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Abstract—Digital imaging sensors, such as Charge-Coupled
Devices, have been used for large-scale agricultural pest control.
The ability to process and analyze the amount of data generated
by these sensors has become a challenge, especially due to the
high dimensionality of the collected features. In the literature, it is
possible to find various research on dimensionality reduction and
algorithms. This article presents a study on the dimensionality re-
duction of features from a digital image acquired with a Charge-
Coupled Devices sensor in an agricultural field, in order to choose
the optimal number of principal components for reducing feature
dimensionality. In this context, it has become very important to
define a method for selecting the optimal number of principal
components for dimensionality reduction, while retaining only the
necessary information associated with the main variables that
describe the object of interest (Fall armyworms - Spodoptera
frugiperda). The results showed, for example, that by using
Hu invariant moments for feature extraction, dimensionality
reduction was possible for all analyzed cases, leading to 80%
of the original data. In this context, it was possible to preserve
the semantic characteristics collected by the sensor and prepare
them for classification.

Keywords—CCD sensor, digital image, feature extraction, di-
mensionality reduction, principal component analysis.

I. INTRODUCTION

Charge-Coupled-Devices (CCD) are the most used imaging
sensors for digital image acquisition. They have built-in frame
capture systems and the analog-to-digital conversion is done
in the sensor itself [1].

CCD’s sensors have been used in such ways to acquire
images for different purposes. In agriculture, those sensors are
usually used to capture images of pests and diseases [2], [3].

Due to the complex and high dimensions of the data
captured by those sensors, storing and processing the amount
of data acquired has become a challenging task [4], known as
the curse of dimensionality [5]. This phenomenon is related to
the fact, that with a certain degree of accuracy from a function
estimation, the number of variables increases as the number
of samples also has to increase [6].

To solve the issue of the curse of dimensionality, different
methods based on dimensionality reduction techniques have
been proposed [7]. These methods transform the original
high-dimensional data into a new reduced dataset, removing
the redundant and non-relevant features [8]. Dimensionality
reduction algorithms allow an efficient reduction of the number
of variables, and if applied before machine learning models
can avoid overfiting.

In the literature, it is possible to find diverse research avail-
able about dimensionality reduction techniques for different
types of data, such as Principal Component Analysis (PCA)
introduced in 1901 by Karl Pearson [9], and its variations
[10], Linear Discriminant Analysis (LDA) [11], Singular Value
Decomposition (SVD) [12] and ISOMAP [13].

PCA is a linear dimension reduction technique and is the
most predominant method applied [14], and was considered
to compose this work.

This paper presents a method for the dimensionality re-
duction optimization when using a CCD sensor-based images
to control Fall armyworms in agriculture. In fact, the task
of image classification allows the machine to understand
what type of information is contained in an image, on the
other hand, semantic segmentation methods allow the precise
location of different kinds of visual information, as well as
each begins and ends.

After the introduction, this document is organized as fol-
lows: Section II describes the work methodology; Section III
shows the results and the discussion of the experiments; and
finally, Section IV presents the conclusion of this paper.

II. MATERIALS AND METHODS
A. Digital Image Sensor and Dataset

A digital image can be defined as a bi-dimensional function
f(z,y), where (x,y) are the intensity positions, defined as
pixel [15]. CCD’s sensors can capture images in different color
spaces, however, the most common color space is the Red
Green, and Blue (RGB), which represents the visible spectrum
[16].

Table I presents the features of the images acquired using
the CCD sensor.

TABLE I
IMAGE FEATURES ACQUIRED BY CCD SENSOR

Image type JPG / JPEG
Color space RGB

Width 3072 pixels

Height 2048 pixels
Resolution 72 pixels per inch (ppi)
Pixel size 0,35mm

Regarding the image acquisition, a dataset was generated
using a CCD sensor. This dataset is composed of the Fall
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armyworm images in real maize crops, where the pest was
found both in leaves and cobs maize.

B. Feature Extraction

The Hu invariant moments descriptor was considered for
the extraction of the geometric features of the pest. For
the calculation of the seven invariant moments of Hu, it is
necessary, a priori, to calculate the two-dimensional moments,
that is, the central moments and normalized central moments
[17]. Two-dimensional moments are understood to be the
polynomial functions projected onto a 2D image, f(z,y), and
size M x N and order (p + q).

The normalized central moments allow the central moments
to be invariant to scale transformations, being defined by:

Hpq
Mpg = ~—~ (1)
e =
where ~ is defined as:
_|_
v = PTa ., 4 )

for p+q = 2,3, ..., positive integers € Z.
In this way, the invariant moments can be calculated con-
sidering:
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Neither of the seven Hu invariant moments is directly related
to the size of an object in an image. However, the size of an
object can be indirectly inferred through either the first or
fourth moment [18].

