
SPP: A Secure Protocol for Peer-to-Peer Systems

Quang Hieu Vu1,2

1 Cryptography and Security Department, Institute for Infocomm Research, Singapore
2ETISALAT BT Innovation Center, Khalifa University, UAE

qhvu@i2r.a-star.edu.sg

Abstract—The main challenge of reputation-based methods
that are used to evaluate trust of peers in Peer-to-Peer (P2P)
systems is how to collect and distribute reputation scores of
peers efficiently. While several protocols have been proposed
to address this challenge, most of them rely on a gossiping
algorithm, which is expensive and communication-intensive.
In this paper, we propose SPP, a Secure Protocol for P2P
trust management using trees in which we present a trust
model between nodes in a tree, and explain how trust is
established and maintained between pairs of nodes. We show
that, compared to existing methods, our design allows for
scalability and efficient algorithms with low overhead. We
present a possible implementation of our basic tree design,and
explain how it could be made stable and robust to network
dynamism, thus addressing the greatest weakness of a tree
structure. We also analyze the implementation for its security
against various adversarial scenarios, and suggest further
improvements that are possible for general tree-based systems.

Keywords - Trust management; Security; Protocol; P2P.

I. I NTRODUCTION

While Peer-to-Peer (P2P) systems have become very
popular, security is still a problem of greatest concern
among people using these systems. It is because in P2P
systems, peers are usually anonymous. A popular method
for evaluating trust in P2P systems is to use reputation,
where the reputation of peer is determined based on its
prior transactions with other peers. The main challenge of
this method is how collect opinions of all peers in the
system about a particular peer, and to provide access to the
reputation score to all who request it. In existing reputation-
based systems like eBay [1] and Amazon Auctions [2], the
solution to both challenges is to use servers. However, this
solution suffers from problems of server-based systems such
as network bottlenecks, and having a single point of failure.

An alternative solution is to employ a gossiping algorithm
[3], [4], [5], [6] for exchanging knowledge among peers
in the system. In this way, after a sufficient number of
knowledge exchange steps, every peer should have a global
knowledge about reputations of peers in the system. The
gossiping algorithm can be implemented in two ways. In
the first way, each peer itself has to maintain global state
and knowledge of the whole system. After each transaction
or after some interval time, peers report the score of their
partners in new transactions to all other peers in the system.
Based on this report, peers update their global state. This

method requires that peers keep and maintain reputation
scores for all peers, which is inefficient. The second way
avoids this problem by letting each peer keep track of the
reputation of peers that it has been in transactions with
previously. Whenever a peer wants to retrieve the reputation
of another peer, it can apply the gossiping algorithm to ask
for that peer’s reputation from its neighbors, the neighbors
of its neighbors, and so on. Combining the feedback with
its local knowledge, it can determine a trust value of that
peer. Even though these two ways are different, they share
the same drawback of the gossiping algorithm: both are
expensive in terms of computation and communication costs.

Instead of using gossiping, in this paper, we present SPP,
a Secure Protocol for trust management in P2P systems
based on a tree structure. Our method organizes nodes at
different positions in a tree based on their reputation, with
peers of higher reputation at higher levels. In this tree
structure, reputation of a peer is maintained at its parent.
A peer always trusts its ancestors while it is answerable
for its descendants. When two peers execute a transaction,
a trust route is formed between them. If the transaction
succeeds, a reward is given to all nodes in the route. On
the other hand, if the transaction fails, all nodes in the route
are penalized. The main advantage of SPP is that it does
not incur a high cost in reputation management compared
to methods that use the gossiping algorithm for reputation
distribution. Furthermore, the flexible design of SPP allows
us to develop a complete system for trust management for
use in any existing decentralized P2P system. To sum up,
our paper makes the following contributions in the area of
P2P security:

• We formulate a general-purpose solution to trust man-
agement in P2P systems based on a tree structure and
show how to augment a tree with extra links to create
robustness and to allow nodes to exchange queries
without overwhelming the root. This eliminates the
problems of bottlenecks and single points of failures.

• We extend BATON [7], an existing tree structure, to
support our proposed protocol, implement the protocol,
and conduct an experimental study to evaluate the
effectiveness and efficiency of our protocol.

