AP2PS 2011 : The Third International Conference on Advances in P2P Systems

Web Service and Business Process Execution on
Peer-to-Peer Environments

Marco Pereira, Marco Fernandes and Joaquim Arnaldo Martins
DETI - Department of Electronics, Telecommunications and Informatics
IEETA - Institute of Electronics and Telematics Engineering of Aveiro
University of Aveiro, Campus Universitdrio de Santiago, 3810-193 Aveiro, Portugal
{marcopereira, marcopsf, jam} @ua.pt

Abstract—Service oriented environments and peer-to-peer
networks are on the forefront of research. This paper addresses
the issues that arise when attempting to integrate these
technologies, while at the same time makes explicit the benefits
that can be gained from this integration. We propose the
creation of a proxy for web services that allows the deployment
of multiple instances of the same traditional web service in a
peer-to-peer network. This proxy handles service discovery in
the peer-to-peer network and can be used by existing clients
with no modifications, thus offering a transparent way access
to resource replication and decentralisation benefits that are
traditionally associated with peer-to-peer networks. We then
proceed to adapt a business process execution engine to be
peer-to-peer aware, allowing the implementation of process
partition and delegation techniques that can result in reductions
in the network traffic required to execute a business process,
as well as in a more efficient distribution of the service load
through available peers.

Keywords-Peer-to-Peer; Web Services; Service Oriented Archi-
tecture; Business Process Management.

I. INTRODUCTION

Access to computational resources is a key requirement of
most modern organisations. This requirement arises from the
need to produce text documents, to process employees’ salaries,
or to provide complex services. The typical response to this
requirement leads to the proliferation of hardware throughout
organisations, and even among individual users. While some of
it is specialised hardware (such as dedicated servers) most takes
the form of personal computers that are mainly used to perform
simple tasks, wasting potential computational resources in the
form of processing cycles and storage space. Using peer-to-
peer (P2P) technology it is possible to tap into these otherwise
wasted computational resources [1]. A possible use for these
"recovered" computational resources is service deployment,
particularly web services. If web services are themselves seen
as resources it is possible to apply to them the same philosophy
that is applied to files in traditional P2P networks, where
availability and resilience is improved by the existence of
multiple copies distributed throughout the network. By having
multiple copies of a web service present in a P2P network one
can avoid what can be seen as a potential centralised point of
failure and provide an alternative way to implement a Service
Oriented Architecture (SOA) [2]. While SOA is one of the
most popular research topics, and has been a driving force in

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

the software industry [3] to fully explore its advantages it is not
possible to ignore the importance of service orchestration, that
can be used to create composite services from the individual
services available, thus creating a business process. The usage
of SOA, business process orchestration and web services can
bring numerous advantages for organisations [4] such as higher
automation and process integration. Unfortunately the tools that
perform service orchestration are not expecting the services to
be available from multiple providers as it would be the case if
the services were available as resources in a P2P network and
do not take advantage of this fact. In this work we describe how
to use a P2P network in combination with orchestration tools
in order to reap benefits from making web services behaviour
more akin to the one exhibited by files in file-centric P2P
networks.

This work focuses on the development of integration
strategies that explore the synergies that exist between web
services, business process execution and P2P environments.
We believe that better integration between these technologies
will lead to improved performance and added robustness when
executing business processes or individual web services. These
improvements are achieved by using process delegation to
reduce the overall network traffic generated by the execution of
a business process and by allowing the replication of individual
web services through multiple peers to ensure that a service
can be executed even if some of the service providers become
unreachable.

While designing a P2P based service-oriented environment
we have established a few pre-requisites. First unless absolutely
required existing standards should be used. Using standards
compliant approach will enable us to accommodate already
existing services, clients and business processes within the
P2P environment, and does not impose any additional burden
to developers. Second we make no particular assumptions
about the underlying network. This means that our environment
should transparently accommodate different topologies and be
able to execute the services and business processes in a non-
optimised fashion if the available peers do not offer specific
capabilities.

The structure of this work is as follows: in Section II we
review existing related work while in Section III and Section IV
we describe how web services and business process execution
can be made P2P-aware while the benefits and caveats that

19

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

can follow from having P2P-aware business process execution
environment are analysed in Section V with a case study.
Finally in Section VI we present the conclusion of this work
and explain our plans to further improve the presented work.

