
Integrating Tiny Heterogenous and Autonomous
Data Sources

Kim Tâm Huynh
Prism Laboratory,

University of Versailles,
Versailles, France

kim-tam.huynh@prism.uvsq.fr

Béatrice Finance
Prism Laboratory,

University of Versailles,
Versailles, France

beatrice.finance@prism.uvsq.fr

Mokrane Bouzeghoub
Prism Laboratory,

University of Versailles,
Versailles, France

mokrane.bouzeghoub@prism.uvsq.fr

Abstract—In this paper, we address the problem of integrating
many heterogeneous and autonomous tiny data sources, available
in an ambient environment. Our goal is to facilitate the develop-
ment of context-aware and personalized embedded applications
on mobile devices. The originality of the approach is the new
ambient mediation architecture, which provides declarative and
dynamic services, based on rules/triggers. These services provides
facilities to develop and deploy ambient applications over devices
such as smartphones. This paper reports on our first experiment
prototype, combining Arduino+Android, in using such ambient
mediator for an intelligent home application.An embedded me-
diation system CAIMAN is proposed and illustrated through a
simple scenario.

Keywords—ambient data;embedded system;mediation sys-
tem.

I. INTRODUCTION

Over the last 20 years, new paradigms such as ubiquitous
computing, pervasive computing, ambient intelligence (AmI)
have emerged with the development of wireless networks and
the miniaturization of hardware components. Augusto and Mc-
Cullagh [1] characterized AmI as “a digital environment that
proactively, but sensibly, supports people in their daily lives”.
The challenges posed by these paradigms are addressed by
several research communities (networks, multi-agent systems,
databases, Human-Machine Interface).

Today, we are witnessing an unprecedent explosion of
mobile data volumes, i.e., ambient data. In 2011, 1.08 billion
of mobile phone users have a smartphone. Smartphones as well
as computers cannot really sense the world. In AmI environ-
ments, there is a need for tools for sensing and controlling
more of the physical world . This is the role of the Arduino
platform that can sense the environment by receiving input
from a variety of sensors and can affect its surroundings by
controlling lights, motors, and other actuators.

More and more ambient applications are developed for
mobile environments, e.g., Waze [2], APILA [3]. Unfortu-
nately, they are often developed from scratch, which is time
and money consuming, and makes the software evolution
quite difficult, in particular because components updates are
frequent. The lack of a data management system for AmI does
not ease the development of applications.

Ambient data have specific characteristics, they arrive as
streams or as alert/notifications. Moreover, data are only

relevant for a period of time and their interpretation depend
on the user’s context and the user’s preferences. For instance,
an information about a free parking place can be relevant for
a user if this information is recent and if the parking place is
nearby the user’s location. Another example is the heat setting
to the right temperature in the room where a given person
is and accordingly to his preferences. Such data streams are
relatively small in their length/size.

For managing and integrating data streams, the database
community has proposed two paradigms: DSMS (Data Stream
Management System) processing [4] and Sensor Databases
such as TinyDB [5]. DSMS is an evolution of the traditional
DBMS (Data Base Management System). In DBMS, data are
stored and users issue one-time queries on stored data. In oth-
ers words, data are permanent and queries are transient. DBMS
are not suitable for data streams. Indeed in DSMS, data are
transient and queries permanent since they are continuously
evaluated over the transient data, they are called continuous
queries. A language CQL, has been proposed for managing
and filtering data streams in a declarative way. Generally,
these systems are centralized or clustered and assume that the
data sources, i.e., sensors send continuously their data in a
push mode, towards the DSMS. This assumption works if the
data sources are known in advance, their schema does not
change, they are always connected to the ethernet and do not
have limited power. Indeed the push mode consumes a lot of
energy, that’s why sensor databases have been proposed such
as TinyDB. In this paradigm, we assume a network of sensors,
data is acquired in a pull mode to avoid battery consumption.
The query, i.e., Tiny SQL, is sent through the network and
evaluated in a distributed mode. Sensors are active only when
they have to answer a query. The advantages of this approach is
that it is well adapted to the specificities of material and their
constraints. The sensor network can contain a large number
of sensors. However, the sensors are homogeneous, they all
have a TinyOS and there is no mechanism of source discovery
because the sensors are known. These two paradigms are
not context-aware and cannot take dynamically into account
heterogeneous and autonomous tiny data sources.