The rest of the report is organized as follows. In Section II,
we introduce related work in the area of trust management in

1

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

P2P systems. In Section III, we explain our proposed basic
design in terms of the trust and security models. In Section
IV, we discuss some issues of our basic design, and suggest
possible solutions to improve it. In Section V, we present a
way to use our design to extend an existing tree structure
(BATON [7]) to support reputation management. Section VI
describes our experimental study and its results. Finally,in
Section VII, we summarize the important contributions of
our design and its potential.

II. RELATED WORK

Trust management in P2P systems can be classified into
two main categories: credential-based and reputation-based
management. Credential-based management systems employ
the classical method where a peer trusts another peer after
examining the other peer’s credentials. If the credentials
satisfy the peer’s policy, that peer can be trusted in a
transaction. Otherwise, the peer would refuse to be in
a transaction with the other peer. The weakness of this
method is that it has to rely on servers for keeping every
peer’s credentials, which is not entirely a scalable method.
Moreover, since credentials are usually generated once and
stored, past transactions of peers, both good and bad, are
not considered. As a result, this method is only suitable for
specific kinds of systems with fixed credentials, like access
control systems. Examples of systems that apply this trust
model include X.509 [8], PGP [9], PolicyMaker [10] and its
successors, REFEREE [11] and KeyNote [12].

On the other hand, reputation-based management systems
rely on reputation to evaluate the trustworthiness of a node.
In general, the reputation of a node is computed based on
its previous transactions with other nodes in the system
and how they rated these transactions. Reputation-based
management systems can be further classified into two sub-
categories. One type of system considers only the reputation
of an individual, like those in [3], [4], [5], [6], [13], [14],
[15], while the other takes into account social relationships
between nodes in addition to individual reputation, such as
[16], [17]. Since no nodes know of all nodes in the system,
reputation of nodes have to either be collected and stored
on servers for reference or distributed to all nodes in the
network by the gossiping algorithm. Both of these methods
are not viable for large networks because the first method is
not scalable while the second method is expensive.

In the field of data structures, the structure of a tree has
a very important role. NICE1 can be used to do scalable
application layer multicast [18] by using the idea of overlay
trees for efficient content distribution. However, very few
networks proposed so far uses the topology of a tree. In
this kind of structure, if the standard query processing
algorithm is used, nodes near the root will be accessed many

1NICE is a recursive acronym for “NICE is the Internet Cooperative
Environment”. See http://www.cs.umd.edu/projects/nice/.

times more compared to nodes near the leaves, and hence
congestion at the root or nodes near the root may happen.
This is not acceptable in P2P systems. To avoid this problem,
P-Tree [19] suggests a use of partial tree structure. In this
method, each leaf node in the tree is represented by a P2P
node while internal nodes are all virtual. Each P2P node
maintains a path from the index root to the leaf node. As a
result, queries can be processed at any node without pushing
all queries to a special node. Note that, however, if a node
has to maintain the whole tree structure, the maintenance
cost is very expensive and not suitable for P2P systems.
Alternatively, BATON [7] creates links between nodes at
the same level in the form of routing tables. Consequently,
queries can be processed at any node in the tree without
going through the root. Nevertheless, these systems focus
only on range query processing, and not trust management.

III. B ASIC DESIGN

A. Trust Model

Our tree consists of peers arranged by their reputation.
Peers of higher reputation occupy positions at higher levels
in the tree, with each parent having a higher reputation
score than their children, and so the root node is the peer
with the highest reputation. Peers of higher reputation are
accorded higher privileges of some kind, to provide incentive
for nodes to increase their own reputation. We develop the
following terminology and use it to present the model of
trust relationships between nodes in the tree.

• Trust link. A link exists between a peer and its child,
and this denotes a link of trust. We say that (1) the child
peer in this link trusts its parent because the parent has
a higher reputation than itself, and (2) the parent is
answerable for the child. The latter point means that
any misbehaved action on the part of the child reflects
poorly on the parent as well, and the parent is also
held accountable for any misbehavior of the child. This
is desirable because it is every peer’s responsibility
to minimize the presence of malicious peers entering
the network as children. Trust links are inherently
transitive, because a child that trusts its parent would
also trust its parent’s parent of higher reputation, while
a parent is accountable for its children and thus its
children’s children as well.