II. RELATED WORK

Exposing services as part of a P2P network can be seen
as one of the achievements of the JXTA framework [5]. The
JXTA framework provides the necessary protocols to create a
P2P overlay network, establish connections between peers, and
to discover resources in the network. JXTA is able to create
unstructured P2P overlays that can be configured to form either
a pure P2P system that resorts to flooding (using multicast
where available) to perform network queries or an hybrid
P2P system where queries can be directed to infrastructure
peers (in addition to any local caching performed by client
nodes). It should be noted that the use of an hybrid topology is
mandatory in case the actual overlay needs to be extended past
any type of network boundaries (such as NATs or firewalls).
In JXTA every resource (be it a communication channel, a
peer or a service) is represented by an advertisement [6]. An
advertisement is a small XML document with information about
a particular resource that possess a pre-determined lifetime that
will expire if not explicitly renewed during that lifetime. The
first step to locate a resource in a JXTA based P2P network is
always to discover a corresponding advertisement by querying
the network or the local cache. Of particular relevance is a
family of advertisements, Module Advertisements that can be
used to represent and discover services. This family possesses
two advertisement types, Module Specification Advertisement
and Module Implementation Advertisement, representing re-
spectively the expected behaviour and protocol of a given
service and a concrete implementation of the corresponding
service. It should be noted that although the publication of a
Module Specification Advertisement is optional, its publication
is considered a good practice and has an advantage over the
publication of a Module Implementation Advertisement alone.
The advantage is that a Module Specification Advertisement is
allowed to carry within it a Pipe Advertisement, which can be
used to locate a peer that is able to execute the service. As it
would be expected, services constructed in this way are deeply
intertwined with the P2P network and difficult to expose to
the outside, thus creating an impedance mismatch when trying
to use them in SOA.

Another project, also based on JXTA took a different
approach. Instead of creating pure JXTA services, JXTA-SOAP
[7] allowed developers to create web services, that can then
be deployed in the P2P network. Services created with JXTA-
SOAP can be reached within the P2P network by discovering a
Module Specification Advertisement that contains the WSDL of
the web service and a Pipe Advertisement to contact the peer to
execute the service. JXTA is used as a transport protocol instead
of HTTP (handled automatically by the JXTA-SOAP library).
Developing a service using the JXTA-SOAP approach requires
the service to be developed in Java, and the implementation of
a specific interface. It also requires the service to be deployed

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

using the first generation of the Apache Axis platform [8].
As with native JXTA services, services developed with JXTA-
SOAP are also difficult to expose to the outside.

The default approach to web service discovery is to rely
on UDDI (Universal Description, Discovery and Integration
protocol). UDDI provides a centralised broker that can be
queried by a client to discover a provider of a given service,
yet this centralised approach creates a single point of failure.
To tackle this problem it was proposed in [9] that UDDI
brokers could be federated using a P2P approach, where
each UDDI broker acts as a super-peer for a group of peers
that have shared interests (in this case they either require or
provide similar services). Replacing UDDI with a completely
decentralised P2P approach was proposed in [10]. In this
scenario peers publish a semantic description of each provided
service (based on OWL-S). When queried, the network can
return the description to a particular service (or a semantically
equivalent one that is currently available) by automatically
producing a service composition described using Business
Process Execution Language (BPEL). The resulting service
composition can be later used in any application as a regular
web service.

The issue of web service replication is approached in [11].
This work assumes an ad-hoc network scenario (similar to P2P
networks) where frequent node disconnections and failures
make traditional static binding unreliable. To increase the
reliability and availability of services in those types of networks,
it introduces an active monitoring scheme, based on a global
view of the network that can be used to determine if a service is
still available. To cope with expected service failure it allows
dynamic deployment of replicas of web services (the web
services must be Java based). To invoke a service a node must
at first discover an available instance of the service (it is stated
that this a responsibility of the client, not of the system and
the suggested means to achieve this are described in [12][13]).
After discovering this initial instance, it passes it to a tool
called "WSDL-finder" that must be called every time before
the service is actually invoked in order to discover and invoke
the service from an available replica.

An alternative to the use of P2P networks for service
replication can be found in SmartWS [14]. It relies on client
side "smart proxies" that intercept the original web service
call and redirects it to a service provider that at the moment
offers optimal performance (based on a series of tests). All
the service providers must be known before generating the
client side "smart proxy", which means that any new provider
that appear after the proxy creation will not be taken into
consideration.