In this paper, we propose an ambient data mediation system
which offers contextual and personalized data integration
over autonomous and heterogenous tiny data sources such as

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

smartphones and sensors/actuators, in a declarative way.
The plan of the paper is as follows. In Section 2, the mo-

tivations and the requirements for such a mediator are given.
In Section 3, the ambient mediation approach is described.
Finally, in Section 4, an application scenario is designed on
top of our mediattor to illustrate our approach.

II. MOTIVATIONS AND REQUIREMENTS

For deploying ambient applications, there is a need of
an ambient data mediation system (ADMS), which allows
interoperability between a set of dynamic and loosely-coupled
ambient data sources. An ambient data source is a (fixed or
mobile) communicating object, which generates or consumes
continuous (or discontinuous) flows of data. Among such
objects, we can distinguish a wide spectrum of sensors and
mobile phones. In addition to these data sources, there exist
other ambient objects called actuators, that do not exchange
data, but simply perform some actions, e.g., a led. Notice that a
single physical object can play both the role of a data source
and actuator. All ambient physical objects are abstracted by
software services, which encapsulate them and make visible
their capabilities, especially their data exchange protocol.

An ambient information system (AmIS) is a set of data
flows provided by a collection of ambient objects to achieve
the needs of AmI applications, e.g., intelligent home, health
care. AmIS Objects may communicate between each other
based on various communication protocols. For instance, sen-
sors/actuators micro-controllers only offer a Wire-two-Wire
Interface (TWI/I2C) for sharing data over a net of devices
or sensors. On the other side, smartphones can exchange data
in a more elaborate way. Some AmIS objects can play the role
of a mediator, which is able to integrate and interpret data of
many ambient data sources, as well as to perform actions over
their environment. Most of the AmIS data may persist only a
few seconds or minutes in the system, unless the application
or the user decide otherwise for various reasons.

The main specific requirements imposed to the design of an
ADMS are the following:

• Data sources are heterogeneous. They may be fixed or
mobile and arbitrarily connected and disconnected from
the mediator, during variable intervals of time. Data
sources have different capacities in terms of storage and
computation.

• The mediator can dynamically connect to the sources
when and as long as they are active, i.e., visible over
the wireless network and ready to provide data.

• The mediator should provide, for each application, the
capability to define its data requirements in terms of event
types, so offering similar concept as a mediator virtual
schema, and a mechanism, which handles continuous
queries.

• The mediator should be able to aggregate data flows
originating from the same source and integrates data flows
originating from different sources.

• The mediator should adapt itself to the user’s context by
continuously searching for the appropriate data sources,

e.g., depending on the location and the time. It should
also satisfy user’s preferences in terms of data delivery,
relevance to domain of interest, privacy.

• The mediator should be aware of energy consumption and
manage consequently the connections to the sources and
the usage of its resources.

These requirements clearly distinguish an ambient mediator
from a conventional one [6].

III. THE AMBIENT MEDIATION APPROACH

We are currently designing and implementing an ADMS,
called CAÏMAN for Context-aware dAta Integration and
Management in Ambient eNvironments. The overview of the
CAÏMAN architecture is depicted in Figure 1. Our aim is
not to provide a complete set of data management services
but rather a limited set of necessary functionalities to support
the design of ambient applications that fit into lite clients
such as smartphone, and exploit ambient data. The first goal
is to provide a high-level declarative approach, based on
ECA (Event-Condition-Action) rules/triggers [7], which per-
mits user applications to interoperate over distributed ambient
objects. The second goal is to facilitate object discovery and to
handle dynamic connection/disconnection to these objects. The
third goal is to make the ADMS aware of the user’s context
and user’s preferences. For example, when a battery of a given
equipment is low or when a user is too busy and does not want
to be disturbed by anything, the rule processor should stop.

Fig. 1. CAÏMAN

The following subsections give an informal description of
the main components of CAÏMAN.

A. The Ambient Mediation Schema

The CAÏMAN mediation schema is defined as a set of
events types, corresponding to the data flows required by
ambient applications. An event type can be either simple (SE)
or complex (CE). A complex event type is a combination of
other simple or complex events types.

Each event type (SE & CE) is defined by a set of attributes:
• name: name of the event type,

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

• lifespan: default time interval during which the event
instance is valid,

• aggrFunction: function, which aggregates events to pro-
duce a complex event. For simple events, there is no
aggregation function.