• Trust chain. A chain of trust is formed by consecutive
trust links. In such a chain, we say that the lowest peer
trusts the highest peer, based on transitivity of trust in
our model.

• Trust route. A trust route is the path between any two
peers in the tree. It is composed of one or two trust
chains that meet at a common ancestor of the two
nodes. We call that ancestor theconnector of the route.
The trust route also includes the connector’s parent,
which we label as thearbiter of the route. A trust

2

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

D F

C E

B

A Arbiter

Connector

ProviderRequester

Request

R
e
q
u
e
st
e
r
ch
a
in P

ro
vid
e
r ch
a
in

Figure 1. Trust relationships in a trust route

route is formed when a peer requests content from
another peer in the system. The former peer is known
as therequester, and the latter is theprovider. The trust
chain from the requester to the connector is called the
requester chain, and that from the provider is called
the provider chain. Figure 1 illustrates the relationships
mentioned here.

• Transaction. A transaction is initiated by a requester, by
sending a request through the tree to a chosen provider.
The provider responds with the appropriate content to
the requester. Transactions occur over a trust route in
our tree, and they have atransaction outcome in the
form of a report sent out by the requester. A positive
outcome indicates a successful transaction when the
requester is satisfied with the received information.
Conversely, a negative outcome indicates a failed trans-
action when the requester is not satisfied with some part
of the received information.

• Rewards and punishments. To give a reward means a
peer increases the reputation score of a child peer, and a
punishment is the converse, a decrease in the reputation
score of the child peer. Rewards and punishments are
managed based on the transaction outcomes reported
by requesters.

B. Trust Management

This subsection describes how trust in our model can be
managed. There are two possible outcomes of transactions
each of which is dealt with in a separate way.

Successful transactions: if a successful transaction occurs
between two nodes via a trust route, parent nodes would
reward the child nodes. The rationale is that rewarding a
child would allow it to be trusted by more nodes, and hence
to increase its potential for bringing in more transactionsfor
itself. This would lead to more opportunities for the parent
node to earn its own rewards. In general, after a successful
transaction, the arbiter rewards the connector, the connector
rewards both the children in the requester and the provider
chains, and so on, downward both trust chains. The only
exception is the requester, which does not get any reward
for initiating a request, since it adds no value to the network.

Failed transactions: for a failed transaction, the converse
happens. The arbiter punishes the connector, which in turn
pushes the blame downward the tree from parents to chil-

dren in both chains. The requester again is unaffected by
the punishments because it has nothing to gain or lose
for accurately reporting the outcome of the transaction. A
truthful report would, however, increase the effectiveness of
the whole network. To prevent the malicious scenario of
a node deliberately reporting multiple failed transactions, a
parent might keep track of node failure reports, and identify
any nodes that are misbehaving in this way. The parent could
then terminate trust links with any evil node, deeming it to
be deliberately causing trouble by either requesting content
from reputably bad nodes, or inaccurately reporting many
failed transactions.

This protocol leads to several implications: Nodes will
try to maximize the number of successful transactions and
minimize the number of failed ones, in order to optimally
increase their reputation. This selfish and self-centered be-
havior, however, allows for optimal gains for the system as
a whole, because each node selfishly seeks to maximize its
own rewards and to do so, it has to shrewdly monitor its
children and their behavior in transactions. A node would
quickly break off links with children that result in many
failed transactions and refuse to forward transactions from
such nodes, because it is being held accountable for the
behavior of its children. At the same time, a node would be
willing to forward requests and content from reputable nodes
or new nodes because doing so would give it the potential
to increase its reputation.

C. Node Ranking Management

If we want to know reputation score of a node, we have
to ask its parent, since the parent in our tree is of higher
reputation and is thus more trustworthy. If an internal node
cannot accomplish its task or turns malicious, we should
replace it with a better node. Since a node may never want
to step down from its position, we have to exert control over
that node through its parent.