On the business process side there have been several
proposals that attempt to leverage the existence of multiple
distinct providers, particularly of the orchestration engine itself.
The proposed techniques can be applied to business process
described using BPEL, and mainly deal on how to divide
the business process in order to distribute the execution of a
single business process by multiple BPEL engines in order
to improve throughput. To achieve this goal it was proposed

20

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

in [15] the partition of the BPEL instruction sequence into a
set of distributed processes (that can be reordered, but whose
final output will always be the same as the original sequence).
BPEL activities are divided into fixed (receive, reply invoke)
and portable, where each fixed activity is aggregated with a
process service (receive/reply pair with the entry point) and the
portables can be moved. This approach allows the automatic
extraction of parallelism from the flow activity and results
in partitions containing one fixed activity and zero or more
portable ones. According to the authors this approach leads to
a projected throughput increase of 30% under normal system
load and by a factor of two under high load, yet it assumes that
every service-providing node has BPEL runtime capabilities.

Another approach can be found in [16] where it is proposed
to decentralise the flow control and dynamically select the
role that a given node should take. After executing an activity
each node transfer all the generated state information to the
following node (thus the participating nodes can be seen as
stateless). It should be noted that this approach allows the
dynamic discovery of business partners, yet it still requires the
presence of a BPEL engine in every node and only considers
simple flows without any type of synchronisation, restrictions
or error handling. Alternative approaches to business process
partitioning can be found in [17][18]. These works propose
extensions to the existing BPEL standard in order to make
the data flow (expressed in the form of shared process wide
variables) as explicit as its control flow. Business processes
using the proposed extensions can be partitioned taking into
account both control requirements and shared data requirements.
It should be noted that the partitioning process takes place
before deploying the business process for execution.

III. WEB SERVICES IN P2P ENVIRONMENTS

Our starting point is a previously developed P2P framework
designed to support digital libraries [19]. The P2P component
is based on a JXTA unstructured hybrid overlay comprised
of both infrastructure peers and client peers. In this overlay
infrastructure peers are responsible for gathering advertisements
that are sent periodically by client peers and other infrastructure
peers. Client peers can contact infrastructure peers in order
to discover and receive new advertisements that are stored in
a local cache. When client peers need to locate a resource
they first issue a query to their local advertisement cache and
only in the event of not having a matching advertisement they
issue the query to infrastructure peers. It was decided that the
services should be standard web services, given the ubiquity
and consequent familiarity of that technology. This decision
lead us to use JXTA-SOAP to provide the bridge between web
services and the P2P network, in an attempt to avoid exposing
the details of the P2P network directly to service developers.
While this initial approach allowed us to take advantage of
JXTA built-in resource discovery mechanism (advertisements),
it also possessed a number of shortcomings. Its use of JXTA-
SOAP created a technological limitation to service developers
by requiring that services to be deployed using Apache Axis.
Additional requirements of the creation of services using JXTA-

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

SOAP include the need to implement a specific interface and
the creation of service descriptor (one for each service), which
requires details from the P2P network itself, thus breaking
the illusion that developers are creating standard web services.
Furthermore the services created were only available within
the P2P network, and making them available to the outside
required a manually created per service proxy.

Given the limitations of our initial approach the need for a
complementary solution became clear. Instead of creating our
services inside the P2P network we decided that it would
be better if we created regular web services. This allows
developers to design new services without having to worry
about implementing specific interfaces to allow the network
to be service aware while also freeing them from having to
create services using a particular technology or application
server. In order to make the network aware of the existence of
these external web services (some whose access might only
be possible from the localhost) the local P2P client can be
configured to fetch the WSDL service descriptions from either a
set of addresses or a system folder. The same local client can be
deployed and configured to run in tandem with already existing
web services, exposing them to the P2P network. Services
are then described using a specially crafted advertisement
(based on JXTA Module Specification Advertisement) that
uses the information available from the service WSDL. This
advertisement will carry three pieces of information that
allows the identification of both service and providing peer:
its namespace, methods and address. Two distinct peers can
deploy a copy of the service in their own application server and
automatically generate advertisements for each service from its
corresponding WSDL. Two advertisements will describe the
same service if they possess the same namespace and method
collection. With this strategy web services’ clients are created
in the traditional way, and if nothing is done we could run the
risk of creating bindings that use the same service-providing
peer, ignoring any replica present in the P2P network. To avoid
this we chose to create a transparent web services proxy. Each
peer can be configured to provide a small HTTP server whose
main task is to capture SOAP messages. These messages have
the required information (namespace and method) to locate
a service in the network by searching for its advertisement,
generating a list of potential providers. Another task of the
HTTP server is to publish a modified version of the original
WSDL of each service. This modified WSDL is identical to
the original except that the <soap:address> of the binding will
point to an address configured in the web service proxy instead
of pointing to the service location directly, thus ensuring that
clients generated from this modified WSDL version will be
transparently using the P2P network. Assuming that previously
deployed public services remain public, clients generated from
the original WSDL will not be affected, ensuring that legacy
applications will continue to work while still offering a clear
upgrade path. As was said before each peer can be configured
to act as a proxy regardless of the existence of other peers
that are performing the same task. This enables us to provide
multiple entry points into the P2P network or even to apply