After the features are extracted using the methods consid-
ered, a single feature vector is organized. Then, to reduce its
dimensionality, PCA is applied [19].

C. Principal Components Analisys

PCA considers an array X of data with n samples represent-
ing the number of observations and m independent variables
[20], that is:

Tim

(10)
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Herein, the principal components are obtained for a set of
m variables Xi, Xo, ..., X,, with means i, po, ..., fm
and variance 02, 02, ..., 02,, which are independent and have

covariance between the n-th and m-th variable [8], in the form:
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where X represents the covariance matrix. To do this, the pairs
of eigenvalues and eigenvectors are found (A1, e1), (A2, €2), ...,
(Am,em), where Ay > Ao > ... > \,,, and associated with X
[21], where the i-th principal component is defined by:

Z; =enX1+epXo+ ... +eimXn (12)
where Z; is the i-th principal component. The objective is to
maximize the variance of Z;, as:

Var(Z;) = Var(e;X) = e,Var(X)e; = ¢;Xe; (13)
where ¢ = 1, ..., m. Thus, the spectral decomposition of the
matrix X is given by X = PAP’, where P is the composite
matrix by the eigenvectors of 3, and A the diagonal matrix
of eigenvalues of 3 [22]. Thus, it has to be:

A0 0
0 Ao 0

A= ) (14)
0 0 Am

In general, the principal component of greatest importance
is defined as the one with the greatest variance which explains
the maximum variability in the data vector. The second most
important component is the component that has the second
highest variance, and so on, up to the least important compo-
nent [12].

Likewise, the normalized eigenvectors represent the main
components that constitute the feature vector with reduced
dimension. Besides, such reduced components are used to de-
scribe the acquired images. Additionally, the reduced features
are used for the recognition of the patterns of Fall armyworm
(Spodoptera frugiperda), i.e., useful consideration for both
cases, leaf or cob maizes.
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III. RESULTS AND DISCUSSION

For this study, an image dataset composed of 2280 images
acquired with CCD’s sensor was used. These images represent
the Fall armyworm (Spodoptera frugperda) acquired in a real
environment of maize crop in its five different stages of
growth, grouped in 456 images for each stage. Figure 1(a to
e) illustrates one example of each stage of growth, also named
Instar, Figure 1(f) illustrates two different Instar in the same
image.

Fig. 1. Fall armyworm (Spodoptera frugperda) in different stages of growth.

Considering all images contain at least one specimen of the
pest in different stages, in other words, different sizes, the Hu
invariant moments descriptor has been considered for instance.
Thus, for each image of the Fall armyworm, a feature vector
was generated, containing the seven Hu invariant moments (
o1, G2, O3, G4, ¢5, G and ¢7), which are related to the shape
and geometrical features of this pest. The features contained in
these vectors will allow the classification of the Fall armyworm
(Spodoptera frugperda) in its different stages of growth.

Table II presents the seven Hu invariant moments, as exam-
ples, from three different images, which were processed using
the dataset.

TABLE 1T
FEATURE VECTOR COMPOSED OF HU INVARIANT MOMENTS. EXAMPLE OF
THREE IMAGES

Hu Images

invariant

moments | Image 1 | Image 2 | Image 3
b1 6.692 6.6178 6.524
b2 13.581 13.424 19.102
b3 24.321 23.944 22.370
b4 25919 26.245 23.445
b5 51.517 -52.023 46.665
b6 34.307 -33.305 -34.728
b7 -51.458 -51.556 47.656

As the values of the feature vectors were in different scales,
it was necessary to normalize them. To generate a database of

characteristics of the fall armyworm (Spodoptera frugperda),
the feature vectors referring to each image were saved on disk.

Table III presents the normalized seven Hu invariant mo-
ments from three different images.

TABLE III
NORMALIZED FEATURE VECTOR. EXAMPLE OF THREE IMAGES

Hu Images

invariant

moments | Image 1 | Image 2 | Image 3
b1 0.274 0.162 0.021
b2 -1.048 -1.121 1.496
b3 1.035 0.817 -0.092
b4 1.408 1.669 -0.575
b5 0.719 -1.607 0.610
b6 0.808 -1.289 -1.333
b7 -0.863 -0.865 1.199

To remove duplicate information and also non-significant
information, this stage first proceeds to the dimensionality
reduction of the feature vector through PCA. To achieve the
appropriate number of principal components that explain the
original data, seven principal components were measured.

Through the variance ratio metric, it was possible to mea-
sure how much each of the seven principal components was
explained from the original data. Figure 2 shows the variance
ratio.
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Fig. 2. Scree plot.