Additionally, reputation scores of a node is not only
stored at the parent but also at the grandparent. Consider
the situation where a node now has a reputation lower
than that of its child, implying that the tree is currently
not well-formed. The solution to this situation is to swap
the positions of these two nodes through a swap operation,
and that can only be done from the position of the parent
of the ill-placed node. By changing positions, these nodes
also exchange knowledge information of their children and
reputation of these children they are keeping. An example
of node swapping is shown in Figure 2 in which nodeB
has to swap its position with its childE becauseE has a
higher reputation. Actually, sinceA knows reputation of all
B, C, D, E, F , G, it can also swap positions betweenB
andG if G has a better reputation than bothB andE. This
sort of swapping can be done ifA wants to assign a node
that is known to be trustworthy from another subtree to be

3

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

D E F G

B C

A

Figure 2. Swapping positions between nodes

the parent of a subtree that could possibly contain colluding
malicious nodes.

IV. A N IMPROVED MODEL

The above basic model works well under an assumption
that the information given by a node to another node about
its children is always correct. In other words, all internal
nodes can be trusted in giving information. This is because
if an internal node is bad, it can return wrong reputation
results about its children to other nodes. For example, a
malicious node could return a good reputation score about
a bad node or a bad reputation score for a good node.
To avoid the problem of the basic model, we introduce
a new type of score called areference score for internal
nodes. The reference score is used to reflect exactness of
information a node gives to others. Now, the trust value of
a node is based on not only its reputation score but also
the reference score of its parent. In other words, if a node
always gives correct information about its children to others,
we should trust its information. However, if a node often
makes mistakes or gives incorrect information deliberately,
our trust in information provided by that node is reduced.
Similar to reputation score, a reference score of a node is
stored at its parent. So now, as illustrated in Figure 3, before
each transaction, a nodey should find not onlyx’s reputation
score, which is stored atz, the parent ofx, but alsoz’s
reference score, which is stored att, the parent ofz and
after each transaction,y updates scores for bothx andz.

The problem now is how to evaluate correctness of
information received fromz to give feedback of a score
after a transaction. Here, we propose a simple solution
as follows. When a node is asked about reputation of its
children, in addition to giving the total reputation score,it
also gives the standard variation of the scores calculated
from previous transactions. As a result, the correctness of
received information is evaluated by both the reputation
score and the standard variation. For example, if the resultof
the transaction falls far away outside the standard variation,
the node giving information should be rated with a bad
reference score.

That is not all. Assume that in the worst case,x, z, andt
are all malicious peers and they cooperate with each other. If
t gives a wrong reference score forz while z gives a wrong
reputation score forx, y would still be cheated. To further
enhance security,y can also ask reference score oft from
its parent. In generaly asks for reference scores of a chain
of k ancestors ofx in which k is a configurable parameter

x

z

t

u

y

What is reputation

score of x

W
hat is reference

score of z
W
h
a
t is
 re
fe
re
n
c
e
 s
c
o
re
 o
f t

k=3

Figure 3. A k=3 reference chain

of the system. Note that since thesek nodes form a chain,
the cost of lookup algorithm and update algorithm is just
logN + k. By setting k with a large number, the system
becomes strong against collaborative malicious peers. A
worry is thatk may have to be large, and hence it may be
costly. However, since nodes in the system cannot determine
the location of them in the tree structure, they have to follow
the join algorithm, which scatters nodes along the system to
make the tree balanced. As a result, forming a long chain of
malicious peers connected by parent-child links is not easy.
An example of ak = 3 reference chain is shown in Figure
3 in whichy asksz for reputation score ofx, t for reference
score ofz andu for reference score oft.

Another technique which can be used by a group of
malicious nodes to trick other nodes is to create fake
transactions and report good results to their parent to in-
crease their reputation score. To avoid this problem, we
just use a simple technique in score calculation as follows.
First, we do not simply consider the number of successful
transactions as the score. Instead, we limit the score at a
maximum value, and the score of a node can only reach that
maximum score. Second, we calculate not only the number
of successful transactions but also the number ofdifferent
successful transactions of nodes. By “different”, we mean
that transactions of the node that are done with different
nodes. As a result, even though a node may have many good
transactions with a specific node, it still has a low score if
it has many other bad transactions with other nodes.