21

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

Service
Client

Service
Proxy \@

P2P Network

@

B

Service

R
@
Provider

@ HTTP Soap Request/Reply

@ Service Lookup Query/Reply
SAAJ Service Call

JXTA Encapsulated Request/Reply
Local Service Call

Common Operations

Direct Contact Operations
Deferred Contact Opertions

@O

Figure 1: Direct contact and deferred contact.

load balance techniques between entry points.

It should also be noted that peers that act as service proxies
have two distinct service invocation methods that they can use:
direct contact and deferred contact (as seen in Figure 1). Direct
contact can be used when the service is directly accessible
using the standard HTTP protocol, while deferred contact
first transfers the raw SOAP message that the service proxy
received to the peer that is actually going to perform the
service using the P2P network. The decision to use one or
another method (illustrated in Figure 2) depends of whether
a service can be reached using the standard HTTP protocol
or not, and determining this requires resolving the service
address. A successful resolve indicates that the service is
directly accessible and is available, while a failure can indicate
that the service provider is no longer available, or that the
service is only accessible from the P2P network. Since both
types of failures are indistinguishable we make the assumption
that the requested service will be available from the same
provider through the use of the P2P network (thus adopting a
deferred contact strategy). If this leads to a new failure while
contacting the peer, a new one can be selected from those that
offer the same service.

A disadvantage of this approach when compared with both
native JXTA services and JXTA-SOAP based services is that
it will require manual service replication. JXTA services were
designed to be portable across machines that are running the
same JXTA version (JXSE or JXTA-C), with their runtime
requirements being described in Module Advertisements. A
similar philosophy can be applied to JXTA-SOAP services,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

-@

Determine
service from
message

Query P2P
Network for
service

[Service not found] Generate
SOAP fault
Generate

service
provider list

Select
provider
from list

[List is not empty]

[Direct
contact]

[Deferred
contact]

Invoke using
P2P

’ [Invoke Error]

Invoke using
SAAJ call

Remove
provider
from list

Send
response

O

Figure 2: Decision model.

since their base requirements (an Axis application server and
java based JXSE JXTA version) is known a priori, and their
runtime dependencies can be bundled in a package. With our
proposed approach the only pieces of information that we have
about a service is its WSDL and providing peer. Since we have
no information about the application server that they require,
or about their runtime dependencies it is not yet possible
to devise an appropriate and completely automated service
migration/replication policy. On the other hand our strategy
does not mandate the use of any specific technology for the
creation of services, unlike previously referenced approaches

(61[71[11].

IV. BUSINESS PROCESS EXECUTION IN P2P
ENVIRONMENTS

While the strategy detailed in the previous section regarding
web services deployment in P2P environments can be used
transparently in the context of business process execution,
we believe that a BPEL engine can benefit from the fact of
being P2P-aware. The most obvious benefit is that it can use
the service discovery mechanism directly, avoiding having to
go through the web services proxy for each service that it
intends to invoke from the P2P network. Having direct access
to the discovery mechanism means that the BPEL engine can
act as a simple load balance mechanism, exploring service

22

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

replication to avoid sending too many service requests to the
same service-providing peer. This can help to alleviate the
fact that the traditional approach to business process execution
is a centralised one, in which service calls are dispatched to
partner links (usually generated from a WSDL and thus bound
to a single provider) and where state is centrally managed, by
replacing those pre-bounded calls with dynamically discovered
service providers. Going one step further, the ability to execute a
BPEL process is in itself a service, which can be replicated and
advertised by the P2P network. It should also be noted that the
composition of multiple services executed by a BPEL engine
is itself exposed as a web service described by a WSDL. This
fact can be explored in a P2P environment in several ways: by
replicating business processes (seen as regular web services)
throughout the network; by allowing peers that provide an
entry point into the P2P network to perform load balance
between multiple composite service providing peers and more
importantly by realising that the network may have multiple
peers that can provide BPEL execution as a service. Being able
to discover other available BPEL engines opens the door to
distributing the orchestration process through multiple service
providers (as opposed to execute the entire process in a single
centralised provider). Distributing the orchestration through
multiple peers has several advantages, particularly in high load
scenarios or in scenarios where there is the need to transfer

large amounts of data between service providers and consumers.