Analyzing the scree plot in Figure 2, it is possible to infer
that by applying two to four principal components it is possible
to explain almost from 55% to 80% of the variability of the
original data. Considering that, the experiments were based on
four principal components.

As discussed in the prior section, neither of the seven
invariant moments is directly related to the size of an object.
However, the first and the fourth moments can be used to infer
the size of an object in an image.

Moreover, through the maximum variation ratio metric it
is possible to measure the weight of each of Hu invariant
moments in each principal component.
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Table IV presents the maximum variance to each of the four
principal components concerning the original data.

MAXIMUM VARIATION OF DATA IN RELATION TO EACH PRINCIPAL
COMPONENT. BASED ON FOUR PRINCIPAL COMPONENTS.

TABLE IV

Hu Principal components

invariant

moments | PC 1 PC 2 PC3 PC 4
o1 -0.147 | -0.630 | -0.120 | -0.568
b2 0.501 | -0.295 | 0.036 0.230
b3 -0.395 | -0.424 | 0.087 0.027
b4 -0.378 | 0.501 | -0.158 | -0.479
s -0.376 | -0.277 | -0.310 | 0.286
o6 -0.355 | -0.011 | 0.865 0.127
b7 0.398 | -0.078 | 0.325 | -0.543

TABLE V
FEATURE VECTOR COMPOSED OF FOUR PRINCIPAL COMPONENTS.
EXAMPLE OF THREE IMAGES

Principal Images
components
Image 1 | Image 2 | Image 3
PC1 0.333 2.121 -0.742
PC2 -2.280 -1.156 1.306
PC3 0.551 -1.243 -0.528
PC4 0.181 -1.193 0.012

The distribution of the variation of the four principal com-
ponent values is illustrated in Figure 4.

Even though some values presented in Table IV are negative,
the weights for each principal component are considered
absolute values. For example, in PC2, the first moment (¢1)
has the highest weight.

Figure 3 illustrates the maximum variance to each of the
four principal components concerning the original data with
the absolute values.
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Fig. 3. Maximum variation of data in relation to each principal component,
based on four principal components.

The experiment with four principal components showed
that, as can be visualized in Figure 3, to have the most
representative weights either from the first moment or the
fourth moment, it was necessary to work with two or four
principal components.

Based on prior experiments, the dimensionality reduction of
the feature vector was performed. Table V presents the values
of the four principal components.

Fig. 4. Histogram of distribution of the four principal components values.

Once the values of the four principal components are ob-
tained, it is necessary to evaluate if it is sufficient to work with
two principal components, or whether it should be considered
four principal components. For this purpose, it should be con-
sidered the maximum variation of each principal component
to the original data, how much the principal components could
explain the original data, and also the minimum error.

This information can be observed in Figure 5, which illus-
trates a boxplot chart of the four principal component values
and their distribution.

From Figure 5, it is possible to visualize that when working
with two or three principal components the error would
be minimal, but with two principal components only 55%
of the original data is explained, and working with three
principal components the first and fourth moments are not
representative.

This experiment demonstrated that working with four prin-
cipal components was the ideal option. Because both the first
and fourth moments are very representative, four principal
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Fig. 5. Boxplot of four principal components values.

components can explain 80% of the original data, and even
with a low increase in the error, it is not considerable to
decrease the estimation.

IV. CONCLUSIONS

This paper presented a study of dimensionality reduction
using Principal Components Analysis (PCA), considering fea-
ture vectors composed of extracted Hu invariant moments.

Before measuring the number of principal components nec-
essary to represent the original data from the Fall armyworm
digital images, the feature vectors were normalized, to obtain
all the seven Hu invariant moments.

The measure of the explained variance ratio to the original
data was applied to verify the quantity number of principal
components necessary to explain the maximum of the original
data.

In addition, the first and fourth invariant moments were used
to infer the estimated size of the Fall armyworm (Spodoptera
frugperda) in the images. Likewise, the measure of the max-
imum variation of each principal component, concerning to
each Hu invariant moment, was performed to find how much
these moments contribute to recognizing the main elements
acquired with the CCD’s sensor.

The measurements show that computing two to four prin-
cipal components was sufficient to explain 55% to 80% of
the original data, and either the first or fourth moments were
contained in two and four principal components.

Finally, despite seven invariant moments being used, such
analysis led to the conclusion that when using 4 principal
components, one may achieve the explanation of 80% for the
original data, with low error, as well as, not a significative
variation.

For future works, it is suggested to extend this research to
an unsupervised method to reach the selection of the number
of principal components to remain with the semantic features
from a recognized agricultural pest.
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