V. SYSTEM DESIGN

At this point, we are able to describe in greater detail
how to extend SPP to use in BATON, an existing tree based
framework. In essence, we try to place our proposed trust
management layer on top of an existing networking frame-
work that provides the topology of a tree. The challenge here
is to ensure that we can effectively and efficiently implement
SPP. In this section, we will first describe the structure of
BATON. After that, we introduce the way to deploy SPP on
it.

A. BATON

In BATON, each peer participating in the network is
responsible for a node in the tree structure. The position
of a node in the tree is determined by a pair of alevel and
a number. The level specifies the distance from the node

4

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

Neighbor linkParent-child link Adjacent link

Figure 4. BATON structure

to the root while the number specifies the position of the
node within the level. BATON uses three kinds of links
to make connections between nodes: parent-child links are
used to connect children and parents; adjacent links are used
to connect adjacent nodes; and neighbor links are used to
connect neighbor nodes at the same level having a distance
2i from each other. Neighbor links are kept in two special
sideways routing tables: left routing table and right routing
table. The main purpose of neighbor links is to allow a
flexible way to forward queries between nodes in the tree
structure without going to the root, and hence BATON can
avoid the bottleneck problem as well as single point of
failure at the root node. An example of a BATON tree is
shown in Figure 4. Note that in this figure, only neighbor
links of the grey node are shown.

B. SPP Deployment

Since the most important issues in deploying SPP are how
reputation of a node is looked up and how transaction results
are reported to responsible nodes, we focus our discussion
of these issues.

• Reputation lookup: before each transaction, nodes ex-
change information about their location in the tree to
each other. Knowing the location of a nodex, its partner
y can infer the location ofx’s parent, which isz as
below:

zlevel = xlevel − 1

znum =

{

xnum/2 if xnum is even
(xnum + 1)/2 if xnum is odd

Note that in the tree structure, the level is setup
increasingly from the root to the leaf starting at 0
while the number is assigned from the left to the
right of each level starting at 1. Now, knowing the
location of z, y can issue a query to lookupx’s
reputation towardsz. The algorithm of sending a query
towards a node knowing its location is represented as in
Algorithm 1. Since at each step, this algorithm makes
the search space reduce by half, it is guaranteed that
after maximumO(logN) steps, the query should reach
the destination nodez. When z receives the query, it
returns the reputation score ofx to y. Note that if x

Algorithm 1 :Query (level l, number n, node z)
lnode = level of the current node
nnode = number of the current node
if lnode = l then

t = the nearest node to z
t.Query(l, n, z)

else
if lnode > l then

t = a child of the current node
t.Query(l, n, z)

else{lnode < l}
t = parent of the current node
t.Query(l, n, z)

does not tell a truth about its location, and hence when
y issues the query eitherz can not be found orz is not
the parent ofx. As a result,x can be considered as a
bad node.

• Transaction result report: after each transaction, a simi-
lar process is done to report the result of the transaction
between partners to their parent. In particular, each
peer rates the transaction by giving its partner a score
in a range of [-1.0, 1.0]. Depending on the level of
satisfaction or dissatisfaction, a value is given in which
a positive score is used to indicate a good transaction
while a negative score indicates a bad transaction.

VI. EXPERIMENTAL STUDY

To evaluate the performance of our proposal, we have
implemented an extension of BATON [7] to support our
security protocol. We tested our system in a network of
1,000 nodes, where exists two kinds of nodes: good nodes
and malicious nodes. We just make a simple assumption that
that good nodes always do good transactions and give correct
answers if they are asked for reputation of their children. On
the other hand, malicious nodes always do bad transactions
and give incorrect answers about reputation of their children.

A. Effect of Varying Number of Malicious Nodes

We first evaluate the effect of varying number of malicious
nodes on the strength of the system. The result is displayed
in Figure 5 in which the x-axis presents the percentage
of bad nodes in the system while the y-axis presents the
percentage of correct answers about reputation of nodes.
The length of reference chain in this experiment is fixed
at 3. The result shows that our system can suffer up to 20%
of malicious nodes while still provide good answers for a
reputation of nodes: more than 80% of answers is correct.
It is because in order to fully cheat other nodes, malicious
nodes have to form a subtree height greater than 3. However,
it is difficult to do that since nodes are distributed equally
in the leaf level to keep the tree balance.