Achieving this goal requires a careful partitioning process in
order to reduce the number of messages and the amount of
data transferred, thus increasing throughput.

Regarding the partitioning process, previous work assumes
that every partner node will have BPEL capabilities, which in
a P2P network designed to take advantage of already existing
computational resources might not be the most convenient
approach. It is possible to safely alleviate this assumption
when using a BPEL engine that is P2P aware, since before
executing a business process we can discover not only the
required service providers but also any other available BPEL
engines (since BPEL execution itself is a service). If no other
engine is found then business process execution will proceed
in the traditional centralised way, yet if one or more engines
are found the BPEL process definition can be partitioned and
parts of it delegated to other engines. If those engines are
themselves P2P aware it is possible to continue the partition
process. It should be noted that the absence of this "BPEL in
every node" assumption means that some of the previously
proposed partition mechanisms can not safely be applied to this
scenario, yet some of the previously proposed design principles
remain valid. When there is a parallel execution (a flow activity),
an entire branch can be still be partitioned if the first invoke
service activity exists at a BPEL-capable peer. Furthermore
having access to the service discovery mechanism means that
we can eventually use information about the services themselves
both to decide what will be the more adequate service provider
to use and to infer the best tasks to be delegated.

As was asserted before, process delegation has the potential
to greatly reduce the amount of data that must be transferred

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

through the network, mainly by eliminating round trips in the
invocation calls. Since this effect can be seen more clearly
when delegating services that require the transmission of large
message or variables (particularly large response messages),
our main concern should be to provide a way to identify those
types of service. While there is no standard way to know a
priory which services will generate a large response message,
we can use the return type as a telltale of those services. It
is safe to assume that any efficiency gain will likely be much
smaller when delegating the process if services are going to
return an integer when compared with services that return an
array of bytes. As such we suggest the usage of a simple
rule: perform no process delegation if the next service return
messages with simple types (numeric, boolean, strings) or
complex types based on these types.

In line with previous work inner process delegation presents
some difficulties when dealing with process monitoring. While
keeping track of the progress of a business process in a
centralised scenario is a simple task, doing so in a decentralised
orchestration environment is not as trivial. This is a non-critical
issue that only occurs for BPEL engines that support process
delegation; nevertheless one should be aware of this limitation.
Furthermore the delegation of branches that contain shared
process variables can also become a source of problems.

V. CASE STUDY

We present as an example the case of a digital newsstand
website that allows registered users to view a range of
newspapers as they are published. The website receives PDF
files from the publishers which need to be converted into an
image format (in the case JPEG) for display purposes and
whose text must be extracted for search purposes. As part
of the submission process there is the need to invoke several
services (image conversion, resize and white space cropping,
text extraction, OCR and storage). The sequence of services
to be performed can be organised as a business process (a
functional diagram of it can be found in Figure 3). The initial
input of this process is a PDF file and an XML document
with associated metadata. The process starts with two parallel
branches. The first branch extracts text from the initial PDF,
while the second branch converts the PDF into an array of
PNG files and crops the white space around the generated PNG
files. From this point on the process once again splits into two
parallel branches, one that is responsible to convert the PNG
files to TIFF format (the OCR service requires that the input
files to be in TIFF format) with the resulting files being fed
to an OCR service. Meanwhile the other branch converts the
PNG files to the final JPEG format (with the appropriate screen
resolution). The final activity consists on the use of a service
that will store all non-intermediate files that were generated
by the process.

In the worst case scenario each of the blocks in Figure 3
represents a service in a different peer. In a centralised
orchestration this represents a significant amount of data that
must be sent through the network. The total amount can be
calculated by T' = 3SpDF| +5SpNng + 25T1F + 2S0CcR +

23

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

Document Submission Process
C
K]
©
© Text(PDF)
=
w
5
'_
g PDF=PNG }_,[CropWS(PNG)J
o
N *{ PNG=TIF }_,[OCR(TIF) J_
]
(0]
N
(723
[0
€ »| PNG=JPG
[0
>
f
o
o
o \J
& I
S StoreDoc(PDF,XML,*)
»

W,

Figure 3: Functional diagram of the document submission
process.