Each event instance (SE & CE) is defined by a set of attributes:
• value: event instance value,
• source: source name that captures the event instance,
• raisingDate: moment when the event instance is pro-

duced/observed by its source,
• systemTime: moment when the event instance is detected

by the mediation system,
• lifespan: time interval during which the event instance is

valid after its RaisingDate,
• raisingLocation: geo-location where an event instance is

produced/observed by its source.
The lifespan is a metadata, which can be provided by the event
source or assigned by the application. Event instances are rel-
evant during a limited period of time. Pervasive environments
can cause delays between the raising date of an event and
the time of treating this event. The raisingLocation is a very
useful notion for many location-aware applications. Indeed, the
location can influence the relevance of a given event instance.
For example, an event “flood” detected far away from a user
can be irrelevant for him.

Once event types are defined, the application designer
should specify how and when event instances are created
or captured. This is done by specifying event detectors with
windowing function. Depending on the event type and on the
target data source, an event detector may be defined in various
ways: a listener, a lookup function or any other procedure able
to transform a specific signal into a semantic event. Finally, a
set of continuous ECA rules is defined.

B. Binding ambient resources to the mediator

In conventional mediators, data sources are known and
linked once for all to the mediator at design time. In the
context of an ambient mediation system, data sources are not
known in advance but dynamically discovered at run time.

Ambient data sources are pervasive services, which may
connect and disconnect arbitrarily, hence a centralized catalog
of resources is useless. Only active objects in a given context
are visible to the mediator. The Resource Discovery service is
defined as a seeking function, which detects the surrounding
active objects and establishes connections to them (called dy-
namic bindings). Binding a given data source to the mediator
consists in matching the source meta data against a part of the
mediation schema. If the match succeeds, it means that the
data source can provide information to applications running
over the ambient mediator, otherwise the remote source is
considered as useless. A binding is then defined as a set of
contextual mappings. The services provided by the mediator
are then dependent on the successful mappings retrieved in the
current location at a certain date. One of the main issues of the
discovery process is to guarantee a continuous service even

if data sources disconnect frequently. Besides the bindings,
another issue that should be considered is data transformation.
The data provided by a source is not necessarily compatible
to the coding, format, unit and scale of the expected data
at the mediator level. Data transformation is then another
important functionality of the mediator. Source binding and
data transformation services form what we call a data collector.

C. ECA Rules Processor

Another fundamental service of CAÏMAN is the rule pro-
cessor. Indeed, one of the main feature of our ADMS is its
capability to provide a declarative language, which allows to
describe most of the system semantics and the application se-
mantics. This declarative language is the ECA rules language.
User applications and mediation services are then defined by
ECA rules. Each rule is defined using one or several event
types defined in the mediation schema. The rule processor
is an idempotent service to which ECA rules are submitted
to be evaluated as long as event instances are produced by
the application or the mediator. The rule processor has an
operational semantics, which is clearly specified by various
parameters such as event consumption and coupling modes.

D. Others components

The Application Metadata contain event types, ECA rules,
the context model, and the default user profile defined by the
designer. These information are necessary for the different
components. By using the context model, the Context Manager
computes the current context, which can be used by the
Profile Manager to infer the active profile, i.e., all user profile
information, which are valid for this context.

Concerning the data, once the source is discovered and the
data transformed by the Data Collector, the mediator proposes
a DataFlow Aggregator component to process these flows of
data and aggregate them. After executing the application rules,
the Data Delivery component can deliver the result to the
application or its ambient environment. The mediator can also
execute actions through the Actuator Command component.

IV. THE APPLICATION SCENARIO

In this section, a specific scenario is chosen in order
to illustrate and demonstrate our approach. Let us consider
an ambient application scenario that wants to automatically
control the air conditioning in the room where the person is,
accordingly to his preferences. The user is mobile and can
move from one room to another while keeping around the
right air conditioning. For simplicity, we assume that the user
is alone in the room. For doing so the application is constantly
checking its environment to find if the room is well equipped,
if it contains either a sensor of temperature or of humidity,
and if an air conditioning actuator is present.

We first describe the ambient environment, which is com-
posed of heterogeneous ambient data sources. Then, we il-
lustrate the task that should done by our application scenario
designer and what will happen when deploying it on top of
our ambient mediation system.

