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Abstract—This paper introduces a peer-to-peer framework
for providing, locating and consuming distributed services that
are encapsulated within virtual machines. We believe that
the decentralized nature of peer-to-peer networks acting in
tandem with techniques such as live virtual machine migration
and replication facilitate scalable and on-demand provision
of services. Furthermore, the use of virtual machines eases
the deployment of a wide range of legacy systems that may
subsequently be exposed through the framework.

To illustrate the feasibility of running distributed services
within virtual machines, several Hadoop benchmarks are exe-
cuted on a compute cluster running our framework, and their
performance characteristics are evaluated. While I/O-intensive
benchmarks suffer a penalty due to virtualization-related
limitations in the prevailing I/O architecture, the performance
of processor-bound benchmarks is virtually unaffected. Thus,
the combination of peer-to-peer technology and virtualization
merits serious consideration as a scalable and ubiquitous basis
for distributed services.

Keywords-Virtualization, distributed systems, peer-to-peer
computing, service-oriented computing

I. INTRODUCTION

In recent years, data centre operations have experienced
a shift in focus away from managing physical machines
to managing virtual machines. Renewed exploration of this
well-trodden path is arguably driven by virtualization’s
mantra of enhanced operational agility and ease of manage-
ment, increased resource utilisation, improved fault isolation
and reliability, and simplified integration of multiple legacy
systems. Virtualization is also permeating the cluster and
grid computing communities, and we believe it will feature
at the heart of future desktop computers and possibly even
advance a rethink of general purpose operating system
architecture.

The performance hit commonly associated with virtual-
ization has been partly addressed on commodity computers
by recent modifications to the x86 architecture [1], with both
AMD and Intel announcing specifications for integrating
IOMMUs (Input/Output Memory Management Units) with
upcoming architectures. While this largely resolves the issue
of computational slow-down and simplifies hypervisor de-
sign, virtualized I/O performance will remain mostly below
par until I/O devices are capable of holding direct and
concurrent conversations with several virtual machines on
the same host. This generally requires I/O devices to be
aware of each individual virtual machine’s memory regions

and demultiplex transfers accordingly. We assume that this
capability or a similar enabler will be commonplace in
coming years, and that the commoditization of larger multi-
core processors will reduce the frequency of expensive
world-switches as different virtual machines are mapped to
cores over space rather than time.

This paper introduces Xenos [2], a proof-of-concept im-
plementation of a framework that enables the dynamic
provision, discovery, consumption and management of soft-
ware services hosted within distributed virtual machines.
Xenos uses a decentralised peer-to-peer overlay network
for advertising and locating service instances and factories.
It also leverages techniques such as live virtual machine
migration and replication to enhance operational agility
and ease of management, and to lay the foundations for
deploying fault-tolerant services. The primary objective is
to shift the focus away from managing physical or virtual
machines to managing software services.

This paper is organized as follows. Section II refers to
some related work. Section III describes our proposed frame-
work and the implemented prototype. Section IV presents an
evaluation of the framework, and Section V discusses some
topics for future investigation. We conclude in Section VI.

II. RELATED WORK

The ideas presented here are influenced by the
Xenoservers project [3], initiated by the creators of the
Xen hypervisor. Xenoservers was designed to “build a
public infrastructure for wide-area distributed computing”
by hosting services within Xen virtual machines, while
Xenosearch [4] locates Xenoservers using the Pastry peer-to-
peer overlay network. A Xenoservers implementation is not
generally available, hence our decision to build and conduct
experiments with Xenos.

WOW [5] also uses a peer-to-peer overlay network to
maintain self-organizing virtual links between virtual ma-
chines. IP connectivity is thus preserved across virtual
machine migrations. However, WoW does not support the
discovery of services on the overlay network.

Several other publications have focused on the use of peer-
to-peer overlay networks to implement distributed resource
indexing and discovery schemes in grid frameworks, such
as [6], [7] and [8]. Wadge [9] investigates the use of peer
groups to provide services in a grid, as well as transferring
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Figure 1. A selection of computing platforms running the Xenos framework and hosting several interacting services.

service code from one node to another for increased fault-
tolerance and availability. This is achieved through the use
of dynamically loadable non-virtualized plug-ins that can
be shared by peers. SP2A [10] is a service-oriented peer-
to-peer architecture which provides resource sharing in a
non-virtualized grid.

The virtualized deployment of application software with
specialized hardware requirements has also been explored in
the literature, particularly in the context of high-performance
and cluster computing: [11], [12] and [13].