2Srx1T + 255pc + Sxmr + Sip where S, represents the
message size of the transmission of X. In a branched process
such as this one it is possible to perform a simple optimisation
by delegating an entire branch of activities. If one of the peers
that provide an image conversion service also provides BPEL
execution capabilities, we can reduce data that must circulate
through the network by delegating all the activities in the
"OCR" band of Figure 3. The call to the image conversion
service would be a local one, thus avoiding sending the
intermediary TIFF files that result from the image conversion
back to the original caller trough the network. In this particular
digital newsstand application the intermediary TIFF are about
3MB each, which for a 40-page newspaper would result on
not having to send 120MB of data through the network if this
optimisation is applied.

In an optimal scenario where all peers have BPEL execu-
tion capabilities it would be possible to apply the partition
algorithms that were previously mentioned in Section II. It
should be noted that some delegation could prove to be counter-
productive. If there were services just before the storage service,
dedicated to provide unique identifiers, produce checksums or
calculate hashes based on the metadata of the new document,
delegating the orchestration of one of those services and
the storage to those providers would actually increase the
network usage since instead of invoking the first service,
receive its results and send everything to the storage service,

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

both the initial PDF and final JPEG images would have to
be sent first to the new service provider and only after to
the storage service. In this scenario instead of transferring
Ttinal = 2Sxmr + 2Sp + Sppr + Sypc we would be
transferring T'rinar = 2Sxmr + Srp + 2Sppr + 255pa.
If we apply the criteria that was proposed earlier, since the
id/checksum service return type will probably be of a simple
type (that we can safely predict to be small when compared
with byte arrays that hold the original PDF or JPEG files) no
delegation would occur, thus avoiding generating extra network
traffic. Other optimisations could be considered, such as trying
to merge activities in peers that provide multiple consecutive
services. This optimisation could greatly reduce network traffic
but it would be difficult to analyse its beneficial impact if
factors such as throughput were also to be considered. In this
particular example it could also be possible to further explore
the P2P network by using it as a storage medium, which would
allow the storage service to be executed by any available peer.

VI. CONCLUSION AND FUTURE WORK

In this work we have discussed and implemented strategies
to better integrate web services, SOA, and business process
execution in peer-to-peer environments. Our proposed strategy
allows the deployment of replicated web services in multiple
peers without requiring any major change to the services
themselves or to the clients. It accomplishes this with the
use of a small proxy that allows access to services hosted on
the P2P network to clients that are not aware of the presence
of the P2P network providing the following benefits:

o Does not require modifications to existing services or
clients.

« Does not mandate a specific technology for the develop-
ment or deployment of new services.

« Provides a way to tap into otherwise wasted computational
resources.

o Transparently manages access to replicated web services.

While it can be argued that the adopted strategy adds an
additional step that has the potential of slowing the access to
a given service in low load scenarios, it also has the potential
to shield clients in high load scenarios, provided that multiple
peers provide an entry proxy to the P2P network and that
popular services are properly replicated. Business process
execution engines can use the replicated services transparently,
providing an added layer of reliability to business process
execution, yet a P2P-aware business process engine can obtain
the following additional benefits:

o Delegate parts of a business process to other engines.

« Directly select service providers to distribute workload.

« Reduce the amount of data that must be sent through the
network.

Of the previously stated benefits, process delegation and
reduced network data transfers depend directly on the existence
of additional business process execution engines in the P2P
network. Since we are able to discover them in runtime we
can alleviate the "BPEL in every node" assumption present

24

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

in previous works [15][16] and avoid the need to perform
the partition process before actually deploying the business
process [17][18] thus ensuring that there is an "always working"
solution for the execution of the business process, even when
no other business process execution engines are available in
the P2P network.

A point to be improved in the service discovery mechanism is
that the current approach is still based on the traditional WSDL,
which only provides a syntactic description of the service.
While this description provides enough information to discover
and execute a service based only on an incoming request,
the use of a semantic description would enable more refined
queries. One of the goals of a semantically improved discovery
mechanism would be to further improve service execution
resilience by allowing the exchange of a missing or faulty
services with semantically equivalent ones (or composition of
multiple services if applicable) in an automated way (a similar
approach can be seen in PANIC [20]). This requires knowledge
about what the service does that cannot be obtained from the
current WSDL description, but might be available with the
introduction of WSDL-S or OWL-S. The additional knowledge
gathered about each service could also be used to improve
peer selection process, and open the way to more efficient
process delegation strategies. Two peers can be providing
the exact same set of services, yet due to differences in
hardware the performance obtained from each one can be
very different, making one of those peer a less desirable choice
to perform some classes of services. As an example a storage
service would benefit from being executed on a peer with
more available storage space while a video conversion service
would benefit from being executed in a peer with dedicated
encoding hardware. By taking into account the requirements
of the service when selecting the service-providing peer it is
possible to promote an even more rational use of available
hardware resources. It should be noted that having advanced
peer/service selection algorithms is a an important step that to
achieve further performance gains, and is an important research
topic [21][22][23].

