the fNIRS signals 
using an AR-model-based Kalman filter. We used the 
measurement prediction error to assess whether large 
motion artifacts were present in the fNIRS signals. In 
addition, we also used the power spectrum of the efNIRS 
signal estimated with the Kalman filter to determine 
whether the efNIRS signal could be used to recognize brain 
activity.  

The experimental results of controlling a mobile robot 
based on the brain activity verified that the proposed method 
provides better recognition of the brain activity than that 
without the proposed method. 

In the experiments, five parameters were set at the same 
values for 10 subjects: the variances of 4100.5  and 

5100.1 for w in (1) and v in (2), the threshold value of 0.4 
for the measurement prediction error in (6), and the 
frequency of 0.07 Hz and threshold value of 4100.2 for 
the power spectrum. These values were obtained from a 
preliminary experiment by one of authors (he was not a 
subject in the experiments shown in Section V). The optimal 
values of these parameters would depend on the subjects. In 
future work, we intend to improve our present abilities to 
detect and cancel motion artifacts by learning the optimal 
values of these parameters according to the subjects. In the 
experiments, the subjects were in 20’s. Experiments by 
subjects from other aging ranges are also our future work. 
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