III. THE XENOS FRAMEWORK

Xenos is built on top of Xen, a virtualization platform
that has gained traction as a stable and mature virtualization
solution, but any hypervisor with the appropriate hooks and
programming interfaces will suffice in principle, including a
hypothetical ROM-based hypervisor. The JXTA framework
is currently used to maintain a peer-to-peer overlay network
for service advertisement, discovery and, optionally, trans-
port. However, we feel that a more specialized or expressive
latter generation peer-to-peer framework would better fit our
requirements.

A. Physiology
Figure 1 illustrates a scenario with different hardware

platforms running Xenos and a variety of services. A com-
pute cluster service enables users to dynamically create
computation service instances, such as Hadoop map-reduce
nodes. A pair of servers in a data centre offer web hosting,
FTP, email and other services, all hosted within virtual
machines and discoverable by users and other services across
the Xenos cloud. Xenos also runs on a desktop computer,
hosting several light-weight services (virtualized Google
ChromeOS, for instance).

B. Architecture
Each Xenos-enabled physical machine runs the Xen hy-

pervisor using a paravirtualized Linux kernel in Domain
0, which is a privileged domain capable of controlling the
guest domains that will host services on the same physical
machine. The Xenos coordinator is a Java application that
executes in Domain 0 whose primary function is to incorpo-
rate the physical machine into Xenos’s peer-to-peer overlay
network and advertise services running on that physical
machine. Services running within guest domains do not
normally join the overlay network directly, but are registered
with the coordinator in Domain 0 which acts as a ’notice
board’ for all local services. Xenos provides an XML-RPC
programming interface for users and services to discover,
locate and manage services.

Service delivery itself may be accomplished without the
involvement of Xenos, and is not restricted to any par-
ticular network protocol or address space. However, the
direct use of network protocols beneath layer three (for
example, Ethernet) would oblige communicating services to
share a physical network or a physical machine. Figure 2
illustrates the architecture of a single physical machine in
the framework.

In order to accommodate multiple instances of the same
service and service migration, each service type has a tem-
plate associated with it that enables the automatic configura-
tion of new service instances and their Xen domains. When
replicating a service or creating a new service instance, a
new copy of the relevant template is used. Service templates
will automatically replicate on other Xenos hosts as required
so that service instances can be spawned anywhere on
the Xenos cloud. Migration of service instances makes
use of Xen’s virtual machine migration mechanism with a
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Figure 2. A Xenos-enabled physical machine.

slight modification to transfer virtual machine disk images
along with the virtual machine configuration. Our current
implementation inherits a Xen restriction limiting live virtual
machine migration to the local area network, though this
may be overcome as discussed in Section V.

IV. PERFORMANCE ANALYSIS

A series of preliminary tests were conducted in order to
assess the viability of our approach. The test cases all involve
deploying multiple instances of a Hadoop map-reduce wrap-
per service using a separate distributed coordination service.
We aim to explore three principal avenues, namely (1) the
automatic and dynamic deployment of the Hadoop service
to Xenos hosts and the migration of the master Hadoop
node from a failing physical machine; (2) the performance
of file I/O within virtual machines, which is crucial for
services with large-volume data processing requirements
(this is particularly relevant since Xenos requires virtual
machine images to exist in files rather than as physical disk
partitions); and (3) the performance of a series of virtualized
Hadoop map-reduce processing jobs.

A similar evaluation of running the Hadoop map-reduce
framework within a virtualized cluster is carried out by
Ibrahim et al. [14]. They argue that a virtual machine-
based Hadoop cluster can offer compensating benefits that
overshadow the potential performance hit, such as improved
resource utilization, reliability, ease of management and
deployment, and the ability to customize the guest operating
systems that host Hadoop to increase performance without
disrupting the cluster’s configuration.

A. Map-Reduce and Hadoop

In our experiments we used the HDFS (Hadoop Dis-
tributed File System) and MapReduce components of the
Apache Hadoop framework. The map-reduce programming
model, introduced by Dean et al. [15], is aimed at pro-
cessing large amounts of data in a distributed fashion on
clusters. HDFS is a distributed file system suitable for
storing large data sets for applications with heavy data
processing, such as typical map-reduce jobs. The Hadoop
map-reduce implementation involves a master node that runs
a single JobTracker, which accepts jobs submitted by the

user, schedules the job across worker nodes by assigning
map or reduce tasks to them, monitors these tasks and
re-executes failed ones. Each worker node runs a single
TaskTracker which is responsible for executing the tasks
assigned to it by the job tracker on the master node.

B. Deploying Hadoop Services

Each Hadoop map-reduce node needs to be configured
with specific settings, such as the host name, host certifi-
cates and HDFS and map-reduce settings that are common
throughout the cluster. Setting up a non-virtualized environ-
ment usually involves manually configuring a single node,
then cloning the hard disk to the rest of the cluster, either
manually or via shell scripts and rsync.