As was said before, the proposed P2P service discovery
mechanism assumes that a web service is going to be described
by a WSDL. While this assumption holds true for SOAP based
web services, it collapses when dealing with REST services.
This has a double impact since it prevents the use of REST
services in BPEL processes and prevents proper integration
of REST services with our P2P network. Taking into account
the work described in [24] where REST services have been
described in WSDL and in [25], where REST services were
composed into BPEL processes (with the use of extensions)
we believe that it will be possible to support REST services
in parallel with SOAP based web services using our proposed
P2P architecture with only minor modifications.

ACKNOWLEDGEMENT

This work was funded in part by the Portuguese Foundation
for Science and Technology grant SFRH/BD/62554/2009.

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

[1]
[2]

[3]

[4]

[5]
[6]
[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

I. J. Taylor and A. Harrison, From P2P to Web Services and Grids. Peers
in a Client/Server World. Springer, 2005.
E. A. Marks and M. Bell, Service-Oriented Architecture: A Planning

and Implementation Guide for Business and Technology. John Wiley &
Sons, June 2006.

M. Bichler and K.-J. Lin, “Service-oriented computing,”
Computer, vol. 39, pp. 99-101, 2006. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/MC.2006.102

O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg,

“Service-oriented architecture and business process choreography
in an order management scenario: rationale, concepts, lessons
learned,” in Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, ser. OOPSLA 05, 2005, pp. 301-312. [Online]. Available:
http://doi.acm.org/10.1145/1094855.1094965

JXTA Community Board, “Jxta homepage,” 2010. [Online]. Available:
http://jxta.kenai.com/

——, JXTA v2.0 Protocol Specification, 2007. [Online]. Available:
http://jxta.kenai.com/Specifications/JXTAProtocols2_0.pdf

M. Amoretti, “Enabling peer-to-peer web service architectures with
jxta.soap,” in IADIS e-Society 2008, 2008.

A. S. Foundation, “Web services - axis,” 2005 Published. [Online].
Available: http://axis.apache.org/axis/

M. P. Papazoglou, B. J. Krdmer, and J. Yang, “Leveraging web-services
and peer-to-peer networks,” in Proceedings of the 15th international
conference on Advanced information systems engineering, ser. CAiSE’03.
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 485-501.

Z. Zhengdong, H. Yahong, L. Ronggui, W. Weiguo, and L. Zengzhi, “A
p2p-based semantic web services composition architecture,” in /EEE
International Conference on E-Business Engineering, oct. 2009, pp.
403-408. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
ICEBE.2009.63

S. Dustdar and L. Juszczyk, “Dynamic replication and synchronization
of web services for high availability in mobile ad-hoc networks,” Service
Oriented Computing and Applications, vol. 1, no. 1, pp. 19-33, 2007.
[Online]. Available: http://dx.doi.org/10.1007/s11761-007-0006-z

L. Juszczyk, J. Lazowski, and S. Dustdar, “Web service discovery,
replication, and synchronization in ad-hoc networks,” in Proceedings
of the First International Conference on Availability, Reliability and
Security. Washington, DC, USA: IEEE Computer Society, 2006, pp.
847-854. [Online]. Available: http://dx.doi.org/10.1109/ARES.2006.143
S. Dustdar and M. Treiber, “Integration of transient web services into
a virtual peer to peer web service registry,” Distributed and Parallel
Databases, vol. 20, pp. 91-115, September 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10619-006-9447- 1

J. G.R. Jr,, G. T. do Carmo, M. T. Valente, and N. C. Mendonca, “Smart
proxies for accessing replicated web services,” IEEE Distributed Systems
Online, vol. 8, no. 12, 2007.