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

A. The ambient sources
In our ambient environment, we consider two sensors that

capture respectively the humidity and the temperature and one
actuator for the air conditioning. Each ambient data that is
produced has a value and a timestamp, which corresponds
to the time when the data has been captured. Each data
source captures data at its own frequency. For each source
corresponds a physical device characterized by an ’id’, a ’type’
and a version number. Each ambient source can export its
capabilities in an XML document as depicted in Figure 2.

Fig. 2. Sources Description

B. Design & Deployment
Most of the information that need to be specified by

the designer are depicted in Figure 3 and explained in the
following. First, the designer defines two simple event types:
UnvalidTemperature and UnvalidHumidity. Both have a default
lifespan of 2 min and no aggrFunction. Then, the complex
event UncomfortableSituation, which is composed of the two
simple events, is defined. The default lifespan is 5 min
and an aggFunction Foo is associated. For each event, the
designer must define a detector. In this scenario, simple event
detectors are expressed declaratively in CQL-like manner and
complex event detectors use a CEP-like language, composed
of operators such as disjunction, sequence, etc. As said earlier,
detectors can be defined in various ways.

The simple detector DT raises the UnvalidTemperature
event when the temperature is not acceptable by the user. Due
to space limitations, the UnvalidHumidity detector is omitted,
since it is defined in a similar way. The complex detector
US raises the UncomfortableSituation event when one of the
simple event is raised within 50s. It uses the Foo aggrFunction
for computing the event instance values. Notice that since data
sources do not provide a lifespan, all detectors use the default
value defined earlier by the designer.

For his application, the designer only needs the locality for
his context model. For simplicity, we assume that the mediator
already provides the detector function for this context. The
contextual preferences of the user state that only sources and
actuators that are located in the same room where he is,
are accepted. So the designer provides the default profile for
the application scenario by defining the resource discovery
policies that are contextual. He also gives the domains of
interest preferences such as the min and max temperature.
Default values of the profile can be changed by the user at
any time. Finally, the ECA application rule MyScenario is
expressed, it consists in detecting an uncomfortable situation
for the user and activating the air conditioning.

Once the event types, the detectors and the ECA rules
are given, the application is compiled and deployed over the

Fig. 3. Design Phase

mediator. Once the application is started, the mediator creates
the execution environment for the application. It activates the
rule processor with the relevant ECA rules, as well as the
complex event detectors. Once a relevant source is detected
by the resource discovery component, a data collector is
instantiated. It is responsible for the dynamic bindings. For
instance, the right adaptor i.e., Arduino, is selected. All simple
event detectors corresponding to the type of the data managed
by the source are activated, e.g., temperature, humidity. The
data collector requests data from the source. Then, event
instance streams enter the mediator and are processed. When
a source disappears the mediation removes the data collector
instance, which in turn deletes all unnecessary flows and
simple event detectors associated to the source.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the requirements of AmI
applications and proposed a mediation system CAÏMAN. Our
system has been illustrated with a simple scenario. Its goal
is to facilitate the development of embedded applications on
mobile devices, that integrate ambient data which are differ-
ent from conventional data. The approach is declarative. Its
originality is to take into account, during the rules evaluation,
the context and the user preferences. Application rules can be
parameterized by a user so as his smartphone could be adapted
to his personal needs. Ambient sources are fully implemented
on Arduino boards and export their XML capabilities. The
mediator is still under development on an Android smartphone.
Performance evaluation still remains to be done.

REFERENCES

[1] J. C. Augusto and P. J. McCullagh, “Ambient intelligence: Concepts and
applications,” ComSIS, vol. 4, no. 1, pp. 1–27, 2007.

[2] (2012) The Waze website. [Online]. Available: http://www.waze.com/
[3] (2012) The Apila website. [Online]. Available: http://www.apila.fr/
[4] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosen-

stein, and J. Widom, “Stream: the stanford stream data manager (demo
description),” in Proc. SIGMOD’03, 2003, p. 665.

[5] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb: an
acquisitional query processing system for sensor networks,” ACM Trans.
Database Syst., vol. 30, no. 1, pp. 122–173, 2005.

[6] G. Wiederhold, “Mediators in the architecture of future information
systems,” Computer, vol. 25, no. 3, pp. 38–49, Mar. 1992.

[7] N. W. Paton and O. Díaz, “Active database systems,” ACM Comput. Surv.,
vol. 31, no. 1, pp. 63–103, 1999.

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