Our approach is to encapsulate a pre-configured Hadoop
installation inside a virtual machine and automatically dis-
tribute it across the Xenos network as a service. To facilitate
the distribution, we developed a Java/JXTA application to
connect to the Xenos cloud, and used the Xenos program-
ming interface to deploy a Hadoop slave worker service.
One of the hosts on the cluster, which we refer to as the
master host, is configured with a template of the Hadoop
slave service as well as an instance of the Hadoop master
service, from where we issue commands to deploy services
and execute Hadoop jobs.

C. Evaluation Platform and Results

The evaluation platform was a thirteen-host cluster, con-
nected over a 1GB/s Ethernet connection through a D-Link
DGS-1224T switch. Each physical machine in the cluster has
an Intel Core 2 Duo E7200 CPU, with 3MB of L2 cache
clocked at 2.53GHz, 2GB of DDR2 RAM, and a 500GB
SATA2 hard disk. In all of our tests, the virtual machine that
we use as the Hadoop slave template which is replicated is
configured with a 10GB disk image, a 1GB swap image,
the vmlinuz-2.6.24-27-xen kernel, one VCPU (virtual CPU),
384MB of RAM and a DHCP client. Domain 0 is set to
use 512MB of memory, leaving the rest to be allocated to
service-hosting virtual machines, and has no restrictions on
the number of physical CPUs it can use. One of the cluster
hosts is dedicated to hosting the Hadoop slave template and
the master service instance, and configured so that no slave
services are replicated on it. No optimizations to Hadoop
or any other software component were made to suit this
particular cluster. In all results, PHY-Cluster refers to a
Hadoop cluster on native Linux, while VM1-Cluster, VM2-
Cluster and VM4-Cluster refer to Xenos-enabled virtualized
clusters with one, two and four virtualized Hadoop slave
services deployed per physical host respectively.

1) Replication and Migration of Hadoop Service Tem-
plates and Services: The unoptimized replication process
took around 45 minutes to deploy a template and a single
slave service instance to each of the twelve remaining cluster
hosts, which included a network transfer of 132GB as well
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Figure 3. PHY-Cluster vs VM1-Cluster with varying data sizes.
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Figure 4. PHY-Cluster vs VM clusters with varying data nodes (cluster size) and virtual machines per physical machine.

as another 132GB in local data copying; this translates to a
network throughput of around 40MB/s and a disk throughput
of around 25MBs/s. Since the process mostly involves
transferring domain files over the network or copying them
locally, its performance depends on the hardware platform
that the services are being deployed on, as well as the size
of the domains that contain the service. Once the required
templates have been automatically deployed and replicated
throughout the cluster, activating existing services takes a
tiny fraction of this time. Additionally, the Hadoop master
service was successfully migrated between hosts to simulate
a physical host that needs to be dynamically repurposed.

2) HDFS Performance: As shown in Figure 3, read-
ing and writing operations on virtualized HDFS suffered
a performance drop when compared to a non-virtualized
cluster configuration. For small data transfers and clusters,
the gap is negligible, but increases with larger data sets.
However, as shown in Figure 4, increasing the number of
virtualized services per physical host did not cause the read
performance of HDFS to deteriorate. Ibrahim et al. also
make this observation in one of their tests, indicating that the
write performance gap increased markedly but it increased
only slightly when reading.

3) Hadoop Benchmarks: Figure 5 indicates that increas-
ing the number of computation nodes by adding more vir-
tualized service instances on each physical machine benefits
certain processor-intensive Hadoop jobs. In this case, the
PiEstimator benchmark performed significantly better when
more computing nodes were available. However, jobs that
are I/O-intensive and that deal with large data sets suffered
a performance hit due to degraded HDFS performance;
this was evident in the Wordcount and Sort benchmarks
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Figure 5. PiEstimator execution on PHY-Cluster and VM clusters with
varying virtual machines per physical machine.

as illustrated in Figure 6 and Figure 7. In the Wordcount
benchmark, Ibrahim et al. fared better on their virtualized
clusters with 2 and 4 VMs per physical host than their
physical cluster; however each host in their evaluation was
equipped with 8 cores, so their CPU core to VCPU ratio was
always 1 or greater. Our Sort benchmark results are similar
to Ibrahim et al.’s: we also observed that once the reducer
tasks start executing, the entire job slows down considerably.

As discussed in Section I, we expect future improve-
ments in virtualization technology to further minimize the
gap between native and virtualized I/O performance, thus
strengthening the case for deploying Xenos and other such
platforms.