M. G. Nanda, S. Chandra, and V. Sarkar, “Decentralizing execution of
composite web services,” SIGPLAN Not., vol. 39, pp. 170-187, October
2004. [Online]. Available: http://doi.acm.org/10.1145/1035292.1028991
F. Montagut and R. Molva, “Enabling pervasive execution of workflows,”
in Collaborative Computing: Networking, Applications and Worksharing,
2005 International Conference on, 2005, p. 10 pp. [Online]. Available:
http://dx.doi.org/10.1109/COLCOM.2005.1651227

R. Khalaf, O. Kopp, and F. Leymann, “Maintaining data dependencies
across bpel process fragments,” International Journal of Cooperative
Information Systems., vol. 17, no. 3, pp. 259-282, 2008. [Online].
Available: http://dx.doi.org/10.1142/S0218843008001828

R. Khalaf, “Supporting business process fragmentation while maintaining
operational semantics: a bpel perspective,” Ph.D. dissertation,
University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, 2008. [Online]. Available:
http://elib.uni-stuttgart.de/opus/volltexte/2008/3514/

M. Pereira, M. Fernandes, J. A. Martins, and J. S. Pinto, “Service
oriented p2p networks for digital libraries, based on jxta.” in ICSOFT
2009 - Proceedings of the 4th International Conference on Software and
Data Technologies, B. Shishkov, J. Cordeiro, and A. Ranchordas, Eds.
INSTICC Press, 2009, pp. 141-146.

J. Hunter and S. Choudhury, “Panic: an integrated approach to the
preservation of composite digital objects using semantic web services,”

25

http://doi.ieeecomputersociety.org/10.1109/MC.2006.102
http://doi.acm.org/10.1145/1094855.1094965
http://jxta.kenai.com/
http://jxta.kenai.com/Specifications/JXTAProtocols2_0.pdf
http://axis.apache.org/axis/
http://doi.ieeecomputersociety.org/10.1109/ICEBE.2009.63
http://doi.ieeecomputersociety.org/10.1109/ICEBE.2009.63
http://dx.doi.org/10.1007/s11761-007-0006-z
http://dx.doi.org/10.1109/ARES.2006.143
http://dx.doi.org/10.1007/s10619-006-9447-1
http://doi.acm.org/10.1145/1035292.1028991
http://dx.doi.org/10.1109/COLCOM.2005.1651227
http://dx.doi.org/10.1142/S0218843008001828
http://elib.uni-stuttgart.de/opus/volltexte/2008/3514/

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

International Journal on Digital Libraries, vol. 6, no. 2, pp. 174-183,
2006. [Online]. Available: http://dx.doi.org/10.1007/s00799-005-0134-z

[21] E. Xhafa, L. Barolli, T. Daradoumis, R. Fernandez, and S. Caballé,
“Jxta-overlay: An interface for efficient peer selection in p2p jxta-based
systems,” Computer Standards & Interfaces, vol. 31, no. 5, pp. 886-893,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
BO6TYV-4S2TRXK- 1/2/ac83a5f48d7beeac9f84cb21e6182d83

[22] N. C. Mendon¢a and J. A. F. Silva, “An empirical evaluation of
client-side server selection policies for accessing replicated web services,”
in SAC ’05: Proceedings of the 2005 ACM symposium on Applied
computing. New York, NY, USA: ACM, 2005, pp. 1704-1708. [Online].
Available: http://doi.acm.org/10.1145/1066677.1067062

[23] S. Dykes, K. Robbins, and C. Jeffery, “An empirical evaluation of
client-side server selection algorithms,” in Proceedings of INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies., vol. 3, March 2000, pp. 1361-1370.

[24] L. Mandel, “Describe rest web services with wsdl 2.0: A how-to guide,”
IBM, 2008. [Online]. Available: http://www.ibm.com/developerworks/
webservices/library/ws-restwsdl/

[25] C. Pautasso, “Bpel for rest,” Business Process Management, vol.
5240, pp. 278-293, 2008. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-85758-7_21

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

http://dx.doi.org/10.1007/s00799-005-0134-z
http://www.sciencedirect.com/science/article/B6TYV-4S2TRXK-1/2/ac83a5f48d7beeac9f84cb21e6182d83
http://www.sciencedirect.com/science/article/B6TYV-4S2TRXK-1/2/ac83a5f48d7beeac9f84cb21e6182d83
http://doi.acm.org/10.1145/1066677.1067062
http://www.ibm.com/developerworks/webservices/library/ws-restwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-restwsdl/
http://dx.doi.org/10.1007/978-3-540-85758-7_21
http://dx.doi.org/10.1007/978-3-540-85758-7_21

	Introduction
	Related Work
	Web Services in P2P Environments
	Business Process Execution In P2P Environments
	Case Study
	Conclusion and Future Work
	References