5

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 c

or
re

ct
 a

ns
w

er
s

Percentage of malicious nodes

SPP

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 c

or
re

ct
 a

ns
w

er
s

Percentage of malicious nodes

SPP

Figure 5. Effect of varying number of malicious nodes

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
er

ce
nt

ag
e

of
 c

or
re

ct
 a

ns
w

er
s

Length of reference chain

SPP

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
er

ce
nt

ag
e

of
 c

or
re

ct
 a

ns
w

er
s

Length of reference chain

SPP

Figure 6. Effect of varying length of reference chain

B. Effect of Varying Length of Reference Chain

In this section, we vary length of reference chain from 1 to
5 while keeping the percentage of malicious nodes at 30%.
The result is displayed in Figure 6. The result confirms that
the system increases its strength with the increasing length
of reference chain.

VII. C ONCLUSION

In conclusion, in this paper, we proposed SPP, a general
secure protocol for reputation management in peer-to-peer
systems based on a tree structure. By using a tree structure,
SPP can avoid the high cost of broadcasting messages that
is seen in gossiping-based solutions. At the same time,
SPP does not suffer the problem of bottlenecks and single
points of failure as seen in server-based solutions throughthe
employment of extra links in the tree structure. We came up
with a specific tree structure extended from BATON [7] to
implement SPP. Finally, we conducted experiments to eval-
uate the effectiveness and efficiency of SPP, and presented
the above positive results.

REFERENCES

[1] eBay, “http://www.ebay.com.”

[2] Amazon Auctions, “http://auctions.amazon.com.”

[3] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “Eigenrep:
Reputation management in p2p networks,” inProceedings of
the 12th WWW Conference, 2003.

[4] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative
peer groups in nice,” inProceedings of the 2003 Infocom
Conference, 2003.

[5] B. Dragovic, B. Kotsovinos, S. Hand, and P. R. Pietzuch,
“Xenotrust: Event-based distributed trust management,” in
Proceedings of the 2nd International Workshop on Trust and
Privacy in Digital Business, 2003.

[6] L. Xiong and L. Liu, “Peertrust: Supporting reputation-
based trust for peer-to-peer electronic communities,”IEEE
Transactions on Knowledge and Data Engineering, no. 7, pp.
843–857, 2004.

[7] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, “Baton: A balanced
tree structure for peer-to-peer networks,” inProceedings of
the 31st VLDB Conference, 2005, pp. 661–672.

[8] International Telegraph and Telephone Consultative Com-
mittee (CCITT),The Directory - Authentication Framework,
Recommendation X. 509, 1993 update.

[9] P. Zimmermann,PGP Users Guide. MIT Press, 1994.

[10] M. Blaze and J.Feigenbaum, “Decentralized trust manage-
ment,” in IEEE Symposium on Security and Privacy, 1996.

[11] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss, “REFEREE: Trust management for Web applica-
tions,” Computer Networks and ISDN Systems, vol. 29, no.
8–13, pp. 953–964, 1997.

[12] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, The
KeyNote Trust Management System, Version 2. RFC-2704.
IETF, 1999.

[13] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-
peer information system,” inProceedings of the 9th Interna-
tional Conference on Information and Knowledge Manage-
ment, 2001.

[14] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati, “Choosing reputable servents in a p2p
network,” inProceedings of the 11th WWW Conference, 2002.

[15] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante, “A reputation-based approach for choosing
reliable resources in peer-to-peer networks,” inProceedings of
the 2002 ACM Conference on Computer and Communication
Security, 2002.

[16] J. Pujol and R. Sanguesa, “Extracting reputation in multi
agent systems by means of social network topology,” in
Proceedings of the 1st International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 2002.

[17] J. Sabater and C. Sierra, “Regret: A reputation model for
gregarious societies,” inProceedings of the 4th Workshop on
Deception, Fraud and Trust in Agetn Societies, 2001.

[18] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
application layer multicast,”SIGCOMM Comput. Commun.
Rev., vol. 32, no. 4, pp. 205–217, 2002.

[19] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram, “Querying peer-to-peer networks using P-Trees,” in
Proceedings of the 7th WebDB, 2004, pp. 25–30.

6

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