V. TOPICS FOR FURTHER INVESTIGATION

With some effort, Xenos can fill the role of a test-bed to
facilitate experimentation with a variety of emerging issues
in distributed virtualized services, some of which are briefly
discussed here.
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varying data input size and virtual machines per physical machine.
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A. A Library of Essential Services

The core functionality provided by the Xenos framework
can be further extended and abstracted away through ad-
ditional services. Examples include service wrappers for
load-balancing and fault-tolerance (virtual machine check-
pointing is invisible to the service(s) hosted within), virtual
machine pooling and replication, service deployers such as
the Hadoop deployer discussed previously, platform emula-
tors, legacy services supporting a range of operating systems,
and a Xenos-UDDI adapter that can be used to search for
Xenos services via UDDI (Universal Description Discovery
and Integration). Xenos does not impose a single method
for actual service delivery, thus web services, Sun RPC, and
even services using raw Ethernet may be advertised.

B. Seamless Wide-Area Service Migration

The issue of live virtual machine migration over WANs
has been addressed by several authors and a number of
prototypes are available. Travostino et al. [16] approach the
problem of preserving TCP connections by creating dynamic
IP tunnels and assigning a fixed IP address to each virtual
machine, which communicates with clients via a virtual gate-
way interface that is set up by Xen. After migration, a virtual
machine retains its address, and the IP tunnels are configured
accordingly to preserve network routes – this is completely
transparent to TCP or any other higher level protocol.
Bradford et al. [17] combine the IP tunneling approach with
Dynamic DNS to address the problem of preserving network
connections. More importantly, the authors also implement a
pre-copy approach for transferring the disk image attached to
a virtual machine, using a mechanism similar to that used by

Xen when live migrating the state of a virtual machine. This
greatly minimizes downtime even if the actual migration
takes long owing to poor network performance. Harney et al.
[18] suggest using the mobility features in the IPv6 protocol
to preserve network communication sessions, an approach
that is viable in the long-term.

C. Alternative Transport Methods For Service Delivery

Applications featuring fine grained concurrency span-
ning across virtual and physical machines stand to gain
from inter-virtual machine communication path optimiza-
tions such as shared memory communication for services
residing on the same physical machine, and hypervisor-
bypass network communication for distributed services. In
both instances, the secure initialization of each communica-
tion path would be delegated to Xenos, allowing the data
to move directly between the participating virtual machines
and virtualization-enabled I/O devices. In some cases, an I/O
could be permanently and exclusively bound to a specific
service for low-latency dedicated access.

D. Security, Authentication and Service Provisioning

A number of underlying mechanisms could be inher-
ited from the Xen hypervisor and the JXTA peer-to-peer
framework or their respective alternatives. To our benefit,
JXTA provides several security and authentication features,
as discussed by Yeager et al. [19]; these include TLS
(Transport Layer Security), and support for centralized and
distributed certification authorities. Xen provides a basis for
automated accounting and billing services that track service
consumption as well as physical resource use. However,
Xenos should at least provide unified and distributed user,
service and hierarchical service group authentication and
permission mechanisms, a non-trivial undertaking in itself.

E. The Operating System-Agnostic Operating System

Software architectures in the vein of Xenos could fit
the role of a distributed microkernel in a virtualization-
embracing operating system that consists of interacting light-
weight services hosted within virtual machines, including a
multi-core thread scheduler, file systems (a stripped down
Linux kernel), and device drivers. Each operating system
service would run within its own light-weight Xen domain
and expose itself through Xenos services (reminiscent of
system calls). Xenos services would also host legacy oper-
ating systems and applications, presented to users through an
operating system-agnostic window manager hosted in a sep-
arate virtual machine. Applications with particular resource
requirements or requiring isolation, such as computer games
or web browsers, may easily be hosted in their own virtual
machines, supported by a minimal application-specific ker-
nel or library or even executing on ‘bare virtualized metal’.
Xen, and virtual machine monitors in general, have been
described as “microkernels done right” [20], although others
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have argued that the drawbacks that muted the adoption of
microkernels [21] still apply.

VI. CONCLUSION

This paper briefly investigates an approach to building
distributed middleware. The Xenos framework extends well-
established solutions for virtualization hypervisors and peer-
to-peer overlay networks to deliver the beginnings of a
fully decentralized solution for virtualized service hosting,
discovery and delivery. We expect forthcoming hardware
support for virtualization to further reduce the gap between
virtualized and native I/O performance pinpointed in our
results, while simplifying and possibly commoditizing hy-
pervisors. This will further consolidate the virtual machine’s
position as a viable alternative for hosting both computation-
and I/O-intensive tasks. The combination of peer-to-peer
technology and virtualization merits serious consideration
as a basis for resilient distributed services.
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